
Markov chain Monte Carlo—General Principles∗

Aaron A. King

May 27, 2009

Contents

1 The Metropolis-Hastings algorithm 1

2 Completion (AKA data augmentation) 7

3 The Gibbs sampler 8

4 Block and hybrid MCMC schemes 15

1 The Metropolis-Hastings algorithm

A Markov chain Monte Carlo algorithm is just a systematic way of drawing random numbers from
a complicated distribution. Its extreme flexibility is its primary appeal. The heart of MCMC is the
Metropolis-Hastings algorithm, developed in the 1940s-1970s by a group of physicists associated with
the Manhattan Project. In this lecture, I will focus on the essence of the Metropolis-Hastings algorithm.
Once you understand this, there are an infinity of variations you can tailor to the questions you ask and
the data you have.

Suppose you wish to draw samples from a probability distribution f(θ). If you’re doing Bayesian infer-
ence, then this distribution will generally be the posterior distribution of some model parameters. What
we’re about to learn about MCMC doesn’t depend on why you are interested in the distribution f , how-
ever. Metropolis-Hastings (MH) is a recipe for drawing a sequence of random values θ1, θ2, . . . , θk,
This is achieved by repeating one basic step many times: a move from θk to θk+1. In this step, you first
“propose” a value of θk+1 and then decide whether to accept the proposal or reject it. One has great
freedom in the choice of the random proposal. The useful fact is that (after some initial transient, or
“burn-in”, phase), the values θk will be samples from f(θ).

Algorithm 1 (Metropolis-Hastings). Ingredients: (a) the target distribution f(θ), (b) a proposal
distribution q(θ → θ∗), which gives the probability that you make the proposal θ∗ given that you are at
θ, and (c) a starting value θ0 .

∗This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 United States License.
Feel free to share and remix noncommercially, mentioning its origin. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

1

Procedure:

1. Propose θ∗ according to the proposal distribution q.

2. Compute

α =
f(θ∗) q(θ∗ → θk)
f(θk) q(θk → θ∗)

(1)

3. Set θk+1 = θ∗ with probability min{α, 1}.

4. Go back to step 1 and repeat many, many times.

Remark 2. Notice that we have only used the fact that f is a positive function. In fact, since the only
time MH sees f at all is in the ratio f(θ∗)/f(θ), we only need to have that f(θ) is proportional to the
target distribution.

Let’s see how this works using a simple example. Let’s suppose we have a distribution which is pro-
portional to some mystery function, mystery.fun. In this example, this function is just serving as a
stand-in for a problem of interest. If you’re using MCMC for Bayesian inference, this function would
be the likelihood times the prior, i.e., the numerator of Bayes’ theorem. We’ll use a simple proposal
distribution: given θ, propose a random jump to θ∗ = θ+U , where U is a uniform random number on the
interval [−10, 10] (we write U ∼ uniform(−10, 10) as shorthand for the latter statement). Because, left
to itself, this proposal would wander randomly up and down the line, it is what is called a random-walk
proposal. In the exercises below, you’ll get a chance to explore different proposals. The code in Box 1
implements the Metropolis-Hastings algorithm in this case.

The fundamental fact about MH is expressed in the following

Theorem 3. If the distribution of the θk converges, it converges to the distribution f (or the distribution
proportional to f).

The upshot of this theorem is that if we can verify that the distribution of the samples θk has converged,
then we know that it has converged to the target distribution.

Remark 4. Note that we are quite free to choose the proposal distribution without changing the result.
In effect, the Metropolis-Hastings acceptance probability makes just the right correction.

Remark 5. In fact, it is very easy to choose the proposal distributions so that the sequence will converge,
at least in theory. Not to put to fine a point on it, if the proposal distribution is chosen so that any
value of θ can eventually be proposed, then the chain will eventually converge.

Remark 6. Eventually can be a long time.

Let’s run the algorithm and plot the resulting trajectory of θk:

theta <- mcmc.mh(theta=10,fun=mystery.fun,niter=100)

plot(theta)

2

0 20 40 60 80

−
15

−
5

5

Iterations

Trace of var1

−20 −10 0 5 15

0.
00

0.
06

N = 100 Bandwidth = 1.63

Density of var1

On the left we have the sequence of values of θk plotted against k. On the right, we see the package
coda’s attempt to guess the distribution of θ on the basis of these 100 samples. Obviously, it’s going to
be a pretty bad guess: we expect that we’ll have to take a lot more samples to even be able to verify that
the distribution has converged and we’d have to sample even more to get a good idea as to the shape
of the distribution. How many samples will we need? The coda package provides a number of tools we
can use to help answer this question.

theta <- mcmc.mh(theta=10,fun=mystery.fun,niter=10000)

effectiveSize(theta)

var1
1813.793

raftery.diag(theta)

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)
13 14170 3746 3.78

The samples we draw are obviously correlated with one another, so the effective sample size here is less
than 10000. The effectiveSize diagnostic tries to figure out roughly what this effective sample size
is. The raftery.diag diagnostic uses the Raftery & Lewis method to try and figure out roughly how
long a run we’ll need to have, how long a burn-in period we’ll need, and how strong the autocorrelation
among samples is.

theta <- mcmc.mh(theta=10,fun=mystery.fun,niter=1000) ## burn-in: discard these

theta <- mcmc.mh(theta=tail(theta,1),fun=mystery.fun,niter=16000,thin=5)

effectiveSize(theta)

3

var1
11195.25

We can check to see how autocorrelated successive samples are.

pacf(theta)

0 50 100 150 200

0.
00

0.
10

Lag

P
ar

tia
l A

C
F

Series theta

Let’s thin a bit more aggressively to get rid of this autocorrelation.

theta <- mcmc.mh(theta=tail(theta,1),fun=mystery.fun,niter=10000,thin=10)

There are a number of other diagnostics we can use to assess convergence, all documented in the coda
package.

geweke.diag(theta)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

var1
-0.01357

pnorm(q=-abs(geweke.diag(theta)$z))

var1
0.4945858

effectiveSize(theta)

var1
9137.03

heidel.diag(theta)

4

Stationarity start p-value
test iteration

var1 passed 1 0.204

Halfwidth Mean Halfwidth
test

var1 failed -0.591 0.0871

We’re pretty much there, but the Heidelberger-Welch diagnostic is not quite happy, and we still see some
autocorrelation, so just to be on the safe side:

theta <- mcmc.mh(theta=tail(theta,1),fun=mystery.fun,niter=25000,thin=20)

heidel.diag(theta)

Stationarity start p-value
test iteration

var1 passed 1 0.638

Halfwidth Mean Halfwidth
test

var1 passed -0.55 0.0512

geweke.diag(theta)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

var1
-0.7623

pnorm(q=-abs(geweke.diag(theta)$z))

var1
0.2229309

effectiveSize(theta)

var1
24354.59

pacf(theta)

5

0 200 400 600 800

−
0.

01
0

0.
01

0

Lag

P
ar

tia
l A

C
F

Series theta

All indications are that we’ve converged pretty well by this point.

Remark 7. In this simple example, we’ve been content to run a single Markov chain. In practice, you’ll
probably want to run multiple chains, to verify that they all converge to the same distribution. There
are other convergence diagnostics that can be applied once you’ve got multiple chains to work with.

Let’s unveil the mystery distribution and compare it with the distribution we’ve obtained by MCMC.

hist(theta,breaks=250,freq=F)

z <- integrate(mystery.fun,lower=-20,upper=20)$value

curve(1/z*mystery.fun(theta=x),from=-20,to=20,col='red',add=T,n=1001)

6

Histogram of theta

theta

D
en

si
ty

−20 −10 0 10 20

0.
00

0.
05

0.
10

0.
15

0.
20

In closing this discussion of MH, I note that although the example is univariate, there is nothing stopping
us from using MCMC to study multivariate, even very high-dimensional, distributions.

Exercise 1. Modify the code of Box 1 to reproduce the example using a uniform random-walk proposal
θ∗ ∼ uniform(θ − 1, θ + 1). How does the sampler behave with this choice of proposal? That is, what
choice of burn-in period, length of sample, and thinning ratio do you find that you need? Now repeat
the exercise using the proposal θ∗ ∼ uniform(θ − 20, θ + 20).

Exercise 2. Modify the code of Box 1 to use an independent proposal, i.e., one in which the proposal θ∗

is independent of the current value θ. Specifically, try θ∗ ∼ normal(µ = 0, σ = 10). Since the proposal
is no longer symmetric, you’ll have to modify the accept/reject rule (see Eq. 1).

2 Completion (AKA data augmentation)

The MCMC approach, as we’ve seen, is not to compute the distribution directly but rather to sample
from it and build up an understanding of its shape that way. All we need to be able to do this is to
compute the numerator of Bayes’ theorem (likelihood times prior). However, it is frequently the case
that we can’t even compute likelihoods because some data are missing.

As as example, let’s return to the chain-binomial. In that model, each incidence is related to the incidence

7

one generation before via

It+1 ∼ binomial(St, 1− e−β It) where St = S0 −
t∑

u=1

Iu

We can easily write the likelihood for β and S0. Let I represent the entire sequence of cases {It}nt=0.
Then the likelihood is just the probability we observed the data I given the parameters β, S0:

f(I|β, S0) =
n−1∏
t=0

(
St
It+1

)
(1− e−β It)It (e−β It)St−It+1

If, say, I3 were missing, then we’d not be able to compute St for t > 2, and so we’d therefore be unable
to compute the likelihood of It for t > 3. To get around this problem, we could treat the missing value
I3 as a parameter and attempt to estimate it along with β and S0. It’s straightforward to write the
likelihood

f(β, S0, I3|data)

We’re not really interested in estimating I3 itself, however; rather, we’re interested in I3 only insofar as
not knowing it makes our estimates of S0 and β less certain. To incorporate this uncertainty, we need
to integrate over all possible values of I3:

f(β, S0|data) =
∫

f(β, S0, I3|data) dI3

This integral might be very difficult to compute. If we adopt an MCMC approach, however, we don’t
ever need to compute this integral. We get the distribution we’re interested in by sampling beta, S0, and
I3 from the full chain using MCMC and simply throwing away the values of I3.

This procedure of “augmenting the data” to make computation of the likelihood possible is called “de-
marginalization” or “completion” of the target distribution, and is a very important tool in our toolbox.

3 The Gibbs sampler

Using MH is something of an art: once you’ve figured out how to write the likelihood and chosen priors,
it takes a little practice to be able to figure out how long the chains have to be run and how long a
burn-in period to use. More artful still is the choice of the proposal distribution. There’s no optimal
proposal for all situations. The Gibbs sampler is a special case of MH where we let the model supply the
proposal distribution. Here’s the basic idea. Suppose we have two parameters we want to estimate, θ1
and θ2. We’ll do each round of MH in two steps: first we’ll make a move in the θ1 direction, then we’ll
change θ2. Since f(θ1, θ2) = f(θ1|θ2) f(θ2), we can write the MH acceptance probability for the θ1 → θ∗1
move as

α =
f(θ∗1 , θ2) q(θ∗1 → θ1)
f(θ1, θ2) q(θ1 → θ∗1)

=
f(θ∗1 |θ2) f(θ2) q(θ∗1 → θ1)
f(θ1|θ2) f(θ2) q(θ1 → θ∗1)

=
f(θ∗1 |θ2) q(θ∗1 → θ1)
f(θ1|θ2) q(θ1 → θ∗1)

.

Now of course it’s difficult to sample from f(θ1, θ2) (otherwise why would be using MCMC?) but it may
not be hard to draw samples from the conditional distribution f(θ1|θ2). If we can do this, why not use
it as our proposal? Then q(θ1 → θ∗1) = f(θ∗1 |θ2), q(θ∗1 → θ1) = f(θ1|θ2), and α = 1: we always accept
the proposal! If we can simulate from f(θ2|θ1), then we can do the same thing for the other half. We
can generalize this to any number of parameters to get

Algorithm 8 (Gibbs Sampler). Ingredients: (a) simulators for each of the conditional distributions
f(θk|θ−k). Here θ−k is shorthand for all the elements of the parameter vector θ except for θk. (b) an
initial guess for all but one of the parameters, say θ−1. .

Procedure:

8

1. simulate θ1 ∼ f(θ1|θ−1)

2. simulate θ2 ∼ f(θ2|θ−2)
...

3. simulate θn ∼ f(θn|θ−n)

4. go back to Step 1 and repeat many, many times.

Remark 9. Looking back at the basic MH algorithm, all those proposals that we reject may seem quite
wasteful. From this perspective, Gibbs seems very efficient. On the other hand, a very high acceptance
fraction may indicate that we’re being too conservative in our proposals: we’re accepting the proposals
frequently because we’re not making very interesting proposals. More generally, there is a tradeoff
between breadth of exploration at the global scale and carefulness at the local scale.

Let’s look at an example. In a large sample of rabbits, we measure helminthic parasite loads. When we
log-transform the data, we see the following picture.

hist(worm.data,breaks=50,freq=T,xlab="log worm load")

Histogram of worm.data

log worm load

F
re

qu
en

cy

2 4 6 8

0
20

60

We hypothesize that there is an interaction in this system between worm infection intensity and myx-
ovirus coinfection. Specifically, we hypothesize that individual rabbits that are infected with the virus
have a different degree of resistance to the worms. On the other hand, we hypothesize that the probabil-
ity of being infected with the virus does not depend on worm load. Let’s model this hypothesis as follows.
Let p be the probability of a rabbit’s being infected with the virus, i.e., the prevalence of myxoma in this
population. For each rabbit k, let Zk = 1 if that rabbit is infected, Zk = 2 if it is virus-free. An infected
rabbit (Zk = 1) has a worm load Xk which is log-normally distributed, i.e., logXk ∼ normal(µ1, σ1).
An uninfected rabbit (Zk = 2) also has a log-normal worm load, but with a different mean and variance,
logXk ∼ normal(µ2, σ2). It’s somewhat artificial here, but to keep life simple, let’s assume that the
standard deviations σ1 and σ2 are known. Given priors on µ1, µ2, and p and the data X, we’d like to
be able to sample from the posterior

f(µ1, µ2, p|X) ∝ f(X|µ1, µ2, p) f(µ1) f(µ2) f(p).

Computing the likelihood f(X|µ1, µ2, p) is hard to do in this case because for each rabbit, we have
to consider both possibilities for its viral infection status Z. While this leads to only two terms in the
likelihood f(Xk|µ1, µ2, p), the overall likelihood is the product of all these partial likelihoods and involves

9

2n terms. On the other hand, if we knew Zk for every rabbit, writing the likelihood f(X,Z|µ1, µ2, p) is
easy. So let’s demarginalize in this way and try to figure out how to sample from f(Z, µ1, µ2, p|X). If
we use Gibbs sampling, then we can break the problem into pieces.

First let’s figure out how to sample from f(Z|µ1, µ2, p,X). From Bayes’ theorem we have that

f(Z|µ1, µ2, p,X) ∝ f(X|µ1, µ2, Z) f(Z|p)

This just says that, if we are given p, µ1, and µ2, we should choose Zk = 1 with a probability proportional
to p normal(Xk, µ1, σ1) and Zk = 2 with probability proportional to (1− p) normal(Xk, µ2, σ2).

In the second step of the Gibbs sampler, we’ll assume that Z is given and sample from

f(p|Z, µ1, µ2, X) = f(p|Z) ∝ f(Z|p) f(p).

This will be easy if we choose the prior f(p) to be conjugate to the likelihood f(Z|p). Since each
Zk ∼ binomial(1, p), we need to suppose that p ∼ beta(a, b). With this assumption, we sample p using

p ∼ beta(a+ n1, b+ n2), where n1 = #{Zk = 1} and n2 = #{Zk = 2}.

In the third and last step of the Gibbs sampler, we sample from µ1 and µ2 using

f(µ1, µ2|p, Z,X) ∝ f(X|µ1, µ2, Z) f(µ1) f(µ2)

Again, we’ll need to assume conjugate priors to make this work. We’ll assume that the priors for µ1

and µ2 are normal with means m1, m2 and precisions q1, q2, respectively. [NB: the precision q is just
the reciprocal of the variance, i.e., σ2 = 1/q.] With this assumption about the shape of the priors, we
sample µ1 and µ2 using

µ1 ∼ normal
(
µ =

m1 q1 + s1Q1

q1 + n1Q1
,prec = Q1

)
µ2 ∼ normal

(
µ =

m2 q2 + s2Q2

q2 + n2Q2
,prec = Q2

)
where s1 =

∑
k:Zk=1

Xk, s2 =
∑

k:Zk=2

Xk, Q1 = q1 +
n1

σ2
1

, Q2 = q2 +
n2

σ2
2

.

The code in Box 2 implements a Gibbs sampler for this model.

theta <- gibbs.mixture(theta=c(p=0.5,mu=c(0,0)),X=worm.data,niter=20)

plot(theta)

10

5 10 15 20

0.
0

0.
2

0.
4

Iterations

Trace of p

0.0 0.1 0.2 0.3 0.4 0.5

0
10

0
25

0

N = 20 Bandwidth = 0.0008436

Density of p

5 10 15 20

−
10

0
10

0
30

0

Iterations

Trace of mu.1

−200 0 200 400

0.
00

0
0.

00
3

N = 20 Bandwidth = 50.23

Density of mu.1

5 10 15 20

0
1

2
3

4

Iterations

Trace of mu.2

0 1 2 3 4

0
2

4
6

8

N = 20 Bandwidth = 0.02345

Density of mu.2

theta <- gibbs.mixture(theta=c(p=0.5,mu=c(7,4)),X=worm.data,niter=4000)

effectiveSize(theta)

p mu.1 mu.2
3020.526 2266.234 2964.898

raftery.diag(theta)

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

p 2 3866 3746 1.03
mu.1 3 4374 3746 1.17
mu.2 2 3866 3746 1.03

theta <- gibbs.mixture(theta=theta[nrow(theta),],X=worm.data,niter=5000,thin=4)

11

heidel.diag(theta)

Stationarity start p-value
test iteration

p passed 1 0.666
mu.1 passed 1 0.543
mu.2 passed 1 0.892

Halfwidth Mean Halfwidth
test

p passed 0.201 0.00037
mu.1 passed 6.914 0.00142
mu.2 passed 3.924 0.00107

geweke.diag(theta)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

p mu.1 mu.2
0.2144 -0.7851 -0.6544

pnorm(q=-abs(geweke.diag(theta)$z))

p mu.1 mu.2
0.4151111 0.2161924 0.2564301

plot(theta)

12

0 5000 10000 15000 20000

0.
16

0.
22

Iterations

Trace of p

0.14 0.16 0.18 0.20 0.22 0.24 0.26

0
10

20

N = 5000 Bandwidth = 0.002653

Density of p

0 5000 10000 15000 20000

6.
80

6.
95

Iterations

Trace of mu.1

6.75 6.85 6.95 7.05

0
2

4
6

8

N = 5000 Bandwidth = 0.007843

Density of mu.1

0 5000 10000 15000 20000

3.
80

3.
95

Iterations

Trace of mu.2

3.8 3.9 4.0 4.1

0
4

8

N = 5000 Bandwidth = 0.007259

Density of mu.2

summary(theta)

Iterations = 1:19997
Thinning interval = 4
Number of chains = 1
Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
p 0.2009 0.01387 0.0001962 0.0001886
mu.1 6.9143 0.04064 0.0005748 0.0007225
mu.2 3.9236 0.03820 0.0005403 0.0005463

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
p 0.1743 0.1915 0.2006 0.2099 0.2288
mu.1 6.8370 6.8866 6.9138 6.9418 6.9937
mu.2 3.8486 3.8988 3.9230 3.9492 3.9990

13

We shouldn’t be too glib, however. Suppose that we’d started from a different place:

theta <- gibbs.mixture(theta=c(p=0.5,mu=c(4,7)),X=worm.data,niter=4000)

theta <- gibbs.mixture(theta=theta[nrow(theta),],X=worm.data,niter=10000,thin=4)

plot(theta)

0 10000 20000 30000 40000

0.
45

0.
55

Iterations

Trace of p

0.40 0.45 0.50 0.55 0.60 0.65
0

5
10

15

N = 10000 Bandwidth = 0.004358

Density of p

0 10000 20000 30000 40000

3.
25

3.
40

3.
55

Iterations

Trace of mu.1

3.3 3.4 3.5 3.6

0
4

8

N = 10000 Bandwidth = 0.00645

Density of mu.1

0 10000 20000 30000 40000

5.
4

5.
7

6.
0

Iterations

Trace of mu.2

5.4 5.5 5.6 5.7 5.8 5.9 6.0

0
2

4

N = 10000 Bandwidth = 0.0134

Density of mu.2

summary(theta)

Iterations = 1:39997
Thinning interval = 4
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
p 0.5154 0.02594 0.0002594 0.0004382

14

mu.1 3.4179 0.03840 0.0003840 0.0006090
mu.2 5.6998 0.07997 0.0007997 0.0012957

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
p 0.4634 0.4978 0.5156 0.533 0.5644
mu.1 3.3407 3.3921 3.4182 3.444 3.4912
mu.2 5.5448 5.6457 5.6995 5.753 5.8575

In fact, this mixture example has a multimodal likelihood. In general, one has to be very careful assessing
not only that a particular chain has converged, but that the global parameter space has been sufficiently
well explored.

Exercise 3. Estimate the parameters of a normally distributed random variable on the basis of n = 100
independent and identically distributed samples using Gibbs. Parameterize the normal in terms of mean
µ and precision q (= 1/variance). Take a normal prior for µ and a gamma prior for q. Modify the code
in Box 2 to implement a Gibbs sampler for this model. Use the facts that, with this choice of priors

1. if f(µ) has mean m0 and precision q0, then f(µ|q,X) has mean (q0m0+q s)/(q0+n q) and precision
q0 + n q, where s =

∑
Xk.

2. if f(q) has shape parameter a0 and rate parameter b0, then f(q|µ,X) has shape a0 + n
2 and rate

b+ 1
2

∑
(Xk − µ)2.

Simulate some data and run the sampler to estimate its mean and variance. You can view one solution
in the file http://www.umich.edu/~kingaa/EEID/Ecology/gibbs_mvnorm.R.

Remark 10. In the examples here, we’ve assumed conjugate priors so that sampling from the conditional
distribution is as easy as sampling from a standard distribution. Is it necessary to go this far? No. In
the example Matt Ferrari will present, the parameters are updated one at a time, but the updates are
not acheived by sampling from a standard distribution. Instead, he uses MH to sample from these
conditional distributions. This is one variant of many within the family of MCMC algorithms.

4 Block and hybrid MCMC schemes

I’ve presented MH and Gibbs as two distict algorithms, Gibbs a very special case of MH, but they’re
actually the two extremes of a continuuum: between them lie a range of hybrid algorithms, more or
less tailored to specific problems. Many of these involve grouping parameters into blocks. The key to
sampling from a distribution f(θ1, . . . , θn) using MH is the acceptance probability

α =
f(θ∗) q(θ∗ → θ)
f(θ) q(θ → θ∗)

There is no need to propose changes to all of the θi at once, though, nor to make proposals one at a time,
as in Gibbs sampling. Sometimes it makes a whole lot more sense to propose changing the parameters
in blocks. For example, let’s let θA stand for one block of variables and θB for the rest. Then

f(θ∗A, θB)
f(θA, θB)

=
f(θ∗A|θB) f(θB)
f(θA|θB) f(θB)

=
f(θ∗A|θB)
f(θA|θB)

So we can take Metropolis-Hastings steps or Gibbs steps on block A, leaving block B fixed, then turn to
block B, leaving block A fixed. In fact, there’s no reason why we couldn’t take many steps on one block

15

before turning to the other, nor why we couldn’t divide the system up into more blocks, or even use
different samplers on different blocks. In practice, it’s rarely the case that the best-performing algorithm
will be one that makes proposals to all parameters at once, as in the simplest version of MH. Nor is it
likely that you will always be content to assume conjugate priors in order to get the speed of full Gibbs
sampling. Rather, you’re likely to want to use Gibbs where you can, coupled with some form of blocked
Metropolis-Hastings, the details tailored to the problem at hand.

Further Reading

W. Gilks, S. Richardson, & D. Spiegelhalter (eds.) (1995). Markov Chain Monte Carlo in Practice.
Chapman & Hall/CRC.

M. A. McCarthy (2007). Bayesian Methods for Ecology. Cambridge University Press.

C. P. Robert & G. Casella (2004). Monte Carlo Statistical Methods. Springer-Verlag, 2nd edn.

16

Box 1 Implementation of Metropolis-Hastings for a target distribution fun with starting value theta.
It returns a Markov chain of length niter and, optionally, thins by a factor thin (with default value
1). Note that since the proposal distribution is symmetric, i.e., q(θ → θ∗) = q(θ∗ → θ), the Metropolis-
Hastings acceptance probability is just f(θ∗)/f(θ). You can download a somewhat enhanced version of
this code from http://www.umich.edu/~kingaa/EEID/Ecology/mh.R.
require(coda)

mcmc.mh <- function (theta, fun, niter, thin = 1) {

chain <- matrix(

nrow=as.integer(niter),

ncol=length(theta),

dimnames=list(NULL,names(theta))

)

f <- fun(theta)

chain[1,] <- theta

k <- 1 # step in the chain

nsave <- 1 # number of values saved so far

nprop <- 0 # number of proposals made

nacpt <- 0 # number of proposals accepted

while (nsave < niter) {

theta.star <- runif(n=1,min=theta-10,max=theta+10) # propose a new parameter

f.star <- fun(theta.star)

nprop <- nprop+1

alpha <- f.star/f # Metropolis' rule (since proposal is symmetric)

if ((alpha>=1)||(runif(1)<alpha)) {

theta <- theta.star

f <- f.star

nacpt <- nacpt+1

}

k <- k+1

if (k%%thin==0) {

nsave <- nsave+1

chain[nsave,] <- theta

}

}

cat("acceptance fraction = ",nacpt/nprop,"\n")

mcmc(data=chain,thin=thin) # store the result in a CODA object

}

17

Box 2 Implementation of a Gibbs sampler for a Bernoulli mixture of two normals. You can download
it from http://www.umich.edu/~kingaa/EEID/Ecology/gibbs_mixture.R.
gibbs.mixture <- function (theta, X, niter, thin = 1) {

use diffuse priors:

mu ~ normal(m,1/sqrt(q)), m = 0, q = 0.0001

p ~ uniform(0,1) = beta(a,b), a = b = 1

prior.m <- c(mu.1=0,mu.2=0) # mean of normal priors

prior.q <- c(q1=0.0001,q2=0.0001) # precision of normal priors

prior.ab <- c(a=1,b=1) # beta dist. shape parameters

true.sigma <- c(sigma1=0.5,sigma2=1) # normal SDs assumed known

true.q <- 1/true.sigma^2 # precisions

chain <- matrix(

nrow=as.integer(niter),

ncol=length(theta),

dimnames=list(NULL,c("p","mu.1","mu.2"))

)

p <- theta[1]

mu <- theta[-1]

chain[1,] <- c(p,mu)

k <- 1

nsave <- 1

while (nsave < niter) {

first we choose Z | p,mu

f1 <- dnorm(x=X,mean=mu[1],sd=true.sigma[1]) # Prob[X | Z==1,mu]

f2 <- dnorm(x=X,mean=mu[2],sd=true.sigma[2]) # Prob[X | Z==2,mu]

prob1 <- p*f1/(p*f1+(1-p)*f2) # Prob[Z=1 | mu,p,X]

Z <- ifelse(runif(n=length(X))<prob1,1,2)

now choose mu | p,Z

n <- c(sum(Z==1),sum(Z==2))

s <- c(sum(X[Z==1]),sum(X[Z==2]))

post.q <- prior.q+n*true.q

post.m <- (prior.q*prior.m+true.q*s)/post.q

mu <- rnorm(n=2,mean=post.m,sd=1/sqrt(post.q))

now choose p | Z

post.ab <- prior.ab+n

p <- rbeta(n=1,shape1=post.ab[1],shape2=post.ab[2])

k <- k+1

if (k%%thin==0) {

nsave <- nsave+1

chain[nsave,] <- c(p,mu)

}

}

mcmc(data=chain,thin=thin) # store the result in a CODA object

}

18

