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1 The Basic Removal Model

Recall the example of fitting the basic, closed epidemic using the chain binomial.
We can write the incidence at each time step as a function of the indicence in
the prior time step,

It+1 ∼ binomial(St, 1− e−β It) where St = S0 −
t∑

u=1

Iu

We can easily write the likelihood for β and S0. Let I represent the entire
sequence of cases {It}nt=0. Then the likelihood is just the probability we observed
the data I given the parameters β, S0:

f(I|β, S0) =
n−1∏
t=0

(
St
It+1

)
(1− e−β It)It (e−β It)St−It+1
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Now we are going to apply this model to estimate the initial susceptible
population size and the transmission rate for measles for a specific example; an
outbreak of measles in Niamey, Niger (Grais et al (2006) Proc. Roy. Soc. Trop.
Med. Hyg.:100(9),867-873).

2 Background

Niamey, the capital of Niger, has approximately 750,000 inhabitants and has
seasonal measles outbreaks during the dry season (October-May). The mag-
nitude of outbreaks varies greatly from year to year Figure 1, due both to
strong non-linear dynamics and the stochastic process of local extinction and
re-introduction following large outbreaks. There was a large, well-documented
outbreak starting in November 2003 and lasting until June 2004. In that time
there were approx. 11,000 cases reported Figure 2. For the purposes of this ex-
ample, we will assume that under-reporting is negligible. In the 24th week of the
outbreak, Medecins Sans Frontieres conducted a reactive vaccination campaign
with a goal of vaccinating 50% of all children 6-59 months.
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Figure 1: Weekly measles cases in Niamey 1986-2004

There are 3 communes within Niamey. The outbreak began nearly simul-
taneously in Commune 1 and 2 and then spread to Commune 3 (south of the
Niger River) after 4 weeks.

3 The basic model

Using Bayes rule, the posterior can be written as:

P (θ|data) =
P (data|θ)P (θ)

P (data)
(1)

or, recalling that P (data) is a constant,
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Figure 2: Reported cases in 3 communes of Niamey: Commune 1, 2, and 3, are
black, red, and blue respectively.

P (θ|data) ∝ P (data|θ)P (θ). (2)

Here we have:

P (β, S0|I) ∝ L(β, S0|I)P (β)P (S0). (3)

Note that this is the relationship for the joint posterior, and depends on
the joint likelihood for β and S0. It is often simpler to deal with univariate
distributions, so we wil take advantage of Block Sampling to approximate the
joint posterior. Recall that for Block Sampling, we will iteratively draw from
each parameter (β and S0) conditional on the other. Note that, conditional
on S0, the likelihood for beta is binomial, and visa versa. Thus, we can write
a generic likelihood function, that takes the parameters in the argument ”par”
and the data in the argument ”vecs”:

likelihood<-function(par,vecs){

S0<-par[1]

beta<-par[2]
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I<-vecs$I

S<-floor(S0-cumsum(I[1:(length(I)-1)]))

p<-1-exp(-beta*(I[1:(length(I)-1)]))

L<-dbinom(I[2:length(I)],S,p,log=TRUE)

Lik<-sum(L,na.rm=TRUE)

# note that this returns the log-likelihood

}

The conditional posterior is the likelihood times the prior, which we’ll get
to below. We can then simulate the joint posterior distribution for β and S0 as
follows :

1. Define storage vectors for β and S0

2. Choose initial values for β1 and S1
0

3. Propose a candidate value for S2
0 .

4. Evaluate conditional posterior of the candidate S2
0 conditional on β1

5. Evaluate conditional posterior of S1
0 conditional on β1

6. Use Metropolis-Hastings to choose S2
0 = candidate S2

0 or S1
0

7. Propose a candidate value for β2.

8. Evaluate conditional posterior of the candidate β2 conditional on S2
0

9. Evaluate conditional posterior of β1 conditional on S2
0

10. Use Metropolis-Hastings to choose β2 = candidate β2 or β1

11. Store β2 and S2
0

12. Return to (3), repeat.

In R-Code this looks like:

#first read in the data

dat<-read.csv("commune.measles.csv",header=F)

#choose the time series for the Commune 1

I<-dat[,1]

#make the data list to pass to the likelihood function (above)

vecs<-list(I=I)

#set the number of MCMC iterations

iter<-100000

#set storage vectors

S0<-numeric(iter)

beta<-numeric(iter)

#choose initial values
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S0[1]<-floor(1.9*sum(I))

beta[1]<-1e-4

#set step sizes for proposing new candidate values of parameters

S0.step<-10

beta.step<-5e-6

for(i in 2:iter){

#propose a new value for S0 (note that I've restricted

#proposals so that S0 must be greater than the sum of reported cases)

S0.tmp<-0

while(S0.tmp<sum(I)){

S0.tmp<-S0[i-1]+sample(c(-1,1),1)*rpois(1,S0.step)}

# evaluate the marginal posterior at the candidate value of S0

# note: these are log likelihoods, so we take the sum, not the product

numer<- likelihood(c(S0.tmp,beta[i-1]),vecs) +

dunif(S0.tmp,sum(I),10*sum(I),log=T)

#evaluate the marginal posterior at the of the old value of S0

denom<- likelihood(c(S0[i-1],beta[i-1]),vecs) +

dunif(S0[i-1],sum(I),10*sum(I),log=T)

#Accept or Reject using Metropolis-Hastings

ifelse(runif(1)<exp(numer-denom),S0[i]<-S0.tmp,

S0[i]<-S0[i-1])

#Do the same for beta

beta.tmp<-0

while(beta.tmp<1e-9){

beta.tmp<-beta[i-1]+sample(c(-1,1),1)*beta.step}

numer<- likelihood(c(S0[i],beta.tmp),vecs) +

dbeta(beta.tmp,1,1,log=T)

denom<- likelihood(c(S0[i],beta[i-1]),vecs) +

dbeta(beta[i-1],1,1,log=T)

ifelse(runif(1)<exp(numer-denom),beta[i]<-beta.tmp,

beta[i]<-beta[i-1])

#cat(i,".\n") #this is a handy counter that will stream

#the iteration number on the screen,

#so you know that your computer is working

}

To implement this algorithm I’ve had to make two important additions.

1. Choose prior distributions for β and S0.
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2. Choose proposal functions for the candidate values of β and S0

3.1 Prior distributions

Choosing priors can be a bit of an art. Sometimes one chooses priors because
they reflect some prior belief or knowledge of the parameter values. Sometimes
one chooses priors because they simplify the computation. Here I have chosen
relatively arbitrary priors. I have chosen a uniform prior for S0, on the interval
sum(I) to 10*I, because I know that there have to be more susceptibles than
there were cases, but I don’t have a good feel for the upper bound. I have chosen
a uniform prior for β on the interval 0 to 1.
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Figure 3: Prior distributions for β and S0.

3.2 Proposal functions

Formally, the Metropolis-Hastings algorithm depends on the proposal function
and should include a term for the probability of getting to the proposed value
of the parameter from the previous value and visa versa. Here I have cho-
sen to propose candidate values using a random walk, which means that those
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probabilities are the same and they cancel out in the Metropolis-Hastings algo-
rithm. This is simply a matter of convenience, and for complicated problems it
is often worth the effort to use very specific proposal distributions that are not
symmetric (like a random walk).

The step size for the random walk doesn’t formally affect the algorithm (i.e.
given a long enough time, it should work for any step size), but practically it
can be very important for the performance of the MCMC chains. Too small a
step size and the chains will mix slowly. To large a step size and you will too
often propose values with very low likelihood and the chains will tend to get
stuck on values that can’t be rejected for long periods.

4 Output of Markov Chains

1. The Markov chain of parameters are a sample from the posterior distri-
bution. We can visualize the posterior by looking at a histogram of the
values in the chains.

2. These are numerical simulations, and so we before we do inference we
need to evaluate the chains to make sure that they have converged on the
appropriate distributions and are no longer influenced by the initial values
we gave it. For simple problems we can do this by plotting the chains.

3. When analyzing the chains (i.e. making histograms, calculating point and
interval estimates) it is conventional to discard the first N draws to min-
imize the impact of the initial conditions. It should be apparent from
an inspection of the chains when they have converged to the posterior.
There are a variety of formal ways to verify if chains have converged. The
best involve starting multiple chains from different initial conditions and
verifying that they go to the same place: see Cowles and Carlin (1996)
”Markov Chain Monte Carlo Convergence Diagnostics: a copmarative re-
view” JASA.

4. Because these random draws were generated using a Markov chain, there is
strong autocorrelation in the draws Figure 4. It is common to sub-sample
the chains so to approximate independent draws from the posterior. Here
I will use only every 100th draw from the chain.

5. The resulting vectors are random draws from the posterior distributions.
Thus point and interval estimates are straightforward to obtain. Any
measure of central tendency for the posterior draws (i.e. mean, median,
mode) can be used as a point estimate; the mean of the posterior is a
conventional point estimate . Interval estimates can be simply obtained
as the quantiles of the posterior sample (i.e. 5th and 95th percentiles).

6. Under the formalism of Bayes, parameters are thought of as random vari-
ables. Thus, it is straightforward to do inference on functions of the draws
from the posterior, by simply applying that function to the elements of
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the Markov chain. For example, R0 = β ∗S0; so if we want to get the pos-
terior for R0 we need only to multiply the elements of the Markov chain
for β by the elements of the Markov chain for S0 to get a new chain that
approximates the posterior distribution for R0.
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Figure 4: Markov chains for β and S0.

Exercise 1. Run the above code yourself and compare the estimates of β
and S0 to the maximum likelihood estimates using the code below:

# for simplicity set the initial values for optim equal to the postior means

# but try additional starting values to prove to yourself that they don't matter

init<-c(floor(mean(S0.sub)),mean(beta.sub))

# Note: I'm using the argument "control=list(fnscale=-1 . . "

# which tells optim to maximize rather than minimize the likelihood.

mle.fit<-optim(init,likelihood,method="L-BFGS-B",

lower=c(sum(I)+10,1e-4),upper=c(1e4,4e-4),

control=list(fnscale=-1,ndeps=c(1,1e-5)),vecs=vecs)

Looking at the output of the chains, we see that the posterior means are very
close (almost indistinguishable) from the maximumlikelihood estimates for S0
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Figure 5: Autocorrelation plots for β and S0 chains.

and β. That is because as we have formulated the model, there is no information
in the prior distributions, so all the information must come from the likelihood.
So, while instructive as an example of the algorithms, we’ve basically taken the
long route to get a solution that we could have done using standard maximum
likelihood. Now lets look at what we can do to make use of the the Bayesian
framework.

5 Making Use of Bayes: Auxiliary data

In the previous example, we used the machinery of Bayes, but applied it to an
example that could have more easily been solved with standard maximum like-
lihood. Now we will extend the analysis to take advantage of the flexibility of
Bayesian methods. One challenge to classical likelihood methods is that there
is often no standard way to incorporate data from multiple sources. Bayesian
methods, however, provide a fairly convenient structure for incorporating addi-
tional information through the prior.

While it is difficult to get independent data on the transmission rate in

9



beta

beta.sub

F
re

qu
en

cy

0.000235 0.000255

0
5

10
15

20
25

30

Initial susceptibles

S0.sub

F
re

qu
en

cy

7500 7700 7900

0
5

10
15

20

Figure 6: Histograms of subsampled β and S0 chains. Solid red lines are the
mean of the posterior. Dashed blue lines are 90% confidence limits.

Niamey, we can use knowledge of the sytem to express our prior information
about the initial suscpetible population size S0. Vaccination coverage in Niamey
is reported to be around 70%. As a part of the reactive campaign in 2004,
MSF performed a vaccination survey to estiamte coverage before and after their
campaign in the three Communes of Niamey, which we can use to estimate the
vaccination coverage for each commune.

Recall that measles is highly episodic in Niamey; measles went locally extinct
following an outbreak in 2001 and there were very few cases between late 2001
and late 2003. Additionally, there were 3 years of outbreaks from 1999-2001
??. Thus, we can reasonably assume that the susceptible population was very
small (near 0) following the 2001 outbreak, and the susceptible population at
the start of 2003-2004 outbreak is due to children born while measles was locally
extinct. We can then estimate the susceptible population size as the number of
births, discounted by the vaccination rate. Population size and birth rate for
Niamey are reasonably well known and we can use the 2004 vaccination survey,
conducted by MSF, to estimate the vaccination rate.

To do so, we first need to look at the vaccination data; the data are coded by
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Figure 7: Top panel is the point estimate for β and S0 on the likleihood surface
for the chain binomial. Lower panels are the marginal posteriors for β and S0

. Solid red lines are the mean of the posterior. Dashed blue lines are 90%
confidence limits.

Commune, with 0= not vaccinated, and 1= vaccinated prior to the campaign:

vac<-read.csv("niamey.vacc.csv",header=T)

# split data into 3 communes

vacc.commune<-split(vac[,3],vac[,2])

# count number of children sampled in each commune

samp.size<-sapply(vacc.commune,length)

# rate of vaccination

p.vacc<-sapply(vacc.commune,mean,na.rm=T)

The total population size for Commune 1 in 2003 is given as 335,122 and
the number of live births (correcting for infant mortality) in the inter-epidemic
interval is given as 22,432 (Note: this assumes that children born in the 6 months
prior to the 2003-2004 outbreak are still protected by maternal immunity). The
vaccination rate for Commune 1 from the survey is 0.678; which gives an estimate
of the susceptible population size of 7,223. The population sizes and births for
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Figure 8: Vaccine coverage across Niamey, Niger. From Dubray et al. 2006.
Vaccine.

each commune are given below:
Commune PopulationSize Births

1 335,122 22,432
2 297,836 19,936
3 100,206 6,708

So, based on our assumptions about the susceptible population, we might
choose a prior distribution that has a mean of 7,223; say a Poisson distribution
with mean of 7,223.

Exercise 2. Change the prior distribution for S0 from the uninformative
uniform distribution, to a prior that reflects our hypothesis that S0 is about
7,223. Specifically, use a Poisson prior, with mean equal to 7,223. How does
this affect the estiamtes of S0 and β?

Alternatively, we can incorporate the additional information from the vaccine
survey directly, and fit a full model, with both sets of data, simultaneously. First
we need to re-parameterize the likelihood for the time series of cases in terms of
the births and vaccination rate:

likelihood<-function(par,vecs){

p.vacc<-par[1]

beta<-par[2]

I<-vecs$I

S0<-vecs$births*(1-p.vacc)

S<-floor(S0-cumsum(I[1:(length(I)-1)]))

p<-1-exp(-beta*(I[1:(length(I)-1)]))

L<-dbinom(I[2:length(I)],S,p,log=T)

Lik<-sum(L,na.rm=TRUE)

}

Note that this is just the original likelihood, reparameterized with p.vaccc =
S0/births. This new formulation is useful, because we have the vaccine survey
data that provides and estimate of the vaccinated proportion, and the uncer-
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Figure 9: Proportion vaccinated in 3 Communes of Niamey prior to the 2003-
2004 outbreak. Numbers above give the sample size in each commune.

tainty in the vaccine rate, through the likelihood. The likelihood for the vac-
cination rate is a simple binomial, and we can write a simple function for the
likelihood (with the same inputs as the time series likelihood) as :

likelihood.vacc<-function(par,vecs){

p.vacc<-par[1]

x<-sum(vecs$vacc,na.rm=T)

N<-sum(!is.na(vecs$vacc))

dbinom(x,N,p.vacc,log=T)

}

Because the two datasets are independent (an assumption we are implicitly
making) the likelihood for the vaccinated proportion is simply the product of
the likelihoods for the two datasets. Thus, we can modify the above code as
follows:

#first read in the data

dat<-read.csv("commune.measles.csv",header=F)
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#read in the niamey vaccination by commune

vac<-read.csv("niamey.vacc.csv",header=T)

vacc.commune<-split(vac[,3],vac[,2])

samp.size<-sapply(vacc.commune,length)

#select the commune 1 data on cases and vaccination

I<-dat[,1]

vacc<-vacc.commune[[1]]

# note that now "vecs" contains the timeseries

#AND the vaccine survey data, and the births

vecs<-list(I=I,vacc=vacc,births=22432)

#set the number of MCMC iterations

iter<-100000

#set storage vectors

p.vacc<-numeric(iter)

beta<-numeric(iter)

#choose initial values

p.vacc[1]<-.6

beta[1]<-1e-4

#set step sizes for proposing new candidate values of parameters

p.vacc.step<-.001

beta.step<-1e-6

for(i in 2:iter){

p.vacc.tmp<-p.vacc[i-1]+sample(c(-1,1),1)*p.vacc.step

numer<- likelihood(c(p.vacc.tmp,beta[i-1]),vecs) +

likelihood.vacc(p.vacc.tmp,vecs) + dbeta(p.vacc.tmp,1,1,log=T)

denom<- likelihood(c(p.vacc[i-1],beta[i-1]),vecs) +

likelihood.vacc(p.vacc[i-1],vecs) + dbeta(p.vacc[i-1],1,1,log=T)

ifelse(runif(1)<exp(numer-denom),p.vacc[i]<-p.vacc.tmp,

p.vacc[i]<-p.vacc[i-1])

beta.tmp<-0

while(beta.tmp<1e-9){

beta.tmp<-beta[i-1]+sample(c(-1,1),1)*beta.step}

numer<- likelihood(c(p.vacc[i],beta.tmp),vecs) +

dbeta(beta.tmp,1,1,log=T)

denom<- likelihood(c(p.vacc[i],beta[i-1]),vecs) +

dbeta(beta[i-1],1,1,log=T)

ifelse(runif(1)<exp(numer-denom),beta[i]<-beta.tmp,

beta[i]<-beta[i-1])

#cat(i,".\n")

}

Note that now the prior for S0 has been replaced with an expression for
Pvacc. The new expression is the likelihood for vaccinated proportion, given
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the vacccine survey data times a flat prior for the vaccinated proportion (the
distribution beta(1,1) has uniform density on the interval 0,1). Likelihood time
prior is the posterior, thus, the posterior for the vaccination data provides a
prior for Pvacc, with a distribution that reflects the uncertainty in the estimate
from the vaccine data.

We can then run the same diagnostic plots for the chains as before, and
estimate the point and interval estiamtes in the same way.

0 20 40 60 80

0.
00

02
3

0.
00

02
4

0.
00

02
5

0.
00

02
6

beta

iteration

be
ta

.s
ub

0 20 40 60 80

0.
64

5
0.

65
0

0.
65

5
0.

66
0

0.
66

5

proportion vaccinated

iteration

p.
va

cc
.s

ub

Figure 10: Markov chains for β and Pvacc.

We’re not terribly interested in the proportion vaccinated, so we can translate
the proportion vaccinated Pvacc into the initial suscpetible population as 22432∗
(1− Pvacc).

Now we can compare the point estimates and confidence intervals for the
three approaches to fit the Commune 1 data.

Exercise 3. Use the code above to estimate the initial suscpetible popula-
tion size and the transmission rate for Commune 2.
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Figure 11: Top panel is the point estimate for β and S0 on the likleihood surface
for the chain binomial. Lower panels are the marginal posteriors for β and S0

. Solid red lines are the mean of the posterior. Dashed blue lines are 90%
confidence limits.

6 Making Use of Bayes: Missing Observations

The fitting the chain binomial model using maximum likelihood cannot handle
missing observations, because the likelihood of for the number of cases at time
t is dependent on the number in time t − 1. Bayesian methods, however, can
easily overcome this problem by simply treating the missing ovservation as an
additional parameter to be estimated. We can explore this using the data for
Commune 3, where no cases were reported in the second epidemic week. Clearly,
from the chain binomial model, we can’t have cases in week 3 if there are no
cases to seed infection in week 2, so there must have been some cases that went
unreported.

Following the same logic as above, there were 6708 births in Commune 3.
We need to rewrite the likelihood for the time series of cases in terms of hte

new parameter, I2:

likelihood<-function(par,vecs){
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Figure 12: Confidence intervals for S0 (top) and β (bottom) for three examples.

p.vacc<-par[1]

beta<-par[2]

I2<-par[3]

I<-vecs$I

I[2]<-I2

S0<-vecs$births*(1-p.vacc)

S<-floor(S0-cumsum(I[1:(length(I)-1)]))

p<-1-exp(-beta*(I[1:(length(I)-1)]))

L<-dbinom(I[2:length(I)],S,p,log=T)

Lik<-sum(L,na.rm=TRUE)

}

. . . and include an addition step in our loop to sample from the new
parameter. Here I include a Poisson prior on the unobserved cases at time step
2, with a mean of 5.

dat<-read.csv("commune.measles.csv",header=F)

# note that the epidemic in Commune 3 did not start until the 4th biweek

I<-dat[4:16,3]
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vac<-read.csv("niamey.vacc.csv",header=T)

vacc.commune<-split(vac[,3],vac[,2])

vacc<-vacc.commune[[3]]

vecs<-list(I=I,vacc=vacc,births=6708)

iter<-100000

p.vacc<-numeric(iter)

beta<-numeric(iter)

I2<-numeric(iter)

p.vacc[1]<-.5

beta[1]<-1e-4

I2[1]<-1

p.vacc.step<-.001

beta.step<-5e-6

I2.step<-1

for(i in 2:iter){

I2.tmp<-I2[i-1]+sample(c(-1,1),1)*I2.step

numer<- likelihood(c(p.vacc[i-1],beta[i-1],I2.tmp),vecs) +

dpois(I2.tmp,5,log=T)

denom<- likelihood(c(p.vacc[i-1],beta[i-1],I2[i-1]),vecs) +

dpois(I2[i-1],5,log=T)

ifelse(runif(1)<exp(numer-denom),I2[i]<-I2.tmp,I2[i]<-I2[i-1])

p.vacc.tmp<-p.vacc[i-1]+sample(c(-1,1),1)*p.vacc.step

numer<- likelihood(c(p.vacc.tmp,beta[i-1],I2[i]),vecs) +

likelihood.vacc(p.vacc.tmp,vecs) + dbeta(p.vacc.tmp,1,1,log=T)

denom<- likelihood(c(p.vacc[i-1],beta[i-1],I2[i]),vecs) +

likelihood.vacc(p.vacc[i-1],vecs) + dbeta(p.vacc[i-1],1,1,log=T)

ifelse(runif(1)<exp(numer-denom),

p.vacc[i]<-p.vacc.tmp,p.vacc[i]<-p.vacc[i-1])

beta.tmp<-0

while(beta.tmp<1e-9){beta.tmp<-beta[i-1]+sample(c(-1,1),1)*beta.step}

numer<- likelihood(c(p.vacc[i],beta.tmp,I2[i]),vecs) +

dbeta(beta.tmp,1,1,log=T)

denom<- likelihood(c(p.vacc[i],beta[i-1],I2[i]),vecs) +

dbeta(beta[i-1],1,1,log=T)

ifelse(runif(1)<exp(numer-denom),

beta[i]<-beta.tmp,beta[i]<-beta[i-1])

#cat(i,".\n")

}

Exercise 4. Run the above analysis, evaluate the diagnostic plots, and
obtain point and interval estimates of the parameters.
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