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1 Likelihood
� sums of squares are fine, but may want a goodness-of-fit metric that is

tied to a particular model (e.g. chain binomial) of how an epidemic works

� likelihood : probability of observed data occurring given a partic-
ular model (= set of parameters): write this as Prob(data|model)
(also sometimes stated as “probability given a hypothesis”)

� Niamey example: 27 cases in week 2, commune 1. Suppose that there
are 8000 susceptibles in the population. If the attack rate (per capita
infection probability) is 0.002, what is the likelihood (probability of 27
cases)? Answer : 0.0033 (how did I get this answer (mathematically? in
R?))

� the maximum likelihood estimate (MLE) is the value of the parameter
that makes the data most likely to have occurred. In the particular case
of binomial data, we could do a little bit of calculus to show that the
MLE in this case is (number of cases)/(number of susceptibles), which is
common sense

� the likelihood curve shows the likelihood for a range of possible param-
eter values. We often draw the log-likelihood curve (or the negative log-
likelihood curve) instead, for convenience/historical reasons.
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� Likelihood surfaces: more than one parameter (in this case number of
susceptibles and force of infection)
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� intuition: the shape of the likelihood surface (particularly its steepness)
tells us about the uncertainty in our parameters. There are a lot of details
here that we won’t go into (much), because they are handled in a slightly
different way by Bayesians

� we could translate this problem into a question about the contact rate β
rather than the attack rate by saying p = 1 − exp(−βI(t − 1)/N) — in
this case our estimate of p̂ = 0.003375 would translate to β̂ = − log(1 −
p̂)N/I(t− 1) ≈ p̂N/I(t− 1) = p̂× (300, 000)/22 = 46.02.

� to solve non-trivial problems (with more than a single data point) we
usually assume that the data points are all independent, in which case the
overall likelihood is the product of the individual likelihoods, or the overall
log-likelihood is the sum of the log-likelihoods
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� it also turns out that for the special case of a normal distribution, the MLE
is equivalent to least-squares fitting. Suppose we have data yi and are
fitting a function to compute the expected values of µi (e.g. µi = a+ bxi).
The normal probability distribution is C ·exp(−(xi−µi)2/(2σ2)), where C
is some ugly stuff (1/(

√
2πσ)). The logarithm is log(C)−(xi−µi)2/(2σ2).

If we sum up the negative log-likelihoods (so we will want to minimize
rather than maximize) we get −N log(C) + 1/(2σ2)

∑
(xi−µi)2. If all we

care about is minimizing, we can ignore the first term and the multiplier
in the second term — we just have to minimize

∑
(xi−µi)2, which is just

the sum of squared errors. (We often ignore normalization constants such
as 1/

√
2π, which don’t depend on the parameters . . . )

1.1 Example
We can read the data straight from the web, if we know where it is:

> daturl <- "http://www.umich.edu/~kingaa/EEID/Ecology/commune.measles.csv"

> niamey <- read.csv(url(daturl), header = FALSE)

Or we can read it from the working directory:

> niamey <- read.csv("commune.measles.csv")

> cases <- niamey[, 1]

Suppose that we know the starting number of cases in commune 1, recon-
struct the number of susceptibles at the previous period in each case:

> S0 <- 8000

> n <- length(cases)

> cumcases <- cumsum(cases)

> Susc <- S0 - c(0, cumcases[1:(n - 1)])

For a given value of β, the force of infection is βI and the attack rate is
1− exp(−βI∆t) = 1− exp(−βI) (because we have biweekly data, ∆t = 1).

For a given value of β, say β = 50, we can compute the probability of 27
cases given 8000 susceptibles and 22 cases in the previous generation:

> popsize = 3e+05

> beta <- 50

> dbinom(cases[2], size = Susc[1], prob = 1 - exp(-beta * cases[1]/popsize))

[1] 6.579164e-06

Or to calculate the log-likelihood:

> dbinom(cases[2], size = Susc[1], prob = 1 - exp(-beta * cases[1]/popsize),

log = TRUE)

[1] -11.93160

There are a few ways we could figure out the overall likelihood, or log-
likelihood, for a given value of β. Read them over and try one of them.
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1. Define a starting value for likelihood of 1. Then use a for loop stepping
from 2 to n. At each step, compute the likelihood curr_lik using the
current cases, previous cases, and previous susceptibles as shown above,
and update the likelihood: likelihood <- likelihood * curr_lik

2. Do the same for log-likelihoods, starting from 0 rather than 1 and adding
the log-likelihood instead of multiplying likelihoods.

3. Set up a vector of cases from time 2 to n by dropping the first case:
cases[-1] (or cases[2:n]). Then set up the vector of cases from time 1
to n − 1 (cases[1:(n-1)] or cases[-n]) and the vector of susceptibles.
Now you can compute 1 − exp(−βI(t − 1)) (for a given value of β) in a
single, vectorized statement, and you can feed this expected-attack-rate
vector and the matching numbers of susceptibles and cases into dbinom
and get a vector of attack rates: prod takes the product of a vector

4. as previous item, but with log-likelihoods (add the log=TRUE argument to
the dbinom call) and use sum instead of prod

If you have time: write another for loop, over different values of β (try
values ranging from 5 to 200 in steps of 5), to compute the likelihood curve for
β. The result should look like this:
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2 Bayes
2.1 Bayes’ rule

� Bayes’ rule: just a rule about how to figure out Prob(H|D) from Prob(D|H)
(fairly easy to derive):

P (H|D) =
P (D|H)P (H)

P (D)
(1)

or

P (Hi|D) =
P (D|Hi)P (Hi)∑
j P (Hj)P (D|Hj)

(2)

H1

D∩∩H1
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� (false positive/medical testing/forensic example, if time permits)

2.2 Bayesian inference
� interpret P (H|D) as the probability of the “hypothesis” given data, where

“hypothesis” can mean (as in the discussion of likelihood above) a model,
or for P (Hi|D), Hi is a particular value of the parameters; this is called the
posterior probability, the distribution is the posterior distribution.

� then P (D) is the likelihood . . .

� but what the hell is P (Hi)? The prior.

� the denominator,
∑
P (Hj)P (D|Hj) or (for continuously distributed pa-

rameters
∫
P (p)P (D|p) dp) is P (D), the probability of having gotten the

data somehow

� if all of the P (Hi) are the same then they all cancel out of the Bayes’ rule
formula (and we get P (Hi|D) = P (D|Hi)/

∑
j P (D|Hj), sometimes called

the scaled likelihood) — then the shape of the posterior distributions is the
same as the shape of the likelihood curve (and the maximum (mode) of
the posterior distribution is the same as the MLE)
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Bayesians usually summarize the results of an analysis via the posterior
means of the parameters (sometimes the posterior modes) and the quantiles or
credible intervals of the marginal distributions (give details if time). Computing
the marginal posterior distributions is a big pain (integrals!) but can be avoided
by using the techniques Aaron will discuss.

2.2.1 Pros and cons
Three reasons to be Bayesian:

1. philosophical : using a Bayesian framework gives you the ability to make
inferences about what you really (arguably) want to know, the probability
of a given parameter or model, rather than jumping through the semantic
hoops required by frequentist inference

2. using prior information: in sparse-data cases (conservation biology, wildlife
disease) we can introduce extra information that we already know, in a
very natural way, through the prior distribution (McCarthy (2007) shows
lots of nice examples)

3. pragmatic: a lot of problems that are very hard to solve in classical ways
become easier in a Bayesian framework. For example: “mixed” models
(involving random effects); models with process and measurement error,
or unobserved states; etc.

Three reasons not to be Bayesian:

1. philosophical : the Bayesian framework requires you to specify your prior
distribution, which most of the time is a subjective statement of your
personal belief about what the parameter might be. Some researchers
hate this subjectivity (Dennis, 1996). You can try to make the priors
weak, or uninformative (flat is another synonym), but this is hard for
various reasons.

2. pragmatic (“too hard”): using Bayesian approaches requires more technical
overhead than classical approaches (partly, but only partly, because most
canned statistical software is written to apply classical approaches). Very
hard problems are easier, but moderately hard problems are harder . . . the
main problem is computing integrals (Aaron’s lecture will talk about how
to do avoid doing the integrals)

3. pragmatic (“too easy”): in practice, one can almost always get an answer
to a problem (even very hard ones) using modern Bayesian methods, but
sometimes the answers make no sense — where classical methods would
just fail (!!)

Many statistical practitioners switch back and forth among approaches de-
pending on what works best in a particular case. Fewer and fewer real statis-
ticians are rabid about the distinction, although some have strong preferences
. . . for an amusing recent entry into the debate, see Gelman (2008).
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2.2.2 Priors and conjugate priors
For a single-parameter problem, we can get the general shape of the posterior
(ignoring the denominator) easily. Let’s go back to the attack rate problem we
started with (for 27 cases out of 10,000 susceptibles, what can we say about
the attack rate?) Say we use a flat prior, where the prior probability of any
attack rate is equal: then (as stated above) the prior terms cancel out, and the
posterior is equal to the scaled likelihood.

Let’s try varying the prior. Location of the peak tells us something about
our estimate, width of the peak tells us something about our certainty.
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Crome et al. (1996) give a nice example of contrasting the effects of different
priors in a conservation context (effects of logging on bird communities).

2.3 Conjugate priors
Conjugate priors are special forms of the priors such that the combination of the
prior and the likelihood (i.e. the outcome of Bayes’ rule) ends up having the same
distribution as the prior. For example, if you start with a normally distributed
prior mean, and your data are normal, then the posterior distribution of the
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mean is also normal — but with different (updated) parameters, in a sensible
way

µpost = (µdat/σ
2
dat + µprior/σ

2
prior)/(1/σ

2
dat + 1/σ2

prior) (3)

Data Prior Meaning
Binomial (p) Beta a→ a+ k=# successes, b→ b+ (N − k)=# failures
Poisson (λ) Gamma mean (shape · scale) = prior mean intensity, shape = # counts
Normal (µ) Normal Mean and standard dev of prior obs.
Normal (σ2) Inverse-gamma

Also see http://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_
distributions

Conjugate priors are useful for illustrating/understanding the effects of priors
(see above); they are most useful as components of more complicated Bayesian
solutions.

2.3.1 Example
Play around with conjugate priors for the binomial distribution (Beta). Use the
curve function: for example, consider binomial data with 5 successes and 10
failures (total sample N = 15, # successes k = 5, failures N − k = 10) and a
prior distribution of 10 successes and 5 failures (a = 10, b = 5). The posterior
is a = 15, b = 15 (R uses shape1 and shape2 to denote these parameters.)

> curve(dbeta(x,shape1=5,shape2=10),col=1,from=0,to=1,

ylim=c(0,5)) ## prior

> curve(dbinom(5,prob=x,size=15),col=2,add=TRUE) ## likelihood

> curve(dbeta(x,shape1=15,shape2=15),col=4,add=TRUE) ## posterior

> legend("topleft",c("prior","likelihood","posterior"),

col=c(1,2,4),lty=1)

Experiment with:

� weak priors (a = 1, b = 1)

� strong priors that agree with the data (e.g. a = 5, b = 10 (mean prior
prob=2/3), k = 5, N = 15)

� strong priors that disagree with the data (e.g. a = 10, b = 5 (mean prior
prob=1/3), k = 5, N = 15)

� data much stronger than prior (e.g. as above two examples but use k = 25,
N = 75)
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