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CHAPTER 1

ALGEBRAIC BACKGROUND

1. Fields

In an introductory linear algebra course, one generally considers vector spaces
for which the scalars are real numbers. The vast majority of the results that you
may have seen for real vector spaces remain unchanged if we allow other systems of
numbers as scalars, as long as they form a field. Fields are defined by generalizing
the essential algebraic properties of the real numbers in the same way an abstract
real vector space generalizes Rn. That is to say, we can axiomatize the properties
of the real numbers so that they become a single example of a larger class of fields.
We can consider vector spaces over a field satisfying the same axioms as real vector
spaces, except that the scalars are elements of the new field.

Let us analyze the properties of fields. We start with two “compositions”: “+”
and “·”. With respect to each of these compositions the underlying structure is that
of a group, which is formally defined as follows:

Definition 1.1. A nonempty set G with a composition ◦ is a group if
1. (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ G (associativity).

2. There exists an identity element e in G such that e ◦ a = a ◦ e = a for all
a ∈ G.

3. For each a ∈ G, there exists an inverse a−1 in G such that

a ◦ a−1 = a−1 ◦ a = e.

If, in addition, the composition ◦ is commutative, i.e.,
4. a ◦ b = b ◦ a for all a, b ∈ G,

then G is called abelian.

Groups are the fundamental building blocks for most algebraic structures. Here
are some examples:

Examples 1.2. a. The real numbers R form a group under addition. The
nonzero real numbers R \ {0} form a group under multiplication.

b. The complex numbers C from a group under addition. The nonzero complex
numbers C \ {0} form a group under multiplication.

c. The integers Z = {0,±1,±2, . . .} form a group under addition.
All these groups are abelian groups, and most of the groups we deal with will be

abelian. However, nonabelian groups certainly exist, and here are a few examples:

5
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d. The set of real invertible n × n-matrices forms a group under multiplication,
the general linear group GLn(R). This group is nonabelian for n ≥ 2.

e. The subset of GLn(R) of all matrices with determinant 1 forms a group under
multiplication, the special linear group SLn(R). Again, this group is nonabelian
for n ≥ 2.

f. The set of possible moves (rotations of faces) on a Rubik’s cube forms a non-
abelian group under composition.

Axioms 2 and 3 in the definition of a group suggest that the identity element and
the inverse are uniquely determined, which is in fact true, but needs a proof:

Lemma 1.3. Let G be a group.
i. If

a ◦ e = e ◦ a = a and a ◦ e′ = e′ ◦ a = a

for all a ∈ G, then e = e′.

ii. If

a ◦ b = b ◦ a = e and a ◦ c = c ◦ a = e,

then b = c.

Proof. i. Using the properties of e and e′, we have

e′ = e′ ◦ e = e.

ii. We have

b = b ◦ e = b ◦ (a ◦ c) = (b ◦ a) ◦ c = e ◦ c = c.

�

Here are two properties valid in an arbitrary group G:

Lemma 1.4. Let G be a group with composition ◦.
i. (Cancellation) If a ◦ b = a ◦ c or b ◦ a = c ◦ a, then b = c.

ii. For any given a, b ∈ G, the equation a ◦ x = b has the unique solution x =
a−1 ◦ b.

Proof. i. Assume that a ◦ b = a ◦ c. We have

b = e ◦ b = (a−1 ◦ a) ◦ b = a−1 ◦ (a ◦ b) = a−1 ◦ (a ◦ c) = (a−1 ◦ a) ◦ c = e ◦ c = c.

The other case is similar.

ii. We have

x = e ◦ x = (a−1 ◦ a) ◦ x = a−1 ◦ (a ◦ x) = a−1 ◦ b.

�

We have seen in Examples 1.2a and b that R and C have two underlying group
structures with respect to addition and multiplication. We also know that addition
and multiplication are linked via distributivity. These properties now lead to the
general definition of a field.
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Definition 1.5. A field F is a nonempty set with two operations + and · satis-
fying the following list of properties. Note: it is common to simply write ab instead
of a · b for the product of two elements a, b in F .

1. F is an abelian group with respect to addition. Its identity element is called
0, and the additive inverse of x ∈ F is denoted −x.

2. F \{0} is an abelian group with respect to multiplication. Its identity element
is called 1, and the multiplicative inverse of x ∈ F \ {0} is denoted x−1.

3. a(b + c) = ab + ac for all a, b, c ∈ F (distributivity).

Of course, R and C are fields, but we also see that the set Q of rational numbers
is a field.

Here are a few essential properties of a field F derived from the use of the dis-
tributivity law:

Lemma 1.6. Let F be a field. The following statements hold:
i. ab = 0 ⇐⇒ a = 0 or b = 0.

ii. (−1)a = −a for all a ∈ F .

Proof. i. We first note that

0 b = (0 + 0)b = 0 b + 0 b.

Cancellation implies 0 b = 0 for all b ∈ F . Let us assume now that ab = 0 and that
a 6= 0. We have to show that b = 0. Now

ab = 0 = a 0.

Since a 6= 0, we can cancel a and obtain b = 0, as claimed.

ii. We have
0 = 0 a = (1 + (−1))a = a + (−1)a.

On the other hand 0 = a + (−a), which proves the claim.
�

To obtain some more examples of fields, in fact, fields with only finitely many
elements, we start with the set of integers Z, which is not a field. If n is any fixed
positive integer > 1, then we can divide any other integer m by n with a remainder
r between 0 and n− 1:

m = qn + r, q ∈ Z, 0 ≤ r ≤ n− 1.

This is called the Division Algorithm. We denote the remainder r of m upon
division by n by m. We note that

m1 = m2 ⇐⇒ n | (m1 −m2).

The set of the possible remainders, or integers modulo n, is denoted by Z/nZ:

Z/nZ = {0, 1, . . . , n− 1}.
Given any element i ∈ Z/nZ, there are infinitely many integers m for which m = i,
namely all m of the form

m = qn + i, q ∈ Z.
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We call m a representative of i if m = i.

Example 1.7. Let us take n = 2. Then Z/2Z = {0, 1}. An integer m represents
0 if and only if m is even, and it represents 1 if and only if m is odd.

We want to define addition and multiplication on the set Z/nZ as follows:

m1 + m2 = m1 + m2

and
m1 ·m2 = m1m2.

There is a little problem with this definition because we are using representatives,
and therefore we have to show that the definition is independent of the choice of
representatives. In mathematical terminology, we have to show that addition and
multiplication are well-defined.

Assume then that m1 = m′
1 and m2 = m′

1. We have

m′
1 = m1 + q1n and m′

2 = m2 + q2n,

and we obtain

m′
1 + m′

2 = m1 + m2 + (q1 + q2)n and m′
1m

′
2 = m1m2 + (m1q2 + m2q1 + q1q2)n,

which indeed shows that

m′
1 + m′

2 = m1 + m2 and m′
1m

′
2 = m1m2.

Therefore, addition and multiplication on Z/nZ are well-defined. It should be clear
now from the very definition of addition and multiplication that the set Z/nZ inher-
its all the properties of Z. In particular, Z/nZ is an abelian group with respect to
addition, the identity element being 0̄ and the inverse of ī being −i = n− i. Further-
more, distributivity holds and 1̄ plays the role of 1. We claim that Z/nZ is a field
if and only if n is a prime number. To check whether Z/nZ is a field, we only have
to find out if every nonzero element has a muliplicative inverse. Let us look at some
examples first:

For n = 2, the tables defining addition and multiplication look as follows:

+
... 0̄ 1̄

. . . · . . . . . .

0̄
... 0̄ 1̄

1̄
... 1̄ 0̄

•
... 1̄

. . . · . . .

1̄
... 1̄

Since 1̄ · 1̄ = 1̄, Z/2Z is a field, denoted by F2.

For n = 3, the tables defining addition and multiplication look as follows:
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+
... 0̄ 1̄ 2̄

. . . · . . . . . . . . .

0̄
... 0̄ 1̄ 2̄

1̄
... 1̄ 2̄ 0̄

2̄
... 2̄ 0̄ 1̄

•
... 1̄ 2̄

. . . · . . . . . .

1̄
... 1̄ 2̄

2̄
... 2̄ 1̄

Again, every nonzero element has an inverse (note that 2̄−1 = 2̄), and therefore
Z/3Z is a field, denoted by F3.

Here are the tables for n = 4:

+
... 0̄ 1̄ 2̄ 3̄

. . . · . . . . . . . . . . . .

0̄
... 0̄ 1̄ 2̄ 3̄

1̄
... 1̄ 2̄ 3̄ 0̄

2̄
... 2̄ 3̄ 0̄ 1̄

3̄
... 3̄ 0̄ 1̄ 2̄

•
... 1̄ 2̄ 3̄

. . . · . . . . . . . . .

1̄
... 1̄ 2̄ 3̄

2̄
... 2̄ 0̄ 2̄

3̄
... 3̄ 2̄ 1̄

The elements 1̄ and 3̄ have inverses with respect to multiplication, but 2̄ has no
inverse. Therefore, Z/4Z is not a field.

Proposition 1.8. The set Z/nZ is a field if and only if n is a prime number.

Proof. Let us first assume that n is not a prime number. Then n can be factored
as n = n1n2 with 1 < n1 < n, 1 < n2 < n. In Z/nZ, we obtain

n1 6= 0̄, n2 6= 0̄, but n1 · n2 = n = 0̄.

Therefore, neither n1 nor n2 are invertible, and Z/nZ is not a field.
Let us assume now that n is a prime number. We have to show that every nonzero

element m in Z/nZ has an inverse with respect to multiplication. We first note that

m i = 0
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is equivalent to the fact that n divides m i. But n is a prime number and m is not
divisible by n, so i must be divisible by n, which means that i = 0. This implies that

m k = m j ⇐⇒ k = j,

just take i = k − j. If we now let k run through the non-zero elements

{1, 2, . . . , n− 1}

of Z/nZ, then the n− 1 elements m k are all distinct, and hence one of them has to
equal 1, which had to be shown. �

Remarks 1.9. 1. Prime numbers are usually denoted by the letter p, and the
corresponding field Z/pZ with p elements is denoted by Fp. In our applications to
coding theory, we will be dealing with F2, the field with 2 elements.

2. The fields Fp are examples of finite fields, i.e., fields with only finitely many
elements. One can show that the number of elements in any finite field has to be a
power of a prime number p.

2. Mathematical Induction

We will frequently use the principle of mathematical induction. Let N denote the
set of all natural numbers, i.e., the set of positive integers.

Theorem 1.10 (The Principle of Mathematical Induction). Let P (n) be a state-
ment depending on the number n. Assume that P (1) is true and the truth of the
implication

P (k) is true =⇒ P (k + 1) is true.

Then P (n) is true for all n ∈ N.

Although this is very plausible, it is in fact an axiom about the natural numbers,
equivalent to the axiom that every nonempty subset of N contains a smallest element.

Remark 1.11. Sometimes it is more suitable to replace the condition

P (k) is true =⇒ P (k + 1) is true

by the condition

P (i) is true for all i ≤ k =⇒ P (k + 1) is true,

which leads to an equivalent formulation of the principle of mathematical induction.

Let us consider a few examples:

Examples 1.12. a. Prove that n! ≥ 2n−1 for all n ∈ N.
For n = 1, we have 1! = 1 = 20 = 1, so the base case P (1) is true. We now make

the inductive hypothesis by assuming that P (k) is true, i.e., that k! ≥ 2k−1. We
have

(k + 1)! = (k + 1) k! ≥ (k + 1) 2k−1 ≥ 2 · 2k−1 = 2k.

Therefore, P (k + 1) is true, and by the principle of induction, we have P (n) true for
all n ∈ N.
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b. Show that, for any real number x 6= 1 and any n ≥ 1,

1 + x + x2 + · · ·+ xn−1 =
1− xn

1− x
.

For n = 1, both sides are equal to 1, so P (1) is true. Let us assume now that
P (k) is true, i.e.,

1 + x + x2 + · · ·+ xk−1 =
1− xk

1− x
.

Then

1 + x + x2 + · · ·+ xk =
1− xk

1− x
+ xk =

1− xk + xk(1− x)
1− x

=
1− xk+1

1− x
.

c. Show that every natural number > 1 contains a prime factor.
Here, the base case is n = 2, which is a prime number. We assume now that all

integers i with 2 ≤ i ≤ k−1 contain a prime factor, and have to show that k contains
a prime factor. If k itself is a prime number, then we are done. Otherwise, k can
be factored as k = l · m with l,m ≥ 2. Then 2 ≤ l ≤ k − 1, and by the inductive
hypothesis l contains a prime factor, so k contains the same prime factor.

3. Polynomial Rings

Throughout this section, we fix a field F . We let x denote an indeterminate and
consider the set F [x] of all polynomials f(x), i.e., of finite formal sums

f(x) = a0 + a1x + a2x
2 + · · ·+ anxn,

where n ≥ 0 and the coefficients ai are elements of the field F . If an 6= 0, then f(x)
has degree n, written as

deg f(x) = n.

The zero polynomial 0 does not have a degree. Note that the polynomials of degree
0 are precisely the nonzero elements in F .

Two nonzero polynomials

f(x) = a0 + a1x + a2x
2 + · · ·+ anxn

and
g(x) = b0 + b1x + b2x

2 + · · ·+ bmxm

are equal if and only if they have the same degree and coefficients, i.e., m = n and
a0 = b0, a1 = b1, . . ..

Addition and multiplication of polynomials are defined as usual.

Example 1.13. Let

f(x) = a0 + a1x + a2x
2 + a3x

3

and
g(x) = b0 + b1x + b2x

2.

Then
f(x) + g(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x2 + a3x

3,

and
f(x)g(x) = a0b0 + (a0b1 + a1b0)x+
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+(a1b1 + a0b2 + a2b0)x2 + (a1b2 + a2b1 + a3b0)x3 + (a2b2 + a3b1)x4 + a3b2x
5.

With respect to addition, F [x] is an abelian group. Furthermore, multiplication
is associative,

1 · f(x) = f(x) · 1 = f(x)
for all f(x) ∈ F [x], and the distributivity law holds. Sets R with two operations +
and · having these properties are called rings. If multiplication is commutative, as
it is with F [x], then R is called a commutative ring.

Examples 1.14. a. The ring of integers Z is a commutative ring.

b. Every field F is a commutative ring.

c. For any n > 1, the set Z/nZ is a commutative ring.

d. For any field F and any n ≥ 2, the set Mn(F ) of all n × n-matrices with
coefficients in F is a non-commutative ring.

Definition 1.15. We call F [x] the polynomial ring with coefficients in F .
We sometimes simply write f instead of f(x).

The following lemma is obvious from the definitions of addition and multiplication
in F [x].

Lemma 1.16. For any two nonzero polynomials f, g ∈ F [x], we have

deg(f + g) ≤ max{deg f,deg g}
and

deg fg = deg f + deg g.

Here are some consequences:

Corollary 1.17. a. If fg = 0, then either f = 0 or g = 0.

b. If fg = hg and g 6= 0, then f = h (cancellation).

Proof. a. If both f 6= 0 and g 6= 0, then the coefficient of xdeg f+deg g in fg
is nonzero as the product of the nonzero coefficients of xdeg f in f and xdeg g in g.
Hence fg 6= 0.

b. We have (f − h)g = 0 and g 6= 0, so f − h = 0 by i.
�

The following result shows in particular that F [x] can never be a field.

Corollary 1.18. Let f be a nonzero polynomial. Then there exists a polynomial
g for which fg = 1 if and only if deg f = 0.

Proof. Let us assume first that deg f = 0. Then f(x) = a ∈ F , a 6= 0, and we
can take g(x) = a−1. If, on the other hand, fg = 1, then, by Lemma 1.16,

deg f + deg g = deg fg = deg 1 = 0,

which shows that deg f = 0. �

The polynomial ring F [x] has properties very similar to those of the ring of
integers Z. In particular, there is also a division algorithm.
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Theorem 1.19 (Division Algorithm). Let f, g ∈ F [x] with g 6= 0. There exist
uniquely determined polynomials q and r such that

f = qg + r

and either r = 0 or deg r < deg g.

Proof. We first show the existence of q and r. Let

f(x) = a0 + a1x + a2x
2 + · · ·+ akx

k

and
g(x) = b0 + b1x + b2x

2 + · · ·+ bmxm

with ak 6= 0 and bm 6= 0, so

deg f = k, deg g = m.

If m = 0, so g(x) = b0 is a nonzero element in F , then

f(x) = (f(x)b−1
0 )g(x).

Hence, q(x) = f(x)b−1
0 and r = 0.

Assume now that deg g = m > 0. We will prove the result by induction on the
degree of f . If deg f < deg g, then

f = 0 · g + f

is of the desired form with q = 0 and r = f . In particular, the result is true for
deg f = 0. Let assume now that the result is true for all polynomials of degree
≤ k − 1, and let f as above be of degree k ≥ m. Put

f1(x) = f(x)− akb
−1
m xk−mg(x).

Then f1(x) is of degree ≤ k − 1, and by the induction hypothesis we have

f1 = q1g + r1

with r = 0 or deg r1 < deg g = m. We obtain

f = f1 + akb
−1
m xk−mg = q1g + r1 + akb

−1
m xk−mg = (q1 + akb

−1
m xk−m)g + r1,

and, therefore, the result with q = q1 + akb
−1
m xk−m and r = r1.

To show uniqueness, let us assume that

f = qg + r = q′g + r′

with r = 0 or deg r < deg g and r′ = 0 or deg r′ < deg g. Then r − r′ = (q′ − q)g.
If r 6= r′, then the lefthand side has degree < deg g, whereas the righthand side has
degree ≥ deg g by Lemma 1.16. This is a contradiction, so r = r′. Therefore

(q′ − q)g = 0.

Since g 6= 0, Corollary 1.18 shows that q′ = q, which proves uniqueness. �

Let us compute an example.
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Example 1.20. Let

f(x) = 3x3 + x2 − x + 1, g(x) = x2 + 2x− 1 ∈ Q[x].

Then
f1(x) = f(x)− 3xg(x) = −5x2 + 2x + 1.

We repeat the argument:

f2(x) = f1(x) + 5g(x) = 12x− 4.

Hence,

f(x) = f1(x) + 3xg(x) = f2(x)− 5g(x) + 3xg(x) = (3x− 5)g(x) + (12x− 4).

Here
q(x) = 3x− 5 and r(x) = 12x− 4.

The following results, with only minor changes, hold equally well for the ring of
integers Z.

Definition 1.21. Given two polynomials f and g in F [x], we say that f divides
g (written as f | g) if g = f · h for some polynomial h ∈ F [x]. The polynomial g is
then a multiple of f . A polynomial p of degree ≥ 1 is prime, or irreducible, if it is
only divisible by polynomials of degree 0 and any product of itself with a polynomial
of degree 0. In other words, a polynomial p(x) is irreducible if

p = f · g =⇒ deg f = 0 or deg g = 0.

In particular, all polynomials of degree 1 are irreducible.
Given polynomials g1, . . . , gk, we say that d ∈ F [x] is a greatest common

divisor (GCD for short) of g1, . . . , gk if d is a common divisor of g1, . . . , gk, i.e., if

d | g1, d | g2, . . . , d | gk,

and if any other common divisor d′ of g1, . . . , gk divides d.

Proposition 1.22. Let g1, . . . , gk be arbitrary nonzero polynomials in F [x].
i. There exists a greatest common divisor d of g1, . . . , gk.

ii. If d and d′ are greatest common divisors of g1, . . . , gk, then d′ = a ·d for some
a ∈ F , a 6= 0.

iii. If d is a greatest common divisor of g1, . . . , gk, then there are polynomials
f1, . . . , fk in F [x] such that

d = f1g1 + f2g2 + · · ·+ fkgk.

Proof. Consider the set S of all polynomials of the form

f1g1 + f2g2 + · · ·+ fkgk,

where f1, . . . , fk are arbitrary polynomials in F [x]. Clearly, S contains g1, . . . , gk.
In particular, S is nonempty. Furthermore, it is closed under addition and under
multiplication by arbitrary polynomials, i.e., if f ∈ S, then q · f ∈ S for all q ∈ F [x].
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Let d be a nonzero polynomial in S of smallest degree. We claim that d is a
greatest common divisor of g1, . . . , gk. Let us show first that d | gi for 1 ≤ i ≤ k. By
the Division Algorithm, we find qi and ri such that

gi = qid + ri

with ri = 0 or deg ri < deg d. Now

ri = gi − qid ∈ S,

and since d was chosen to have smallest degree, we must have ri = 0. Therefore, d is
a common divisor of g1, . . . , gk.

Assume now that d′ is another common divisor of g1, . . . , gk. Then clearly d′

divides any polynomial in S. In particular, d′ divides d. This proves parts i and iii.
If d and d′ are both greatest common divisors of g1, . . . , gk, then

d | d′ and d′ | d.

This implies that deg d = deg d′, and therefore Lemma 1.16 implies that

d′ = a · d
with deg a = 0, so a ∈ F , a 6= 0. �

Since greatest common divisors differ only by nonzero constants, we can normalize
the highest nonzero coefficient to be 1. Polynomials of this form are called monic.
There is then a unique monic greatest common divisor for any given polynomials
g1, . . . , gk.

Important consequences include the following:

Corollary 1.23. Polynomials g1, . . . , gk ∈ F [x] are relatively prime (i.e., their
GCD equals 1) if and only if there exist polynomials f1, . . . , fk ∈ F [x] such that

f1g1 + f2g2 + · · ·+ fkgk = 1.

Corollary 1.24. Assume that p is irreducible. If p | fg, then

p | f or p | g.

Proof. Suppose that p - f. Then p and f are relatively prime, and therefore, by
Proposition 1.22,

h1p + h2f = 1
for some polynomials h1, h2. Mulitplying by g, we obtain

h1pg + h2fg = g.

The lefthand side is divisible by p, and hence the same is true for the righthand
side. �

If a polynomial f(x) of degree ≥ 1 is not irreducible, then it factors as

f = g · h
with deg g ≥ 1 and deg h ≥ 1. Since

deg f = deg g + deg h,

we see that deg g < deg f and deg h < deg f. Using induction on the degree, we
see that every polynomial f of degree ≥ 1 can be written as a product of irreducible
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polynomials, the same way a positive integer ≥ 2 can be written as a product of prime
numbers. The prime numbers occurring are uniquely determined, and the following
result shows that this is also true for polynomials:

Theorem 1.25 (Unique Factorization). Every polynomial f(x) ∈ F [x] of degree
≥ 1 can be written as a product of irreducible polynomials:

f = p1 · p2 · · · pr.

Moreover if
f = q1 · q2 · · · qs

is another presentation of f as a product of irreducible polynomials q1, . . . , qs, then
r = s, and, after renumbering the qi’s if necessary, we have

qi = ai · pi for i = 1, . . . , r,

where deg ai = 0.

Proof. As mentioned above, we can proceed by induction on the degree to show
that f factors into a product of irreducible polynomials. To prove uniqueness, let us
assume that we have two factorizations

f = p1 · p2 · · · pr = q1 · q2 · · · qs

into a product of irreducible polynomials with r ≤ s. We use induction on r. If
r = 1, then f is irreducible, and the result is clear. Let us assume now that the result
is true whenever f factors into a product of < r irreducible polynomials, and let us
look at the two factorizations given above. Since p1 divides f , it divides the product
q1 · q2 · · · qs. By Corollary 1.24, p1 then divides one of the factors qj . Renumbering
the qj ’s if necessary, we may assume that p1 | q1. But q1 is irreducible as well, so

q1 = a1 · p1

for some a1 of degree 0. We can now cancel by Corollary 1.18 and obtain

p2 · · · pr = a1q2 · · · qs = q′2 · · · qs,

where q′2 = a2q2 is again irreducible. The induction hypothesis now gives the result.
�

If p and q are irreducible factors of a polynomial f , then they are either relatively
prime or they differ by a factor of degree 0, i.e., we can have q = c · p for some c ∈ F ,
c 6= 0. In this case f would be divisible by p2. If we combine in this way all the
irreducible factors, which are not relatively prime to each other, then we obtain:

Corollary 1.26. Every polynomial f ∈ F [x] can be written as

f = a · pe1
1 pe2

2 · · · per
r

with a ∈ F , a 6= 0 and the pi’s irreducible and pairwise relatively prime, i.e., any two
of them are relatively prime.

In calculus, we view polynomials as maps from R to R by inserting real numbers
for x. We can do this over arbitrary fields F .
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Definition 1.27. If f(x) = a0 + a1x + a2x
2 + · · ·+ akx

k is a polynomial in F [x]
and c ∈ F , then we call

f(c) = a0 + a1c + a2c
2 + · · ·+ akc

k

the value of f at c. We call c a zero or root of f if f(c) = 0. Given f , we obtain
the corresponding polynomial function from F to F by

c 7→ f(c).

Over R, two polynomial functions are the same if and only if the polynomials are
the same since

f(c) = g(c) for all c ∈ R =⇒ f = g.

The same statement is not true for finite fields:

Example 1.28. Let f(x) = x2 + x and let F = F2. The values of f at 0 or 1 are
both 0 so that, as a polynomial function, f is the zero function, but of course f is
not the zero polynomial.

We leave it as an exercise to show that, for two polynomials f and g and all c ∈ F ,

(f + g)(c) = f(c) + g(c) and (fg)(c) = f(c)g(c).

Proposition 1.29. Let f ∈ F [x] be a polynomial and c ∈ F . Then

c is a root of f ⇐⇒ (x− c) | f.

Proof. We can divide f by x− c,

f = q(x− c) + r,

with a remainder r that is either 0 or of degree < deg(x−c) = 1, so r ∈ F . Evaluating
f at c gives

f(c) = (c− c) + r = r,

so that we can write
f = q(x− c) + f(c).

The result is now obvious. �

Here is an easy consequence.

Corollary 1.30. Let f ∈ F [x] be a polynomial of degree n. Then:
a. f has at most n roots in F .

b. if f has precisely n roots, it splits completely into linear factors, i.e., is of the
form

f = a(x− c1) · · · (x− cn)
with a, c1, . . . , cn ∈ F .

Over an arbitrary field F , there will usually be lots of polynomials without any
roots. For example,

x2 − 2 ∈ Q[x]
does not have a root, as

√
2 is not a rational number. The same polynomial, however,

viewed as a polynomial in R[x], has the two roots ±
√

2. The polynomial

x2 + 1 ∈ R[x]
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has no roots, but as a polynomial in F2[x] it has two: 1̄ twice. As we shall now
discuss, there is a field C called the complex numbers such that every polynomial in
C[X] has a root in C and therefore splits completely into linear factors.

The easiest way to define C is to start with a 2-dimensional vector space over R
with basis 1 and i. Every complex number z can then be written uniquely as

z = a + bi

with a, b ∈ R. Addition is the usual vector space addition:

(a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i.

In this way, we obtain an abelian group under “ + ”. Multiplication is now defined
in such a way that i2 = −1:

(a1 + b1i) · (a2 + b2i) = (a1a2 − b1b2) + (a1b2 + a2b1)i.

One can easily check associativity, distributivity, and of course that 1 · z = z for all
z. To show that C is a field, we need to show that every non-zero z has an inverse
with respect to multiplication. Let us first introduce the complex conjugate z of
a complex number z. If z = a + bi, then z = a− bi. Then

zz = a2 + b2,

which is equal to 0 if and only if z = 0. For z = a + bi 6= 0, we obtain

z−1 =
1
zz

· z =
a

a2 + b2
− b

a2 + b2
i.

To summarize, we have shown:

Proposition 1.31. The set of complex numbers C is a field.

We define the absolute value |z| of the complex number z = a + bi to be√
a2 + b2. Therefore, we have

zz = |z|2.
It is sometimes easier to consider vector spaces over C, as opposed to R. The

primary reason for this lies in the following theorem, which we quote without proof.

Theorem 1.32 (Fundamental Theorem of Algebra). Every polynomial in C[x] of
degree ≥ 1 has a root.

Let f ∈ C[x] be an arbitrary polynomial of degree ≥ 1. Then f has a root c in
C by the Fundamental Theorem. By Proposition 1.29, this is equivalent to the fact
that f is divisible by x − c. If deg f ≥ 2, then this implies that f is not irreducible.
Therefore, the irreducible polynomials in C[x] are precisely the linear polynomials.
By Corollary 1.30, we obtain:

Corollary 1.33. Every polynomial f ∈ C[x] of degree n ≥ 1 can be written as
a product

f(x) = a(x− c1)e1(x− c2)e2 · · · (x− cr)er ,

where a ∈ C, a 6= 0, c1, . . . , cr are the distinct roots of f in C, and e1, . . . , er are
positive integers.



CHAPTER 2

VECTOR SPACES

In this chapter, we recall the basic features of vector spaces, allowing scalars from
an arbitrary field F .

Definition 2.1. Let F be a field. An F -vector space, or vector space over
F , is a nonempty set V with elements called vectors and two compositions, addition
“+” of vectors and multiplication of vectors by elements of F , called scalars, for
which the following properties hold:

1. V is an abelian group under addition.

2. a(v + w) = av + aw for all a ∈ F , v, w ∈ V .

3. (a + b)v = av + bv for all a, b ∈ F , v ∈ V .

4. (ab)v = a(bv) for all a, b ∈ F , v ∈ V .

5. 1 v = v for all v ∈ V .

Let us consider some examples:

Examples 2.2. a. Let Fn denote the set of all n-tuples (a1, a2, . . . , an) with
ai ∈ F, 1 ≤ i ≤ n. This is an F -vector space, with addition and scalar multiplication
being defined componentwise. The space Fn is the natural generalization of Rn to
arbitrary fields.

b. The set Mmn(F ) of all m× n-matrices with entries in F is an F -vector space
under matrix addition and scalar multiplication.

c. The polynomial ring F [x] is an F -vector space. Sometimes, if F [x] is considered
as a vector space rather than as a ring, it is denoted by P (F ). In the same manner,
we can consider the set of all polynomials from F [x] of degree ≤ n. This F -vector
space is denoted by Pn(F ).

d. Let F(F ) denote the set of all functions f : F → F . For f, g ∈ F(F ), define a
function f + g by

(f + g)(a) = f(a) + g(a),
and define scalar multiplication of a function f by a scalar b ∈ F by

(bf)(a) = bf(a).

It is easily checked that all the axioms of an F -vector space are satisfied.

Remark 2.3. We note that the following properties hold in an F -vector space
V . The proofs are identical to the proofs of Lemma 1.6 for fields:

1. 0 v = 0 for all v ∈ V . (Note: The 0 on the lefthand side is the 0 in F . The 0
on the righthand side is the zero vector in V .)

19
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2. −v = (−1)v for all v ∈ V .

Definition 2.4. A nonempty subset W of an F -vector space V is a subspace
of V if W , equipped with vector addition and scalar multiplication as a subset of V ,
is itself an F -vector space.

We note that, in particular, the sum v + w of two vectors v, w ∈ W has to lie in
the subspace W and that any scalar multiple av of a vector v ∈ W has to lie in W .
In other words, W has to be closed under addition and scalar multiplication. The
following result shows that these two conditions suffice to determine whether a subset
is a subspace or not.

Lemma 2.5. A nonempty subset W of an F -vector space V is a subspace of V if
and only if W is closed under addition and scalar multiplication.

Proof. We saw already that these conditions are necessary. Let us assume
now that W is closed under addition and scalar multiplication. It is clear that the
properties 2–5 in the definition of an F -vector space hold for vectors in W , since they
hold in V . Furthermore, addition is associative since this is true in V . It remains to
show that the zero vector lies in W and that v ∈ W implies −v ∈ W , so that W is a
group with respect to addition.

Since W is nonempty, there is some vector v ∈ W . Now −v = (−1)v by Remark
2.3. Hence −v ∈ W , since W is closed under scalar multiplication. Since W is closed
under addition, we obtain v + (−v) = 0 ∈ W , as claimed. �

Examples 2.6. a. In Fn, consider the subset W of all vectors v such that
Av = 0, where A is a given m× n-matrix. We call W the nullspace of A.

b. In Mmn(F ), consider the subset of all matrices whose first row is equal to 0.

c. The vector space Pn(F ) is a subspace of P (F ).

d. In F(R), consider the subset of all continuous functions.

Definition 2.7. Let V denote a vector space over a field F . Given vectors
v1, v2, . . . , vn ∈ V and scalars a1, a2, . . . , an ∈ F , the finite sum

a1v1 + a2v2 + · · ·+ anvn

is called a linear combination of v1, v2, . . . , vn.
The set S(v1, v2, . . . , vn) of all possible linear combinations of v1, v2, . . . , vn is

closed under vector addition and scalar multiplication and is therefore a subspace of
V , the subspace generated or spanned by v1, v2, . . . , vn. If S ⊂ V is any subspace of
V and v1, v2, . . . , vn are in S, then every linear combination of the vectors v1, v2, . . . , vn

lies in S as well. Hence,
S(v1, v2, . . . , vn) ⊂ S.

Therefore, S(v1, v2, . . . , vn) is the smallest subset of V containing v1, v2, . . . , vn.
A subspace S is said to be finitely generated if there exist some vectors

v1, v2, . . . , vn so that
S = S(v1, v2, . . . , vn).
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More generally, we can consider an arbitrary nonempty subset E of vectors from
V and define S(E) as the set of all possible linear combinations of vectors from
E. Note that each linear combination involves only finitely many vectors, but these
vectors may vary. Again, S(E) is a subspace of V ; in fact, it is the smallest subspace
of V containing E.

For a subspace S generated by a single nonzero vector v, we will often write

S(v) = Fv.

Examples 2.8. a. The set {1, x, x2, . . . , xn} generates Pn(F ), and the set
{1, x, x2, . . .} generates P (F ). The latter set is infinite.

b. If A is a matrix in Mmn(F ), then the row space of A is the subspace of Fn

generated by the rows of A, and the column space of A is the subspace of Fm

generated by the columns of A.

Definition 2.9. The vectors v1, v2, . . . , vn are called linearly independent if
the only linear combination of v1, v2, . . . , vn representing the zero vector is the trivial
one, hence if

a1v1 + a2v2 + · · ·+ anvn = 0 =⇒ ai = 0 for all i = 1, 2, . . . , n.

Vectors which are not linearly independent are called linearly dependent. Note
that the zero vector 0 is always linearly dependent and that a single nonzero vector
is always linearly independent.

Proposition 2.10. The vectors v1, v2, . . . , vn are linearly independent if and only
if every vector v ∈ S(v1, . . . , vn) can be written uniquely as a linear combination of
v1, v2, . . . , vn.

Proof. Assume first that the vectors v1, v2, . . . , vn are linearly independent, and
let v ∈ S(v1, . . . , vn). Let

v = a1v1 + a2v2 + · · ·+ anvn

and
v = b1v1 + b2v2 + · · ·+ bnvn

be two presentations of v as a linear combination of v1, v2, . . . , vn. Subtracting the
two equations we obtain

0 = (a1 − b1)v1 + (a2 − b2)v2 + · · ·+ (an − bn)vn.

Since by assumption the vectors v1, v2, . . . , vn are linearly independent, we obtain

a1 = b1, a2 = b2, . . . , an = bn,

as claimed.
Conversely, if we assume that the presentation of every vector from S(v1, . . . , vn)

is unique, then in particular this applies to the zero vector, which is in S(v1, . . . , vn).
Therefore,

0 = 0 · v1 + 0 · v2 + · · ·+ 0 · vn

is the only possible linear combination for the zero vector, which means that v1, . . . , vn

are linearly independent. �



22 2. VECTOR SPACES

We can extend the definitions of linear independence and dependence to arbitrary
subsets E of V . That is, E will be a linearly independent set if any finite number
of vectors from E are linearly independent and will be a linearly dependent set
otherwise.

Definition 2.11. Let S be a subspace of V . A set B of vectors in S is a basis
of S if B is a linearly independent set which generates S. If S = {0} is the subspace
consisting only of the zero vector, then 0 is considered to be a basis vector.

Examples 2.12. a. In Fn, we have the standard basis e1, e2, . . . , en, where

ei = (0, . . . , 0, 1
i
, 0, . . . , 0),

the 1 being in the ith position.

b. In Mmn(F ), we have a basis consisting of matrices eij , 1 ≤ i ≤ m, 1 ≤ j ≤ n,
which have a 1 in the ij-th position and 0’s everywhere else.

c. In Pn(F ), we have the basis B = {1, x, x2, . . . , xn}. In P (F ), we have the basis
B = {1, x, x2, . . . , xn, . . .} consisting of all the powers of x.

The main results about finitely generated vector spaces are summarized in the
following two theorems and their consequences.

Theorem 2.13. Let E be a finite set of vectors in V , and let E0 ⊂ E be a linearly
independent subset. Then there exists a basis B of the subspace S(E) such that

E0 ⊂ B ⊂ E.

In other words, the linearly independent subset E0 can be extended to a basis B of
S(E) by adding suitable vectors from E to E0.

Proof. If S(E0) = S(E), then E0 is a basis of S(E), and we are done. Let us
assume then that S(E0) 6= S(E). Let E0 = {v1, v2, . . . , vm}. Our assumption implies
that there is at least one vector v ∈ E which is not contained in S(E0). We now
define E1 = E0 ∪ {v} = {v1, . . . , vm, v}.

Claim: E1 is linearly independent. To show this, let us assume that

a1v1 + a2v2 + · · ·+ amvm + av = 0.

Then a = 0, since otherwise

v = −1
a
(a1v1 + · · ·+ amvm)

would be a linear combination of v1, . . . , vm, hence in S(E0), contradicting our as-
sumption. However, if a = 0, then the linear combination reads a1v1+· · ·+amvm = 0,
and the linear independence of v1, . . . , vm implies that a1 = 0, . . . , am = 0 as well.

We can now apply the same arguments to the independent set E1. Either S(E1) =
S(E), in which case we are done, or we can enlarge E1 to a linearly independent subset
E2 of E by adding a vector from E to E1, etc. Since E is a finite set, this procedure
has to stop, and we end up with a basis B of S(E) that contains E0 and lies in E. �

Theorem 2.13 has some obvious important consequences:

Corollary 2.14. Let V be a finitely generated F -vector space. Then
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a. V has a finite basis.

b. Any basis of a subspace of V can be extended to a basis of V .

c. Any finite set of generators of V contains a basis.

Example 2.15. Consider

E = {(1, 1, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1)}
as a subset of R3, and take E0 = {(1, 1, 1)}. Clearly (0, 1, 1) is not contained in
S(E0). Hence, we can add (0, 1, 1) to E0 to obtain a linearly independent set E1 =
{(1, 1, 1), (0, 1, 1)}. The vector (1, 0, 0) is contained in S(E1), but (1, 0, 1) is not.
Therefore, we can enlarge E1 to an independent set E2 by adding (1, 0, 1) to E1:

E2 = {(1, 1, 1), (0, 1, 1), (1, 0, 1)}.
Clearly, S(E2) = S(E), and therefore B = E2 is a basis for S(E).

Remark 2.16. In the special case that V = Fn, we can always proceed as follows
to find the basis B. Let E0 = {v1, . . . , vk} be a linearly independent set contained
in E. Let vk+1, . . . , vr denote the vectors in E that are not contained in E0. We
then form the n× k-matrix A that has the vectors vi as its columns. Then the span
S(E) of E is just the column space of A. We recall that elementary row operations
on the matrix A do not change linear independence or linear dependence relations of
the columns. We reduce A to a row echelon form R. A basis for the column space of
R is provided by the columns of R that contain a leading 1, i.e., a 1 that is the first
nonzero entry in its row. Therefore, a basis of S(E) is provided by those columns of
A that are in the same positions as the leading 1’s of R. Since the first m columns
of A are linearly independent, the same is true for the first m columns of R. That is,
E0 is part of the basis.

In Example 2.15, the matrix A for the ordered set E, i.e., with the vectors are
taken in the order listed, looks like

A =

1 0 1 1
1 1 0 0
1 1 0 1

 .

A row echelon form R for A equals

R =

1 0 1 1
0 1 −1 −1
0 0 0 1

 .

The leading 1’s are in columns 1, 2, and 4. Therefore, we obtain the same result as
above.

Theorem 2.17 (Steinitz’ Replacement Theorem). Let V be a finitely generated
F -vector space with a basis

B = {v1, v2, . . . , vn},
and let

E = {w1, w2, . . . , wm}
be an arbitrary linearly independent subset of V . Then m ≤ n, and E can be extended
to a basis of V by adding n−m suitable vectors from B.
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Proof. We try to change the basis B by replacing certain vectors in B with
vectors from E. Since B is a basis, we can write

(∗) w1 = a1v1 + a2v2 + · · ·+ anvn,

where the coefficients ai are uniquely determined. Since w1 6= 0, some coefficient ai

is nonzero. If necessary, we can reindex the basis vectors v1, v2, . . . , vn, so that we
may assume that a1 6= 0. Then

v1 =
1
a1

(w1 − a2v2 − · · · − anvn),

which shows that
B1 = {w1, v2, . . . , vn}

generates V . We want to show that w1, v2, . . . , vn are linearly independent, and
therefore B1 is again a basis of V . To do this, assume that

b1w1 + b2v2 + · · ·+ bnvn = 0.

If b1 6= 0, then

(∗∗) w1 = − 1
b1

(b2v2 + · · ·+ bnvn).

Since a1 6= 0, (∗) and (∗∗) are two different linear combinations representing w1,
which contradicts the fact that B is a basis. The assumption b1 6= 0 was therefore
wrong, so b1 = 0. The linear independence of the vectors v2, . . . , vn then implies
that the remaining coefficients b2, . . . , bn are equal to 0 as well, which proves linear
independence and hence that B1 is a basis of V .

Let us now assume that we have constructed a basis

Bk = {w1, w2, . . . , wk, v
′
k+1, . . . , v

′
n}

of V , where v′k+1, . . . , v
′
n are suitably chosen vectors from B. If k = m, then we are

done. Assume then that m > k. As before, we can write

wk+1 = a1w1 + a2w2 + · · · akwk + ak+1v
′
k+1 + · · ·+ anv′n

in a unique way. Since the vectors w1, . . . , wk+1 are linearly independent, for some
i ≥ k + 1 the coefficient ai must be nonzero, and we may assume that i = k + 1, i.e.,
that ak+1 6= 0. As above, this implies that the vectors w1, w2, . . . , wk+1, v

′
k+2, . . . , v

′
n

generate V and form in fact a basis Bk+1 of V .
Continuing in this way, we construct bases Bi of V for i = 1, 2, . . . ,m, provided

that m ≤ n. Then Bm is then the basis we are looking for. Assume finally that
m > n. Then Bn = {w1, . . . , wn} is a basis for V . In particular, wn+1 would
be a linear combination of w1, . . . , wn, contradicting the linear independence of E.
Therefore, m ≤ n. �

As an immediate consequence, we obtain:

Corollary 2.18. Any two bases of a finitely generated vector space contain the
same number of elements.
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Definition 2.19. The number of elements in any basis of a finitely generated
vector space V is called the dimension of V and denoted by dim V . By definition,
the dimension of the 0-vector space is equal to 0. In place of finitely generated, we
often use the terminology finite dimensional.

Examples 2.20. a. dim Fn = n.

b. dim Pn(F ) = n + 1.

c. dim Mmn(F ) = mn.

Corollary 2.21. Every subspace S of a finite-dimensional F -vector space V is
finite-dimensional, and dim S ≤ dim V .

Proof. Clearly, the result is true if S = (0). Hence, we may assume that S
contains a nonzero vector v1. Let E1 = {v1}. If S(E1) = S, then we are done. If
not, then we can find a vector v2 ∈ S such that E2 = {v1, v2} is linearly independent.
We can continue as in the proof of Theorem 2.13 and construct linearly independent
sets Ek = {v1, . . . , vk} ⊂ S for k = 1, 2, . . .. This process has to terminate since
the possible number of linearly independent vectors is bounded by dim V . Therefore,
S = S(Ek) for some k ≤ dim V . �

If S and T are two subspaces of an F -vector space V , then the intersection S ∩T
is again a subspace of F . However, the union S ∪T is in general not a subspace. The
smallest subspace containing S ∪ T is the sum S + T of S and T :

S + T = {v + w | v ∈ S, w ∈ T}.
We have the following important dimension formula:

Theorem 2.22 (Dimension Formula). Let S and T be finite-dimensional sub-
spaces of an F -vector space V . Then S + T is finite-dimensional and

dim(S + T ) = dim S + dim T − dim(S ∩ T ).

Proof. Let {v1, . . . , vk} be a basis of S ∩ T . By Corollary 2.14, we can extend
this basis to a basis

{v1, . . . , vk, vk+1, . . . , vn}
of S and to a basis

{v1, . . . , vk, wk+1, . . . , wm}
of T . Clearly, the union of these two bases, which is

{v1, . . . , vk, vk+1, . . . , vn, wk+1, . . . , wm},
generates S+T . We have to show that these vectors are linearly independent. Assume
then that

a1v1 + · · ·+ akvk + ak+1vk+1 + · · ·+ anvn + bk+1wk+1 + · · ·+ bmwm = 0.

This implies

a1v1 + · · ·+ akvk + ak+1vk+1 + · · ·+ anvn = −bk+1wk+1 − · · · − bmwm.

The left hand side lies in S and the right hand side in T . Hence, both lie in S ∩ T
and therefore can be written in terms of the basis {v1, . . . , vk}:
a1v1+· · ·+akvk+ak+1vk+1+· · ·+anvn = −bk+1wk+1−· · ·−bmwm = c1v1+· · ·+ckvk.
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However, the vectors v1, . . . , vk, wk+1, . . . , wm are linearly independent, and therefore
we must have bk+1 = 0, . . . , bm = 0, c1 = 0, . . . , ck = 0. Finally, since the vectors
v1, . . . , vk, vk+1, . . . , vn are linearly independent, all the coefficients ai are equal to 0
as well. �

Let us consider the special case that S ∩ T = (0), in which case we simply obtain
dim(S + T ) = dim S + dim T :

Lemma 2.23. For two subspaces S and T , we have S ∩ T = (0) if and only if
every x ∈ S + T can be written as x = v + w, with v ∈ S and w ∈ T , in one and only
one way.

Proof. Let us assume first that S ∩ T = (0). If

x = v1 + w1 = v2 + w2

with v1, v2 ∈ S and w1, w2 ∈ T , then

v1 − v2 = w2 − w1

lies in the intersection of S and T , hence is equal to 0, which proves uniqueness .
On the other hand, if S ∩ T 6= (0), then any nonzero vector x ∈ S ∩ T can be

written as
x = x + 0 = 0 + x.

Therefore, if we put v1 = x,w1 = 0 and v2 = 0, w2 = x, then we get two different
presentations of x. �

In the case that S ∩ T = (0), we call the sum S + T a direct sum of S and T
and denote it by S ⊕ T . The concepts generalize to more than 2 summands:

Definition 2.24. Let S1, . . . , Sk be subspaces of a vector space V . The sum
S1 + · · ·+ Sk is the subspace of V of all vectors x that can be written as

x = v1 + v2 + · · ·+ vk

with vi ∈ Si for each i = 1, . . . , k.

It is sometimes convenient to write the sum using calculus notation:

S1 + · · ·+ Sk =
k∑

j=1

Sj .

The sum is called a direct sum if, for every vector x ∈ S1 + · · · + Sk, the above
presentation is unique. If this is the case, then we write

S1 ⊕ S2 ⊕ · · · ⊕ Sk =
k⊕

j=1

Sj .

Lemma 2.23 easily generalizes to more than 2 summands as follows.

Lemma 2.25. Let S1, . . . , Sk be subspaces of a vector space V . Then

S1 + · · ·+ Sk = S1 ⊕ · · · ⊕ Sk
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if and only if, for each i = 1, . . . , k, we have

Si ∩
( k∑

j=1
j 6=i

Sj

)
= (0).

Example 2.26. Assume that {v1, . . . , vn} is a set of generators of V . Then

V = Fv1 ⊕ Fv2 ⊕ · · · ⊕ Fvn

if and only if {v1, . . . , vn} is a basis of V .

We can use the dimension formula to prove the following result.

Proposition 2.27. For the direct sum of subspaces S1, . . . , Sk of a vector space
V , we have

dim(S1 ⊕ S2 ⊕ · · · ⊕ Sk) = dim S1 + dim S2 + · · ·+ dim Sk.

Proof. This follows by induction from the dimension formula. We write

S1 ⊕ S2 ⊕ · · · ⊕ Sk = S1 ⊕ (S2 ⊕ · · · ⊕ Sk).

The dimension formula implies that

dim(S1 ⊕ S2 ⊕ · · · ⊕ Sk) = dim S1 + dim(S2 ⊕ · · · ⊕ Sk).

Assuming that the result is true for a direct sum of k − 1 subspaces, we have

dim(S2 ⊕ · · · ⊕ Sk) = dim S2 + · · ·+ dim Sk,

hence the claim. �

Given any subspace S of a finite-dimensional vector space V , we can always find
a subspace T such that V = S ⊕ T . This is just a reformulation of the fact that a
basis of S can be extended to a basis of V . That is, let {v1, . . . , vk} be a basis of S
and extend it to a basis

{v1, . . . , vk, vk+1, . . . , vn}
of V . Let T be the subspace with basis {vk+1, . . . , vn}. Then

dim V = n = k + (n− k) = dim S + dim T.

Hence, by the dimension formula, S ∩ T = (0), which by Lemma 2.23 implies that
V = S ⊕ T . We note that the complementary subspace T is in general not uniquely
determined since there are many ways of extending a basis of a subspace. We have
shown the following.

Proposition 2.28. Given a subspace S of a finite-dimensional vector space V ,
there exists a subspace T of V such that V = S ⊕ T .

The concept of writing a vector space as a direct sum of subspaces of smaller
dimensions will be important in the study of linear transformations.





CHAPTER 3

LINEAR TRANSFORMATIONS

1. Linear Transformations and Matrices

Let V and W be vector spaces over a field F .

Definition 3.1. A map T : V → W is a linear transformation if

T (v1 + v2) = T (v1) + T (v2) and T (av) = aT (v)

for all v, v1, v2 ∈ V and all a ∈ F .

In other words, T is a linear transformation if it respects vector addition and
scalar multiplication. Definition 3.1 immediately implies that

T (a1v1 + a2v2 + · · ·+ anvn) = a1T (v1) + a2T (v2) + · · ·+ anT (vn).

In particular, this shows that if V is finite-dimensional with basis {v1, . . . , vn}, then
a linear transformation T : V → W is uniquely determined by the images

T (v1), . . . , T (vn)

of the basis vectors, and these can be prescribed arbitrarily.
Attached to a linear transformation T : V → W are two subspaces: the range

T (V ) of T ,
T (V ) = {T (v) | v ∈ V },

which is a subspace of W , and the nullspace n(T ) of T ,

n(T ) = {v ∈ V | T (v) = 0},

which is a subspace of V . The range of T is also called the image of T and denoted
by im(T ), and the nullspace of T is also called the kernel of T and denoted by ker(T ).

If V is finite-dimensional, then we have the following relation between the dimen-
sions of the image and the kernel of T .

Proposition 3.2. Assume that V is a finite-dimensional vector space and that
T : V → W is a linear transformation. Then

dim n(T ) + dim T (V ) = dim V.

Proof. By Proposition 2.28, we can choose a complement U of n(T ) in V , i.e.,
a subspace U of V such that

V = n(T )⊕ U.

Let v1, . . . , vk be a basis of n(T ), and let vk+1, . . . , vn be a basis of U . Clearly, the
image vectors T (vk+1), . . . , T (vn) generate T (V ). We have to show that these vectors
are linearly independent.

29
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Assume that

ak+1T (vk+1) + ak+2T (vk+2) + · · ·+ anT (vn) = 0.

The left hand side equals T (ak+1vk+1 + · · ·+ anvn). Hence,

ak+1vk+1 + · · ·+ anvn ∈ n(T ) ∩ U = (0).

This shows that ak+1vk+1 + · · ·+anvn = 0. It follows that ai = 0 for i = k +1, . . . , n,
since the vectors vk+1, . . . , vn are linearly independent. Therefore,

{T (vk+1), . . . , T (vn)}
is a basis for T (V ), and we obtain

dim V = dim n(T ) + dim U = dim n(T ) + dim T (V ),

as claimed. �

Definition 3.3. A linear transformation T : V → W is one-to-one if

T (v1) = T (v2) =⇒ v1 = v2

for any v1, v2 ∈ V . We say that T is onto if T (V ) = W . A linear transformation T
that is both one-to-one and onto is called an isomorphism.

We first note the following.

Lemma 3.4. The linear transformation T is one-to-one if and only if n(T ) = (0).

Proof. If T is one-to-one, then 0 is the only vector in V that is mapped to 0, so
n(T ) = (0). Conversely, if n(T ) = (0) and T (v1) = T (v2), then

T (v1 − v2) = T (v1)− T (v2) = 0,

so v1 − v2 is in n(T ), and therefore v1 = v2. �

Lemma 3.5. There exists an isomorphism T : V → W if and only if there exists
an isomorphism S : W → V .

Proof. Given T and w ∈ W , define S(w) to be the unique vector v ∈ V with
S(v) = w. Note that v exists as T is onto, and it is unique as T is one-to-one. The
converse follows in the same way. �

When the equivalent conditions of Lemma 3.5 hold, we call V and W isomorphic
vector spaces. The particular isomorphism S constructed out of T in the proof
of Lemma 3.5 is called the inverse of T and is denoted T−1. In fact, the set of
isomorphisms between isomorphic vector spaces forms a group under composition.
Proposition 3.2 and Lemma 3.4 immediately imply:

Corollary 3.6. Two finite-dimensional vector spaces over F are isomorphic if
and only if they have the same dimension.

We also note:

Lemma 3.7. If V and W are finite-dimensional and dim V = dim W , then the
following statements are equivalent for a linear transformation T : V → W :

a. T is an isomorphism.
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b. T is one-to-one.

c. T is onto.

Examples 3.8. 1. Differentiation f 7→ f ′ is a linear transformation from
P (R) to P (R). This transformation is onto but not one-to-one, the nullspace be-
ing equal to R. If we restrict to polynomials of degree ≤ n, hence to Pn(R), then the
image is isomorphic to Pn−1(R).

2. Integration f 7→
∫ b
a f(x)dx is a linear transformation from P (R) to R.

3. Integration f 7→
∫ x
0 f(t)dt is a linear transformation from P (R) to P (R). It is

one-to-one but not onto.

4. For any m× n-matrix A, the map x 7→ Ax is a linear transformation from Fn

to Fm. The nullspace of this transformation is equal to the nullspace of A and the
image is equal to the column space of A.

5. Assume that V is n-dimensional, and let B = {v1, . . . , vn} be an ordered basis
of V . (By “ordered”, we mean simply that the elements of the basis are taken in a
given order, the order in which they are listed.) The coordinate map CB : V → Fn

with respect B maps the ordered basis B to the standard ordered basis {e1, . . . , en}
of Fn. That is, CB(vi) = ei for i = 1, . . . , n. The linear transformation CB is clearly
an isomorphism. If

v = a1v1 + · · ·+ anvn

is an arbitrary vector in V , then

CB(v) = a1e1 + · · ·+ anen = (a1, . . . , an).

We will usually view these vectors as column vectors in Fn.

The set L(V,W ) of all linear transformations from V to W becomes a vector
space over F if we define the sum S + T by

(S + T )(v) = S(v) + T (v)

and a scalar multiple aT by (aT )(v) = aT (v).
Assume that dim V = n and dim W = m. Let B = {v1, . . . , vn} be an ordered

basis of V , and let B′ = {w1, . . . , wm} be an ordered basis of W . We want to construct
an isomorphism between the vector spaces L(V,W ) and Mmn(F ) which will depend
on the choices of the bases B and B′ and their orderings. To do this, we have to
associate a matrix A to a given linear transformation T : V → W . We consider the
following diagram:

V
T−−−−→ W

CB

y yCB′

Fn −−−−→
A·

Fm ,

and we want to define the matrix A so that multiplication by A makes the diagram
commutative, i.e., we get the same result going from V to Fm in two different ways.
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Let us start with a basis vector vj ∈ V . Going along the top of the diagram, vj is
mapped to T (vj), which can be expressed in terms of the basis B′ as

T (vj) = a1jw1 + a2jw2 + · · ·+ amjwm.

The coordinate map CB′ maps T (vj) to the column vector (a1j , a2j , . . . , amj). Going
the other way around, the coordinate map CB maps vj to the jth standard basis
vector ej of Fn (viewed as a column vector). Multiplying this vector by A gives the
jth column of A. Therefore, this jth column has to be equal to (a1j , a2j , . . . , amj).
We see that the matrix A is equal to (aij). If we want to emphasize the dependence
of A on T and the bases B,B′, then we denote it by AB,B′

T . It is now easy to verify
that the map

T 7→ AB,B′

T

is linear and in fact an isomorphism between L(V,W ) and Mmn(F ):

Proposition 3.9. The linear map T 7→ AB,B′

T from L(V,W ) to Mmn(F ) is an
isomorphism. In particular, we have

dim L(V,W ) = dim V · dim W.

Assume that we have, in addition to T , a linear transformation S : W → U ,
where U is an r-dimensional F -vector space with ordered basis B′′. The situation is
described by the following diagram:

V
T−−−−→ W

S−−−−→ U

CB

y yCB′

yCB′′

Fn −−−−→
AB,B′

T

Fm −−−−→
AB′,B”

S

F r

The composite linear transformation S ◦ T , which is simply denoted by ST , maps V
to U , and we have the following relation between the corresponding matrices:

AB,B′′

ST = AB′,B′′

S ·AB,B′

T ,

which simply means that the product of the transformations corresponds to the prod-
uct of the matrices.

Let us specialize to the situation that V = W . In this case, we denote L(V, V )
simply by L(V ). In addition to being a vector space of dimension n2 over F , where
dim V = n, we also have a product on L(V ) that turns L(V ) into a ring, isomorphic
to the ring Mn(F ) of n× n-matices over F .

If B and B′ are ordered bases of V , then we can express a vector v ∈ V in terms
of the basis B and in terms of the basis B′. To obtain the matrix that describes
the change of basis from B to B′, we simply look at the special case that T = 1 is
the identity transformation, and we write AB,B′

instead of AB,B′

1 . In this case, the
diagram looks like

V
1−−−−→ V

CB

y yCB′

Fn −−−−→
AB,B′ ·

Fn ,
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and we obtain
AB,B′ · CB(v) = CB′(v)

for all v ∈ V . The ith column of AB,B′
is simply the coordinate vector of the ith

basis vector of B with respect to B′. The matrix AB,B′
is invertible, and

(AB,B′
)
−1

= AB′,B.

Let T : V → V be a linear transformation and B an ordered basis of V . We simply
write AB

T instead of AB,B
T . To obtain the relationship between AB

T and AB′
T for two

ordered bases B and B′ of V , we look at the diagram

V
1−−−−→ V

T−−−−→ V
1−−−−→ V

CB′

y yCB

yCB

yCB′

Fn −−−−→
AB′,B ·

Fn −−−−→
AB

T ·
Fn −−−−→

AB,B′ ·
Fn

and compare it to the diagram

V
T−−−−→ V

CB′

y yCB′

Fn −−−−→
AB′

T ·
Fn

We obtain

AB′
T = (AB′,B)

−1
·AB

T ·AB′,B.

In particular, we see that matrices describing a given linear transformation with
respect to different bases are similar.

The task is now to find, for a given linear transformation T : V → V , a “good”
basis B of V so that the form of the matrix AT

B is as simple as possible.

Example 3.10. Let T : Pn(R) → Pn(R) be given by T (f) = f ′. Let B be the
ordered basis

B = {1, x, x2, . . . , xn}.

The columns of the matrix AB
T are obtained by expressing T (1), T (x), . . . , T (xn) in

terms of the basis B:

T (1) = 0, T (x) = 1, . . . , T (xi) = ixi−1, . . . , T (xn) = nxn−1.

This yields:

AB
T =


0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . n
0 0 0 . . . 0


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2. Minimal polynomials and invariant subspaces

Throughout, V denotes a finite-dimensional F -vector space, and T : V → V de-
notes a linear transformation. If

f(x) = a0 + a1x + · · ·+ amxm ∈ F [x]

is an arbitrary polynomial, then we denote by

f(T ) = a0 1 + a1T + · · ·+ amTm ∈ L(V )

the corresponding linear transformation obtained by substituting T for x, and if
A ∈ Mn(F ), is an arbitrary n× n-matrix, then we denote by

f(A) = a0 In + a1A + · · ·+ amAm ∈ Mn(F )

the corresponding matrix obtained by substituting A for x. If B is an ordered basis
of V , and if AB

T denotes the matrix corresponing to T under the isomorphism

L(V ) → Mn(F )

(n = dim V ) described in the last section, then clearly f(AB
T ) corresponds to f(T ).

In particular, f(T ) is the zero transformation if and only if f(AB
T ) is the zero matrix.

Since L(V ) has dimension n2, where n = dim V , the n2 +1 linear transformations

1, T, T 2, . . . , Tn2

are linearly dependent. Hence, there is a non-zero polynomial f(x) ∈ F [x] of degree
≤ n2 such that f(T ) = 0. Among all possible non-zero polynomials f with the
property f(T ) = 0, we choose one, denoted by mT (x), of smallest degree and assume
it is monic.

Definition 3.11. We call mT (x) the minimal polynomial of the linear trans-
formation T . Similarly, we define the minimal polynomial mA(x) for a matrix A. It
is clear that mT (x) = mA(x) whenever A = AB

T represents T with respect to a basis
B.

The fact that mT (x) is uniquely determined by T can easily be seen from the
following lemma.

Lemma 3.12. If f(x) is a non-zero polynomial such that f(T ) = 0, then

mT (x) | f(x).

Proof. We use the Division Algorithm. That is,

f(x) = q(x)mT (x) + r(x),

where either r = 0 or deg r(x) < deg mT (x). Inserting T for x, we obtain r(T ) = 0
and, hence, r = 0 since the degree of mT (x) was minimal. The result follows. �

In general, it is not easy to find the minimal polynomial of a linear transformation.
As we progress, we will see that the minimal polynomial mT (x) always divides the
characteristic polynomial of T , which we denote by cT (x). We recall that

cT (x) = det(x− T )

can be computed as det(x · I − A) using any matrix A representing T with respect
to some basis B of V .
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Here are some explicit examples:

Examples 3.13. 1. If T = 0 is the zero transformation, then mT (x) = x.

2. If T = 1 is the identity, then mT (x) = x− 1.

3. More generally, T = c · 1 if and only if mT (x) = x− c.

4. Let

A =
[
a b
c d

]
be a 2× 2-matrix. Then

A2 − (a + d)A + (ad− bc)I2 = 0,

which we can rewrite as

A2 − tr(A)A + det(A)I2 = 0.

If we assume that A is not a scalar multiple of the identity matrix, then deg mA(x) =
2, and therefore in these cases

mA(x) = x2 − tr(A)x + det(A).

We note that this is equal to the characteristic polynomial cA(x) of A.

Another family of examples arises as follows. Assume that W is a subspace of
V = Rn. We have

V = W ⊕W⊥,

where W⊥ is the orthogonal complement of V under the dot product. Every v ∈ V
can be written uniquely as

v = w + u

with w ∈ W,u ∈ W⊥. The orthogonal projection of V on W is the linear transfor-
mation

P : V → V, P (w + u) = w.

The transformation P has the following property:

P 2 = P.

This property leads to the more general definition of a projection.

Definition 3.14. A linear transformation T : V → V is a projection if T 2 = T .

We let diag(a1, . . . , ar) denote the diagonal r×r-matrix with with entires a1, . . . , ar

along the diagonal.

Proposition 3.15. Assume that T is a projection, and let k = dim T (V ). Then
we have:

i. mT (x) = x2 − x = x(x − 1) unless k = 0 or k = dim V . In the latter cases,
T = 0 or T = 1, so mT (x) = x or mT (x) = x− 1, respectively.

ii. There exists a basis B of V such that

AB
T = diag(1, 1, . . . , 1, 0, 0, . . . , 0),

with k ones along the diagonal.
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Proof. We first show that

T (V ) ∩ n(T ) = {0}.
Assume that w ∈ T (V ) ∩ n(T ). Then w = T (v) for some v ∈ V , and T (w) = 0. We
obtain

0 = T (w) = T 2(v) = T (v) = w.

Hence w = 0, as claimed. Proposition 3.2 then implies that

V = T (V )⊕ n(T ).

We therefore have a basis

B = {T (v1), T (v2), . . . , T (vk), vk+1, . . . , vn},
where T (v1), T (v2), . . . , T (vk) are basis vectors for T (V ) and vk+1, . . . , vn are basis
vectors for n(T ). Since T (T (vi)) = T (vi) for 1 ≤ i ≤ k, we obtain the result. �

Definition 3.16. A subspace W of V is called T -invariant if T (W ) ⊂ W . If
W is a T -invariant subspace, then the restriction TW ∈ L(W ) of T to W is simply
defined by

TW (w) = T (w)
for all w ∈ W .

Let us assume that we can decompose V into a direct sum

V = V1 ⊕ V2 ⊕ · · · ⊕ Vr

of T -invariant subspaces Vi. Let Ti = TVi denote the restriction of T to Vi. If we
choose ordered bases Bi for Vi, then

B = B1 ∪B2 ∪ . . . ∪Br

is an ordered basis for V (taken in the order of the unions). The matrix A = AB
T of

T with respect to B is block diagonal, which is to say that it looks like

A =


A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0
0 · · · 0 Ar


where the Ai = ABi

Ti
are the corresponding matrices for the restrictions Ti with respect

to the bases Bi.
Let mT (x) and cT (x) denote the minimal and the characteristic polynomial of T ,

respectively, and let mi(x) and ci(x) denote the corresponding polynomials for Ti.
The following result relates these polynomials.

Lemma 3.17. Let
V = V1 ⊕ V2 ⊕ · · · ⊕ Vr

be a decomposition of V into T -invariant subspaces. Then
i. cT (x) = c1(x)c2(x) · · · cr(x).

ii. mT (x) = lcm(m1(x),m2(x), . . . ,mr(x)).
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Proof. i. The matrix x · I −A is again block diagonal with blocks x · I −Ai

along the diagonal. Since the determinant is multiplicative with respect to these
blocks, we obtain part i.

ii. Let m(x) denote the least common multiple of the polynomials

m1(x), . . . ,mr(x).

This means that each mi(x) divides m(x) and that m(x) is the monic polynomial of
smallest degree with this property.

We first show that m(T ) = 0. This is equivalent to showing that m(T )(v) = 0
for every basis vector v ∈ B. But if v ∈ Bi, then mi(T )(v) = mi(Ti)(v) = 0, and
hence m(T )(v) = 0. This implies that mT (x) | m(x). Conversely, we clearly have
mT (Ti)(v) = 0 for all v ∈ Vi, so each mi(x) | mT (x), and therefore m(x) | mT (x).
Since both m(x) and mT (x) are monic, they have to be equal.

�

To obtain T -invariant subspaces, we use the following lemma.

Lemma 3.18. Assume that T : V → V and S : V → V are linear transformations
that commute, i.e., ST = TS. Then S(V ) and n(S) are T -invariant.

Proof. Assume that v ∈ S(V ). Then v = S(w) for some w ∈ V . Now

T (v) = T (S(w)) = S(T (w)) ∈ S(V ),

which shows that S(V ) is T -invariant. Similarly, assume that v ∈ n(S), i.e., S(v) = 0.
Then

S(T (v)) = T (S(v)) = T (0) = 0,

so n(S) is T -invariant. �

If f(x) = a0 + a1x+ · · ·+ anxn ∈ F [x] is an arbitrary polynomial, then the linear
transformation S = f(T ) commutes with T since

TS = T (a0 + a1T + · · ·+ anTn)

= a0T + a1T
2 + · · ·+ anTn+1

= (a0 + a1T + · · ·+ anTn)T
= ST,

and therefore Lemma 3.18 implies:

Corollary 3.19. For any polynomial f(x) ∈ F [x], the range f(T )(V ) and the
nullspace n(f(T )) of f(T ) are T -invariant subspaces of V .

We now use this result to produce a decomposition of V into a direct sum of T -
invariant subspaces according to the decomposition of the minimal polynomial mT (x)
into a product of powers of irreducible polynomials.

Theorem 3.20 (Primary Decomposition). Let T : V → V be a linear transfor-
mation with minimal polynomial

mT (x) = p1(x)e1p2(x)e2 · · · pr(x)er ,
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where p1(x), . . . , pr(x) are distinct irreducible polynomials. Then

V = n(p1(T )e1)⊕ n(p2(T )e2)⊕ · · · ⊕ n(pr(T )er).

Proof. We prove the theorem by induction on the number r of powers of distinct
irreducible polynomials in the decomposition of mT (x). If r = 1, then mT (x) = p(x)e

for some irreducible polynomial p(x). Hence,

n(p(T )e) = n(mT (T )) = n(0) = V.

Let us assume now that the result is true for all linear transformations on finite-
dimensional F -vector spaces for which the minimal polynomial factors into r − 1
powers of distinct irreducible polynomials. We can write the given minimal polyno-
mial

mT (x) = p1(x)e1p2(x)e2 · · · pr(x)er

as
mT (x) = q1(x)q2(x),

where q1(x) = p1(x)e1 and q2(x) = p2(x)e2 · · · pr(x)er . In particular, q1(x) and q2(x)
are relatively prime. By Corollary 1.23, we find polynomials a(x) and b(x) for which

1 = a(x)q1(x) + b(x)q2(x),

and hence
1 = a(T )q1(T ) + b(T )q2(T ).

We want to show that
V = n(q1(T ))⊕ n(q2(T )).

Let v ∈ V . From above, we obtain

v = a(T )q1(T )(v) + b(T )q2(T )(v).

The vector a(T )q1(T )(v) is in the nullspace of q2(T ) since

q2(T )a(T )q1(T )(v) = a(T )mT (T )(v) = 0,

and similarly the vector b(T )q2(T )(v) is in the nullspace of q1(T ). Therefore,

V = n(q1(T )) + n(q2(T )).

To show that the sum is direct, we have to show that n(q1(T ))∩n(q2(T )) = (0). But
if v ∈ n(q1(T )) ∩ n(q2(T )), then

v = a(T )q1(T )(v) + b(T )q2(T )(v) = 0 + 0 = 0.

Let T1 and T2 denote the restrictions of T to n(q1(T )) and n(q2(T )), respectively.
From part ii of Lemma 3.17, we obtain qi(x) = mTi(x) for i = 1, 2. Our induction
hypothesis implies that

n(q2(T )) = n(p2(T )e2)⊕ · · · ⊕ n(pr(T )er),

and hence
V = n(p1(T )e1)⊕ n(p2(T )e2)⊕ · · · ⊕ n(pr(T )er),

as claimed. �

This theorem has important consequences:
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Theorem 3.21. A linear transformation T : V → V is diagonalizable if and only
if the minimal polynomial mT (x) of T has the form

mT (x) = (x− λ1)(x− λ2) · · · (x− λr)

with distinct elements λ1, . . . , λr from F .

Proof. We note that T is diagonalizable if and only if V has a basis consisting
of eigenvectors of T . Let us assume first that T is diagonalizable, and let λ1, . . . , λr

denote the distinct eigenvalues of T . Let

m(x) = (x− λ1)(x− λ2) · · · (x− λr).

We have to show that m(x) = mT (x). For each eigenvector v belonging to an eigen-
value λi, we have (T − λi · 1)v = 0, and therefore m(T )(v) = 0. Since V has a basis
consisting of eigenvectors of T , we obtain m(T ) = 0. Therefore mT (x) | m(x). Let

mi(x) =
m(x)
x− λi

,

i.e., mi(x) is obtained from m(x) by omitting the factor x−λi. Let vi be an eigenvector
belonging to λi. Then

mi(T )(vi) =
r∏

j=1
j 6=i

(T − λj · 1)(vi) =
r∏

j=1
j 6=i

(λi − λj)(vi) 6= 0,

and therefore mi(T ) 6= 0 for all i = 1, . . . , r. This implies that mT (x) = m(x).
Conversely, let us assume that

mT (x) = (x− λ1)(x− λ2) · · · (x− λr).

Theorem 3.20 implies that

V = n(T − λ1 · 1)⊕ n(T − λ2 · 1) · · · ⊕ n(T − λr · 1).

Hence, V has a basis consisting of linearly independent vectors from n(T − λi · 1) for
i = 1, . . . , r. Since the non-zero vectors in n(T − λi · 1) are precisely the eigenvectors
of T belonging to the eigenvalue λi, we see that V has a basis of eigenvectors, hence
is diagonalizable. �

Theorem 3.21 shows that there are two possible forms of the minimal polynomial
mT (x) of T which imply that T is not diagonalizable. First of all, mT (x) can have ir-
reducible factors that are non-linear. E.g., over R the polynomial x2+1 is irreducible.
Hence, if x2 + 1 divides the minimal polynomial mT (x) for a linear transformation
T : V → V , where V is a real vector space, then T is not diagonalizable. This happens
for example, if T : R2 → R2 is given by matrix multiplication by the matrix[

0 1
−1 0

]
.

In this case, the minimal polynomial is equal to x2 +1. We note that this case cannot
happen if we consider vector spaces over the complex numbers C.

The second form occurs if all irreducible factors of mT (x) are linear, but some
divide mT (x) to a larger power than 1. In this case, the linear transformation can be
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respresented by a matrix in Jordan canonical form, and we discuss this in the next
section.

Examples 3.22. 1. Let us consider the linear transformation on R6 given by
the following matrix

A =


0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 .

Then

A2 =


−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

and therefore
(A2 + 1)(A2 − 1) = 0.

This implies that the minimal polynomial mA(x) ∈ R[x] divides (x2 + 1)(x2 − 1).
Since A2 − 1 6= 0, mA(x) has to contain the irreducible factor x2 + 1. Since both
(A2 + 1)(A + 1) and (A2 + 1)(A− 1) are non-zero matrices, the minimal polynomial
is actually equal to (x2 + 1)(x2 − 1) = (x2 + 1)(x + 1)(x− 1) :

mA(x) = (x2 + 1)(x + 1)(x− 1).

This is the factorization of mA(x) into a product of distinct irreducible polynomials
in R[x]. Theorem 3.20 implies that A is not diagonalizable over R. According to
Theorem 3.20, the primary decomposition of the vector space R6 looks like

R6 = n(A2 + 1)⊕ n(A + 1)⊕ n(A− 1).

Now, A2 + 1 has rank 2. Thus, n(A2 + 1) has dimension 4, and the other two
nullspaces have both dimension 1 and are in fact the eigenspaces belonging to the
eigenvalues −1 and 1, respectively. An eigenvector for −1 is given by e5− e6, and an
eigenvector for 1 is given by e5 + e6. The nullspace n(A2 + 1) of A2 + 1 has a basis
{e1, e2, e3, e4}. The direct sum decomposition of R6 then simply corresponds to the
basis {e1, e2, e3, e4, e5−e6, e5 +e6} of R6. We note that n(A2 +1) decomposes further
into a direct sum of A-invariant subspaces

n(A2 + 1) = S(e1, e2)⊕ S(e3, e4),

which is not a consequence of the primary decomposition.

2. Let us look at the linear transformation on R3 given by the matrix

A =

0 0 0
1 0 −1
0 1 2

 .
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We compute the powers

A2 =

0 0 0
0 −1 −2
1 2 3


and

A3 =

 0 0 0
−1 −2 −3
2 3 4


and obtain the relation

A3 − 2A2 + A = 0.

Therefore, the minimal polynomial mA(x) ∈ R[x] divides x3 − 2x2 + x = x(x − 1)2.
It is easy to verify that A 6= 0, A − 1 6= 0, (A − 1)2 6= 0, and A(A − 1) 6= 0, so that
the minimal polynomial is equal to x(x− 1)2:

mA(x) = x(x− 1)2.

Again, A is not diagonalizable by Theorem 3.20, and the primary decomposition is

R3 = n(A)⊕ n((A− 1)2).

The subspace n(A) is 1-dimensional and is simply the eigenspace belonging to the
eigenvalue 0. A basis vector for n(A) is, e.g., given by the eigenvector (1,−2, 1). Now
we compute

(A− 1)2 =

 1 0 0
−2 0 0
1 0 0

 .

The dimension of the nullspace n((A−1)2) is equal to 2, and a basis is given, e.g., by
the basis vectors e2 and e3. Again, this is not the best choice of a basis for n((A−1)2).
We choose e2 = (0, 1, 0), which is not in the eigenspace n(A − 1) belonging to the
eigenvalue 1 of A. We compute (A − 1)e2 = (0,−1, 1), which is now an eigenvector
for the eigenvalue 1, and take as our basis of R3:

B = {(1,−2, 1), (0,−1, 1), (0, 1, 0)}.
With respect to this basis, the matrix A is represented by0 0 0

0 1 1
0 0 1

 ,

which is in Jordan canonical form. In the next section we will see that this always
works if the minimal polynomial splits into a product of linear factors.

3. The Jordan canonical form

We continue to assume in this section that V denotes a finite-dimensional F -
vector space and that T : V → V is a linear transformation. We want to consider the
special case that all irreducible factors of the minimal polynomial mT (x) are linear,
i.e., we assume that

mT (x) = (x− λ1)e1(x− λ2)e2 · · · (x− λr)er ,
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where the λi are distinct elements from F . We note that this is always true if F = C
is the field of complex numbers.

According to Theorem 3.20, we have the following decomposition of V as a direct
sum of T -invariant subspaces:

V = n((T − λ1)e1)⊕ n((T − λ2)e2)⊕ · · · ⊕ n((T − λr)er).

Let Ti denote the restriction of T to the subspace n((T − λi)ei) of V . From Lemma
3.17, we know that the minimal polynomial of Ti is equal to (x− λi)ei :

mTi(x) = (x− λi)ei .

Lemma 3.23. The only eigenvalue of Ti is λi.

Proof. Let us first show that λi is in fact an eigenvalue. This follows since

n(T − λi) ⊂ n((T − λi)ei),

and any non-zero vector in n(T − λi) is an eigenvector for λi.
Conversely, let us assume that v is an eigenvector for the eigenvalue λ of Ti. Thus

Tiv = λv.

This implies that
T k

i v = λkv

for all k ≥ 1 and, more generally,

f(Ti)v = f(λ)v

for all polynomials f(x) ∈ F [x]. Taking f(x) = (x− λi)ei , we obtain

(Ti − λi)eiv = 0 = (λ− λi)kv.

Hence, λ = λi since v 6= 0. �

We obtain the following corollary.

Corollary 3.24. Assume that

mT (x) = (x− λ1)e1(x− λ2)e2 · · · (x− λr)er .

Then the λi, 1 ≤ i ≤ r, are precisely the distinct eigenvalues of T .

Proof. It follows from Lemma 3.23 that every λi is an eigenvalue of T . Let us
assume now that λ is an eigenvalue of T , and let v be an eigenvector belonging to λ.
Then we can write v uniquely as

v = v1 + v2 + · · ·+ vr,

where vi ∈ n((T − λi)ei) for 1 ≤ i ≤ r. Applying T , we obtain

Tv = Tv1 + Tv2 + · · ·+ Tvr = λv = λv1 + λv2 + · · ·+ λvr.

Since V is a direct sum of the subspaces n((T−λi)ei), and since these are T -invariant,
we must have

Tvi = λvi

for all i. Now v 6= 0, and therefore at least one of the vi’s is non-zero, hence an
eigenvector of Ti for the eigenvalue λ. Lemma 3.23 implies that λ = λi. �
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Definition 3.25. The T -invariant subspaces

Eλi
= n((T − λi)ei)

of V are called generalized eigenspaces of T .

Because of the Primary Decomposition Theorem, we can concentrate now on the
situation that

mT (x) = (x− λ)e.

Then
V = Eλ = n((T − λ)e).

The linear transformation N = T − λ now has the property that N e = 0. Linear
transformations of this kind have a special name:

Definition 3.26. A linear transformation N : V → V is called nilpotent if
N e = 0 for some e ≥ 1. The smallest integer m ≥ 1 such that Nm = 0 is called the
index of nilpotency of N .

In our case, N = T − λ is nilpotent of index e.
If B = {v1, v2, . . . , vn} is an ordered basis of V , then we get the following relation

between the matrices AB
N and AB

T describing N and T with respect to B:

AB
T = λIn + AB

N .

We also note that a subspace U of V is T -invariant if and only if U is N -invariant. In
fact, if U is T -invariant, then for all u ∈ U we have Tu ∈ U , so Nu = Tu− λu ∈ U ,
and conversely. We wish to find a “nice” basis B of V with AB

N is as simple as
possible.

Assume that N is a nilpotent transformation on V of index e. The smallest N -
invariant subspaces can be constructed as follows. Let v ∈ V be any non-zero vector.
If U is an N -invariant subspace of V containing v, then U contains v,Nv, N2v, . . ..
Let k be the smallest positive integer so that Nkv = 0. Then U contains the span
S(v,Nv, . . . , Nk−1v). We claim that this span is already N -invariant and has basis
v,Nv, . . . , Nk−1v.

Lemma 3.27. Let N be a nilpotent transformation and v 6= 0. Let k be the
smallest integer so that Nkv = 0. Then v,Nv, . . . , Nk−1v are linearly independent,
and S(v,Nv, . . . , Nk−1v) is N -invariant.

Proof. Assume that

a0v + a1Nv + · · ·+ ak−1N
k−1v = 0,

and let us assume that i is the smallest index so that ai 6= 0. We apply Nk−i−1.
Then

aiN
k−1v + ai+1N

kv + · · · ak−1N
2(k−1)−iv = 0.

But Nkv = 0, hence Nmv = 0 for all m ≥ k, and therefore

aiN
k−1v = 0.

Since Nk−1v 6= 0, we obtain ai = 0, a contradiction. Therefore, our assumption that
one of the ai’s is non-zero was wrong, which proves linear independence.

Since Nkv = 0, the span S(v,Nv, . . . , Nk−1v) is clearly N -invariant. �
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Definition 3.28. The N -invariant subspaces S(v,Nv, . . . , Nk−1v) are denoted
by 〈v〉 and called cyclic subspaces of V . We note that they depend on N and are of
dimension k, where k is the smallest integer for which Nkv = 0.

If we restrict our attention now to a single cyclic subspace, then we obtain a very
“nice” matrix representation:

Lemma 3.29. Assume N is a nilpotent transformation on a cyclic space 〈v〉 of
dimension k. Then the k × k-matrix AB

N representing N with respect to the basis

B = {Nk−1v,Nk−2v, . . . , Nv, v}
has the form

AB
N =



0 1 0 · · · 0

0 0 1
. . .

...

0 0 0
. . . 0

...
. . . . . . . . . 1

0 · · · 0 0 0

 .

Proof. The first basis vector is mapped under N to Nkv = 0, and all the other
ones are mapped to their predecessors, hence the result. �

Remark 3.30. Of course, one could use the basis {v,Nv, . . . , Nk−1v} instead.
This gives a matrix with all the 1’s below the diagonal instead of above the diagonal.
The use of the basis B is more consistent with the literature.

Our final task is now to show that, in fact, our vector space V can be written as
a direct sum of cyclic subspaces. The following approach is constructive and actually
produces generators for the cyclic subspaces. We continue to assume that N : V → V
is nilpotent of index e.

We have a sequence of subspaces

(0) = n(N0) ⊂ n(N) ⊂ n(N2) ⊂ · · · ⊂ n(N e) = V.

We claim that these inclusions are strict. In fact, let us assume that n(N i) = n(N i+1)
for some i ≤ e− 1. Let v ∈ V = n(N e). Then

N ev = N i+1N e−i−1v = 0,

and hence
N e−i−1v ∈ n(N i+1) = n(N i).

Therefore,
N iN e−i−1v = N e−1v = 0,

which implies that V = n(N e−1), and therefore the index of nilpotency for N is e−1.
This is a contradiction, so

n(N i) ( n(N i+1)
for all i, 0 ≤ i ≤ e− 1.

We now choose, for each 1 ≤ i ≤ e, any complement Wi of n(N i−1) in n(N i), so

n(N i) = n(N i−1)⊕Wi.

Clearly, W1 = n(N) since n(N0) = {0}.
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Lemma 3.31. For i ≥ 2, we have:
i. N(Wi) ∩ n(N i−2) = {0}.
ii. The restriction of N to Wi is one-to-one.

Proof. i. Let v ∈ N(Wi), so that v = Nw for some w ∈ Wi. If v ∈ n(N i−2)
as well, then by definition

0 = N i−2v = N i−1w,

and therefore w ∈ n(N i−1). Hence

w ∈ n(N i−1) ∩Wi = {0}.

This implies that v = 0.

ii. Let v ∈ Wi, and assume that Nv = 0. Since i ≥ 2, we have n(N) ⊂ n(N i−1),
and therefore

v ∈ Wi ∩ n(N) ⊂ Wi ∩ n(N i−1) = {0}.
This shows that N is one-to-one on Wi.

�

We are now ready to construct special complements Wi for 1 ≤ i ≤ e. For We,
we can take any complement of n(N e−1) in V :

V = n(N e) = n(N e−1)⊕We.

If e = 1, we can stop since N = 0 in this case and W1 = V . Otherwise, e ≥ 2, and
we can proceed inductively downwards from i = e − 1. That is, take i ≤ e − 1, and
assume we have already defined Wi+1. We know from Lemma 3.31i that

N(Wi+1) ∩ n(N i−1) = {0}.

We then define Wi via
Wi = N(Wi+1)⊕ Ui,

where Ui is chosen so that

n(N i) = n(N i−1)⊕N(Wi+1)⊕ Ui.

Note that for i = 1 we simply have

n(N) = N(W2)⊕ U1.

If we unwind all the successive definitions and put Ue = We, then we can rewrite

Wi = N e−i(Ue)⊕N e−1−i(Ue−1)⊕ · · · ⊕N(Ui+1)⊕ Ui.

We observe that

V = n(N e)

= n(N e−1)⊕We

= n(N e−2)⊕We−1 ⊕We

...
= W1 ⊕W2 ⊕ · · · ⊕We,
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and therefore

V =



Ue

⊕ N(Ue) ⊕ Ue−1

⊕ N2(Ue) ⊕ N(Ue−1) ⊕ Ue−2
...

...
...

...
...

...
⊕ N e−1(Ue) ⊕ N e−2(Ue−1) ⊕ N e−3(Ue−2) ⊕ · · ·⊕ N(U2) ⊕ U1


.

We can now read the above direct sum decomposition for V vertically: a typical
summand looks like

Ui ⊕N(Ui)⊕N2(Ui)⊕ · · · ⊕N i−1(Ui).

If {w1, w2, . . . , wm} is a basis of Ui, then by Lemma 3.31ii,

{Nkw1, N
kw2, . . . , N

kwm}

is a basis for Nk(Ui) for 1 ≤ k ≤ i− 1. Since N i(Ui) = 0 by definition,

〈w1〉 ⊕ 〈w2〉 ⊕ · · · ⊕ 〈wm〉

is a decomposition of

Ui ⊕N(Ui)⊕N2(Ui)⊕ · · · ⊕N i−1(Ui)

into a direct sum of cyclic subspaces. Letting i run from 1 to e, we obtain a decom-
position of V into a direct sum of cyclic subspaces. We have shown the first part of
the following theorem:

Theorem 3.32. Let N : V → V be a nilpotent transformation. Then:
a. V decomposes into a direct sum of cyclic subspaces 〈vi〉:

V = 〈v1〉 ⊕ 〈v2〉 ⊕ · · · ⊕ 〈vt〉.
b. The number t and the dimensions of the cyclic subspaces 〈vi〉 are uniquely

determined by N and V .

Proof. We only have to prove part b, which we do using induction on the index
of nilpotency e of N . If e = 1, then N = 0, the 〈vi〉 are 1-dimensional, and their
number is equal to the dimension of V .

We assume now that the statement is true for all nilpotent transformations W →
W of index ≤ e − 1 on all finite-dimensional F -vector spaces W , and we consider
N : V → V of index e > 1. Let

V = 〈v1〉 ⊕ 〈v2〉 ⊕ · · · ⊕ 〈vt〉

be a decomposition of V into cyclic subspaces with respect to N . Let ei denote the
index of nilpotency of the restriction of N to the cyclic subspace 〈vi〉, i.e.,

N eivi = 0, N ei−1vi 6= 0.

Rearranging the order of the cyclic subspaces, if necessary, we may assume that
e1 = 1, . . . , es = 1, and ei > 1 for i > s. The nullspace of N is equal to

n(N) = 〈v1〉 ⊕ · · · 〈vs〉 ⊕ 〈N es+1−1vs+1〉 ⊕ · · · ⊕ 〈N et−1vt〉.
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We see that the number t of cyclic summands is uniquely determined by the nullity
of N :

t = dim n(N).
Next, observe that the image of N decomposes as

N(V ) = 〈Nvs+1〉 ⊕ · · · ⊕ 〈Nvt〉.

On W = N(V ), the linear transformation N : W → W has index of nilpotency
equal to e − 1. By induction hypothesis, the number t − s of cyclic summands of
W and their dimensions are uniquely determined. This implies that the number s
of one-dimensional cyclic summands in V is uniquely determined. Furthermore, for
i ≥ s + 1, we have

dim〈vi〉 = dim〈Nvi〉+ 1,

so these dimensions are also uniquely determined. �

Let us go back to our original situation that T : V → V is a linear transformation,
and we assume that the minimal polynomial mT (x) splits into linear factors:

mT (x) = (x− λ1)e1(x− λ2)e2 · · · (x− λr)er .

Corollary 3.24 shows that λ1, . . . , λr are precisely the distinct eigenvalues of T . On
each generalized eigenspace Eλi

= n((T−λi)ei), the linear transformation Ni = T−λi

is nilpotent of index ei. According to Theorem 3.32, each Eλi
splits further into a

direct sum of Ni-invariant subspaces that are cyclic for Ni. These subspaces are
T -invariant, and by Lemma 3.29, T can on each of them be represented by a square
matrix of the form 

λi 1 0 · · · 0

0 λi 1
. . .

...

0 0 λi
. . . 0

...
. . . . . . . . . 1

0 · · · 0 0 λi

 .

These specific matrices are called Jordan matrices or Jordan blocks. They are
determined by the diagonal entry λi and their size. What we have shown then is
the following result known as Jordan decomposition of T or Jordan canonical
form:

Theorem 3.33 (Jordan canonical form). Let T : V → V be a linear transforma-
tion with minimal polynomial mT (x) of the form

mT (x) = (x− λ1)e1(x− λ2)e2 · · · (x− λr)er .

There exists an ordered basis B of V such that T is represented with respect to the
basis B by a matrix of the form

AB
T =


A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0
0 · · · 0 Ar

 ,
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where each Ai is a block matrix with Jordan blocks of the form

λi 1 0 · · · 0

0 λi 1
. . .

...

0 0 λi
. . . 0

...
. . . . . . . . . 1

0 · · · 0 0 λi

 .

along the diagonal.
The number of Jordan blocks and their sizes are uniquely determined by T .

Obviously, the Jordan matrices are specified by their size and by the diagonal
entry. Therefore the following notation is useful:

Jk(λ) =



λ 1 0 · · · 0

0 λ 1
. . .

...

0 0 λ
. . . 0

...
. . . . . . . . . 1

0 · · · 0 0 λ

 ,

where the matrix is of size k × k.
If λ = λi is one of the eigenvalues of T and A = Ai is the matrix block belonging

to the generalized eigenspace Eλi
, then A has the form

A =


Jk1(λ) 0 · · · 0

0 Jk2(λ)
. . .

...
...

. . . . . . 0
0 · · · 0 Jkt(λ)


for some positive integers k1, . . . , kt. It is customary to write the Jordan blocks in
decreasing order, i.e., assume that k1 ≥ k2 ≥ · · · ≥ kt.

We can extract the following facts from the proof of Theorem 3.32.

Corollary 3.34. Let T : V → V be a linear transformation with minimal poly-
nomial mT (x) of the form

mT (x) = (x− λ1)e1(x− λ2)e2 · · · (x− λr)er .

For each eigenvalue λi, the following hold:
a. The side length of the largest Jordan block belonging to λi is equal to ei.

b. The number of Jordan blocks belonging to λi is equal to the dimension of the
eigenspace n(T − λi), the geometric multiplicity of λi.

Another consequence of the Jordan decomposition is the following theorem of
Cayley-Hamilton:

Theorem 3.35 (Cayley-Hamilton). Let T : V → V be a linear transformation
with minimal polynomial mT (x) of the form

mT (x) = (x− λ1)e1(x− λ2)e2 · · · (x− λr)er .
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The minimal polynomial mT (x) divides the characteristic polynomial cT (x):

mT (x) | cT (x),

in particular
cT (T ) = 0.

Proof. We know that V decomposes into a direct sum of cyclic subspaces:

V = 〈v1〉 ⊕ 〈v2〉 ⊕ · · · ⊕ 〈vs〉.
On each subspace 〈vi〉, the minimal polynomial and the characteristic polynomial of
the restriction Ti of T are identical:

mTi(x) = cTi(x).

By Lemma 3.17, the minimal polynomial mT (x) is the least common multiple of the
mTi(x)’s, whereas the characteristic polynomial cT (x) is the product of the cTi(x)’s.
Therefore, mT (x) | cT (x). Since mT (T ) = 0, the same is true for cT (T ). �

Here are some examples:

Examples 3.36. a. Consider the linear transformation N : R5 → R5 defined
by

N(x1, x2, x3, x4, x5) = (0, x3 + x4, 0, x3, x1 + x4).
Let us compute the powers:

N2(x1, x2, x3, x4, x5) = (0, x3, 0, 0, x3),

N3(x1, x2, x3, x4, x5) = (0, 0, 0, 0, 0).
Therefore, N is nilpotent of index 3.

To find the Jordan decomposition according to the procedure described in Theo-
rem 3.32, we have to find the dimensions and bases of the two subspaces n(N2) and
n(N). We note that the standard basis vectors e1, e2, e4, e5 form a basis of n(N2),
and the basis vectors e2, e5 form a basis of n(N).

From our basis of n(N2), we know that

R5 = n(N2)⊕ S(e3),

so we can take for U3 the 1-dimensional subspace spanned by e3. This produces the
first cyclic summand 〈e3〉 of R5 with basis

N2e3, Ne3, e3.

Now,
Ne3 = (0, 1, 0, 1, 0) = e2 + e4.

Therefore,

n(N2) = n(N)⊕N(U3)⊕ U2 = S(e2, e5)⊕ S(e2 + e4)⊕ U2.

We can take
U2 = S(e1)

and obtain the second cyclic summand 〈e1〉 of R5 with basis

Ne1, e1.
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The decomposition of R5 is then

R5 = 〈e3〉 ⊕ 〈e1〉,

and the Jordan canonical form of N with respect to the ordered basis

{N2e3, Ne3, e3, Ne1, e1}

is 

0 1 0
... 0 0

0 0 1
... 0 0

0 0 0
... 0 0

. . . . . . . . . . . . . . .

0 0 0
... 0 1

0 0 0
... 0 0


.

b. In this example, we consider the linear transformation T : R3 → R3 defined by

T (x, y, z) = (5x + 4y + 3z,−x− 3z, x− 2y + z).

With respect to the standard basis of R3, the matrix representation of T is given by

A =

 5 4 3
−1 0 −3
1 −2 1

 .

The characteristic polynomial of T is

cT (x) = det(x−A) = det

x− 5 −4 −3
1 x 3
−1 2 x− 1

 = (x− 4)2(x + 2),

and therefore we have two eigenvalues λ1 = 4 and λ2 = −2.
Let us look at the eigenspace

Eλ1 = n(A− 4) = n

 1 4 3
−1 −4 −3
1 −2 −3

 ,

which is 1-dimensional.
This information is already sufficient to determine the Jordan canonical form.

That is, A is similar to 4 1 0
0 4 0
0 0 −2

 .

To obtain a basis B that produces the Jordan canonical form, we need a basis for
Eλ1 , hence a basis of the nullspace of

(A− 4)2 =

0 −18 −18
0 18 18
0 18 18

 .
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We have
n((A− 4)2) = n(A− 4)⊕ U2,

where U2 is 1-dimensional and can be chosen to be spanned by v = (0, 1,−1) since

(A− 4)v = (1,−1, 1) 6= 0.

Finally, it is easy to see that (1,−1,−1) is an eigenvector for λ2 = −2. Therefore
{(1,−1, 1), (0, 1,−1), (1,−1, 1)} is a basis for R3 that produces the Jordan canonical
form.

Remark 3.37. We restricted our attention in this section to linear transforma-
tions T : V → V , with V a finite-dimensional F -vector space, for which the minimal
polynomial mT (x) splits into a product of linear factors. If F = C then this is not a
restriction, but in general it is. In the general case, one can still obtain a canonical
form, the rational canonical form, which is more complicated than the Jordan
canonical form but nevertheless determines the linear transformation T uniquely up
to permuting blocks in the matrix presentation. It is also true in general that the
minimal polynomial mT (x) divides the characteristic polynomial cT (x), and therefore
the Cayley-Hamilton theorem holds in general:

cT (T ) = 0.

For more details, see Appendix A.

The main application of the Jordan canonical form is to solve homogeneous sys-
tems of linear differential equations over the complex numbers. Recall that this means
that we try to find functions y1(t), y2(t), . . . , yn(t) such that

y′1(t) = a11y1(t) + a12y2(t) + · · ·+ a1nyn(t)

y′2(t) = a21y1(t) + a22y2(t) + · · ·+ a2nyn(t)
...

...

y′n(t) = an1y1(t) + an2y2(t) + · · ·+ annyn(t)

or, in matrix form,
y′(t) = A y(t),

where A = (aij) is a complex n × n-matrix and y(t) = (y1(t), y2(t), . . . , yn(t)). The
main result on the Jordan canonical form tells us that we can find an invertible matrix
P such that

P−1AP = B

is in Jordan form. We obtain

P−1y′(t) = P−1AP P−1y(t) = B P−1y(t).

Let z(t) = P−1y(t). Then clearly z′(t) = P−1y′(t), and the new system reads

z′(t) = Bz(t).

Once we solve this system for z(t), then we find the solutions y(t) to the original
system simply as

y(t) = Pz(t).
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Since B is composed of Jordan blocks along the diagonal, we only have to solve the
system for a single Jordan block Jk(a), i.e., to look at an equation

z′(t) = Jk(a)z(t).

This system reads explicitly

z′1(t) = az1(t) + z2(t)
z′2(t) = az2(t) + z3(t)

...
...

z′k−1(t) = azk−1(t) + zk(t)
z′k(t) = azk.

The last equation implies
zk(t) = cke

at

for some constant ck. Consider
d

dt
(zk−1e

−at) = (z′k−1 − azk−1)e−at = ck.

Since this is a constant, we find

zk−1(t) = (ckt + ck−1)eat.

We can now proceed by induction. Assume that we have shown that

zi(t) =
(

ck

(k − i)!
tk−i +

ck−1

(i− k − 1)!
tk−i−1 + · · ·+ ci

)
eat.

Then
d

dt
(zi−1e

−at) = (z′i−1 − azi−1)e−at =
ck

(k − i)!
tk−i +

ck−1

(k − i− 1)!
tk−i−1 + · · ·+ ci.

Hence, integrating both sides, we obtain

zi−1(t) =
(

ck

(k − i + 1)!
tk−i+1 +

ck−1

(k − i)!
tk−i + · · ·+ ci−1

)
eat.

We can summarize:

Proposition 3.38. The solutions z = (z1, z2, . . . , zk) to the system of differential
equations

z′(t) = Jk(a)z(t)
with a single Jordan block Jk(a) are given by

zi(t) =
(

ck

(k − i)!
tk−i +

ck−1

(i− k − 1)!
tk−i−1 + · · ·+ ci

)
eat

for i = 1, . . . , k, where c1, . . . , ck are arbitrary constants.

Example 3.39. We consider the system

y′1 = y2

y′2 = −y1 − 2y.

Here

A =
[

0 1
−1 −2

]
.
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The characteristic polynomial turns out to be

cA(λ) = (λ + 1)2.

The transformation A+I is nilpotent of index 2 on C2 and {(1,−1), (1, 0)} is a Jordan
basis of C2 that gives the Jordan canonical form for A:

J2(−1) =
[
−1 1
0 −1

]
.

The matrix P that transforms A into the Jordan canonical form is given by

P =
[

1 1
−1 0

]
,

i.e.,
P−1AP = J2(−1).

The solutions z(t) = (z1(t), z2(t)) of the transformed system

z′1 =− z1 + z2

z′2 =− z2

are given by

z1(t) =(c2t + c1) e−t

z2(t) =c2e
−t.

The solutions to the original system are then obtained via(
y1

y2

)
= P

(
z1

z2

)
as

y1(t) =(c2t + c1 + c2) e−t

y2(t) =− (c2t + c1) e−t.





CHAPTER 4

INNER PRODUCT SPACES

Throughout this section, V denotes a finite-dimensional vector space over the field
F , where F is either the field R of real numbers or the field C of complex numbers.
If

z = x + iy

is a complex number (x, y ∈ R), then

z̄ = x− iy

denotes the complex conjugate of z. We note that

z = z̄ ⇐⇒ z ∈ R

and that
zz̄ = x2 + y2 = |z|2.

Definition 4.1. An inner product 〈·, ·〉 is a map that assigns to any two vectors
u, v ∈ V a number 〈u, v〉 in F such that

1. 〈u1 + u2, v〉 = 〈u1, v〉+ 〈u2, v〉.
2. 〈au, v〉 = a〈u, v〉 for all a ∈ F, u, v ∈ V .

3. 〈v, u〉 = 〈u, v〉 for all u, v ∈ V .
Note that 3. implies that 〈v, v〉 ∈ R, and we want in addition:
4. 〈v, v〉 > 0 for all v 6= 0, v ∈ V (positive definiteness).

Remark 4.2. Properties 1 and 2 show that the inner product is linear in the first
variable, but we have

〈u, av〉 = ā〈u, v〉
in the second variable, so it is not linear in this variable for general complex inner
products. The vector space V , taken together with an inner product on it, is called
an inner product space. Given v ∈ V , we define the length of v by

‖v‖ =
√
〈v, v〉.

Note that
‖av‖ = |a|‖v‖

for all a ∈ F, v ∈ V. Furthermore, if v 6= 0, then v
‖v‖ has length 1.

Two vectors u, v ∈ V are orthogonal if 〈u, v〉 = 0. A basis B = {v1, . . . , vn} of
V is an orthonormal basis (ONB) if all vi have length 1 and if

〈vi, vj〉 = 0

55
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for all i 6= j. If B = {v1, . . . , vn} is an ONB of V and

v = a1v1 + · · ·+ anvn,

then it is easy to compute the coefficients ai for 1 ≤ i ≤ n:

ai = 〈v, vi〉,
so that

v = 〈v, v1〉v1 + · · ·+ 〈v, vn〉vn.

Moreover, if
w = b1v1 + · · ·+ bnvn

is any other vector from V , then

〈v, w〉 = a1b1 + · · · anbn = 〈v, v1〉〈w, v1〉+ · · · 〈v, vn〉〈w, vn〉.
The Gram-Schmidt process shows how to change any basis of a subspace W of V into
an ONB for W . In particular, every inner product space has an ONB.

If W is a subspace of V , then the orthogonal complement W⊥ of W is defined
as

W⊥ = {v ∈ V | 〈v, w〉 = 0 for all w ∈ W}.
Note that 〈v, w〉 = 0 ⇐⇒ 〈w, v〉 = 0, so we can also write

W⊥ = {v ∈ V | 〈w, v〉 = 0 for all w ∈ W}.
Clearly, W⊥ is a subspace of V , and it is easy to see that

V = W ⊕W⊥.

In particular,
dim W + dim W⊥ = dim V.

Let T : V → V be a linear transformation. The problem we want to consider is
that of giving necessary and sufficient conditions for T to be represented by a diagonal
matrix with respect to some ONB. Let B = {v1, . . . , vn} be an arbitrary ONB, and
let A = AB

T = (aij) be the matrix representing T with respect to B so that

T (vi) = A · vi

for i = 1, . . . , n.

Definition 4.3. Let
Āt = (aji)

denote the conjugate transpose of the matrix A. Let T ∗ : V → V be defined by

T ∗(vi) = Āt · vi

for i = 1, . . . , n, or in other words, so that Āt = AB
T ∗ . Then T ∗ is called the adjoint

of T .

The following result characterizes the adjoint.

Proposition 4.4. For all u, v ∈ V ,

〈Tu, v〉 = 〈u, T ∗v〉.
Moreover, the adjoint T ∗ is uniquely determined by this property.
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Proof. It is enough to check this relation for the basis vectors. As before, let
A = (aij). Then

Tvi =
n∑

k=1

akivk,

and therefore
〈Tvi, vj〉 = aji.

On the other hand,

T ∗vj =
n∑

k=1

ajkvk,

and therefore

〈vi, T
∗vj〉 =

n∑
k=1

〈vi, ajkvk〉 = aji,

as claimed.
If T ′ is another transformation satisfying

〈Tu, v〉 = 〈u, T ′v〉

for all u, v ∈ V , then
〈u, (T ∗ − T ′)v〉 = 0

for all u, v ∈ V , so T ∗ = T ′. �

We note the following easy properties:
1. (T ∗)∗ = T .

2. (S + T )∗ = S∗ + T ∗.

3. (aT )∗ = āT ∗.

4. (ST )∗ = T ∗S∗.

Assume now that V has an ONB B such that the matrix A = AB
T associated to

T with respect to B is diagonal. Then

A = diag(λ1, . . . , λn).

The matrix associated to T ∗ with respect to B then equals, by definition,

Āt = diag(λ1, . . . , λn).

It is clear that
A · Āt = Āt ·A,

and therefore T and its adjoint T ∗ commute as well:

T · T ∗ = T ∗ · T.

If V is a real vector space, so that T has real eigenvalues, then we get a much stronger
condition, namely that A = Āt, and therefore in this case

T = T ∗.

We summarize:
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Proposition 4.5. Let T : V → V be a linear transformation on the inner product
space V . If there exists an ONB B of V such that T is in diagonal form with respect
to B, then T · T ∗ = T ∗ · T . Moreover, if V is real, then T = T ∗.

Definition 4.6. A linear transformation T : V → V on an inner product space
V is called normal if TT ∗ = T ∗T and self-adjoint if T = T ∗. Note that the matrix
of a real self-adjoint linear transformation with respect to an ONB is symmetric.

We want to show that the necessary conditions in Proposition 4.5 are also suf-
ficient for the existence of an ONB that diagonalizes T . We need some facts about
normal transformations, but first we prove a general result:

Lemma 4.7. Let W be a T -invariant subspace of the inner product space V . Then
the orthogonal complement W⊥ is T ∗-invariant.

Proof. Let v ∈ W⊥. We have to show that T ∗v ∈ W⊥, i.e., that 〈w, T ∗v〉 = 0
for all w ∈ W . Now,

〈w, T ∗v〉 = 〈Tw, v〉.
Since W is T -invariant, we have Tw ∈ W , and hence

〈Tw, v〉 = 0,

v being in W⊥. �

We now prove a few properties for normal transformations:

Lemma 4.8. If T is a normal transformation, then ‖Tv‖ = ‖T ∗v‖ for all v ∈ V .

Proof. We have

‖Tv‖2 = 〈Tv, Tv〉 = 〈v, T ∗Tv〉 = 〈v, TT ∗v〉 = 〈T ∗v, T ∗v〉 = ‖T ∗v‖2.

�

Lemma 4.9. Assume that T : V → V is normal. If λ is an eigenvalue of T , then
λ̄ is an eigenvalue of T ∗, and the eigenspaces are the same.

Proof. We first note that the adjoint of T−λ is equal to T ∗−λ̄. This immediately
implies that T − λ is again a normal transformation. Let v be an eigenvector for the
eigenvalue λ of T . Applying Lemma 4.8 to the normal transformation T − λ we
obtain:

0 = 〈(T − λ)v, (T − λ)v〉 = 〈(T ∗ − λ̄)v, (T ∗ − λ̄)v〉.
This implies that (T ∗ − λ̄)v = 0, which was to be shown. �

Lemma 4.10. Assume that T : V → V is normal. Then eigenvectors belonging to
different eigenvalues are orthogonal to each other.

Proof. Let λ1 and λ2 be different eigenvalues of T , and let v1 and v2 be eigen-
vectors belonging to λ1 and λ2, respectively. We have to show that 〈v1, v2〉 = 0.
Now

λ1〈v1, v2〉 = 〈λ1v1, v2〉 = 〈Tv1, v2〉 = 〈v1, T
∗v2〉 = 〈v1, λ̄2v2〉 = λ2〈v1, v2〉.

Since λ1 6= λ2, the result follows. �

We can now prove the first main result.
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Theorem 4.11. Assume that T : V → V is a normal linear transformation, and
assume that the minimal polynomial mT (x) of T splits into linear factors. Then there
exists an ONB B for which the matrix of T with respect to B is diagonal.

Proof. We will prove the theorem by induction on the dimension of V , the result
being clear if V is 1-dimensional. Since the minimal polynomial mT (x) of T splits, T
has an eigenvalue λ. Let v1 be an eigenvector for the eigenvalue λ. Since v1 6= 0, we
can assume that ‖v1‖ = 1. The 1-dimensional subspace 〈v1〉 of V is T -invariant since
v1 is an eigenvector. Hence, Tv1 = λv1. By Lemma 4.9, v1 is also an eigenvector of
T ∗ for the eigenvalue λ of T ∗. Hence, T ∗v1 = λv1. This shows that the 1-dimensional
cyclic subspace 〈v1〉 is also T ∗-invariant. By Lemma 4.7, the orthogonal complement
〈v1〉⊥ of 〈v1〉 is then T ∗∗-invariant, hence T -invariant as T ∗∗ = T . We have therefore
obtained a decomposition of V into an orthogonal sum of T -invariant subspaces,

V = 〈v1〉 ⊕ 〈v1〉⊥,

which is also a decomposition of V into an orthogonal sum of T ∗-invariant subspaces.
Let V1 = 〈v1〉⊥, and let T1 denote the restriction of T to V1. Then T1 is normal since
the adjoint of T1 is equal to the restriction of T ∗ to V1. By induction, V1 has an ONB
B1 for which the matrix of T1 with respect to B1 is diagonal. The basis B = B1∪{v1}
of V is then an ONB for V , and the matrix AB

T representing T with respect to B is
again diagonal. �

Since the minimal polynomial always splits into linear factors over the field C
of complex numbers, we immediately obtain the following from Proposition 4.5 and
Theorem 4.11.

Corollary 4.12. Assume that V is a complex inner product space and that
T : V → V is a linear transformation. Then T is normal if and only if there exists
an ONB B of V for which T is in diagonal form.

To obtain the analogous result in the real case, we only have to show that the
minimal polynomial of a real self-adjoint linear transformation T splits into linear
factors.

Lemma 4.13. Let V be a real vector space and T : V → V a self-adjoint linear
transformation. Then the minimal polynomial mT (x) splits into linear factors.

Proof. Let A denote the matrix belonging to T with respect to some ONB of
V . Then A = At. We can view A as a complex matrix. If λ is a complex eigenvalue
of A with eigenvector v, then

λv = Av = Atv = λ̄v,

so λ is in fact real. This implies that the minimal polynomial splits over R. �

We obtain again from Proposition 4.5 and Theorem 4.11:

Corollary 4.14. Assume that V is a real inner product space and that T : V →
V is a linear transformation. Then T is self-adjoint if and only if there exists an
ONB B of V for which T is in diagonal form with respect to B.
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A natural question now is to find out which linear transformations U : V → V
map some ONB B = {v1, . . . , vn} to another ONB B′ = {w1, . . . , wn}. Assume that

U(vi) = wi for i = 1, . . . , n.

The matrix A representing U with respect to the basis B is simply the base change
matrix from B′ to B:

A = (aij) = AB
U = AB′,B.

For the coefficients aij of A, we have

aij = 〈wj , vi〉
since

wj =
n∑

k=1

akjvk.

The inverse matrix of A is simply the base change matrix from B to B′ :

A−1 = (bij) = AB,B′ ,

and we have
bji = 〈vi, wj〉 = 〈wj , vi〉 = aij .

This shows that
A−1 = A

t
,

so
U−1 = U∗ or UU∗ = 1.

Definition 4.15. A linear transformation U : V → V is called unitary if V is
complex and UU∗ = 1 and orthogonal if V is real and UU∗ = 1.

Here are some equivalent characterizations of unitary or orthogonal transforma-
tions:

Proposition 4.16. Let V be an inner product space and U : V → V a linear
transformation. The following are equivalent:

1. U is unitary or orthogonal.

2. 〈Uv, Uw〉 = 〈v, w〉 for all v, w ∈ V .

3. U maps ONB’s to ONB’s.

Proof. 1. ⇒ 2. We have

〈Uv, Uw〉 = 〈v, U∗Uw〉 = 〈v, w〉,
since U∗U = 1.

2. ⇒ 3. Assume that {v1, . . . , vn} is an ONB. Then

〈Uvi, Uvj〉 = 〈vi, vj〉 =

{
1 if i = j

0 if i 6= j.

This shows that {Uv1, . . . , Uvn} is again an ONB.

3. ⇒ 1. This direction was shown above as a motivation for the definition.
�
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As a special case of property 2 above, we note that unitary or orthogonal linear
transformations preserve the length of vectors:

‖Uv‖ = ‖v‖

for all v ∈ V . Conversely, if we assume that a linear transformation preserves the
length of every vector, then it preserves all inner products. This can be seen as
follows. We expand

〈U(v + w), U(v + w)〉 = 〈v + w, v + w〉

and obtain
〈Uv, Uw〉+ 〈Uw,Uv〉 = 〈v, w〉+ 〈w, v〉

for all v, w ∈ V . If V is a real inner product space, so that

〈w, v〉 = 〈v, w〉,

then this immediately implies that

〈Uv, Uw〉 = 〈v, w〉.

In the complex case, we argue as follows. Replacing v by iv, we obtain the equality:

i〈Uv, Uw〉 − i〈Uw,Uv〉 = i〈v, w〉 − i〈w, v〉.

Hence, we have
〈Uv, Uw〉 − 〈Uw,Uv〉 = 〈v, w〉 − 〈w, v〉.

The result follows. We can state:

Lemma 4.17. U is unitary or orthogonal if and only if U preserves the length of
all vectors in V .

We note that a unitary transformation is necessarily normal. The following result
characterizes the normal transformations that are unitary.

Proposition 4.18. A normal transformation T is unitary if and only if all eigen-
values λ of T have absolute value 1: |λ| = 1.

Proof. Let λ be an eigenvalue of T with eigenvector v. Then

〈Tv, Tv〉 = 〈λv, λv〉 = λλ̄〈v, v〉.

Hence, 〈Tv, Tv〉 = 〈v, v〉 if and only if λλ̄ = |λ|2 = 1. Since V has an ONB consisting
of eigenvectors by Corollary 4.12, the result follows from Lemma 4.17. �

Orthogonal transformations are not necessarily self-adjoint. In fact, they may
not have eigenvalues at all. But if λ is an eigenvalue, then the same argument as in
Proposition 4.18 shows that λ = ±1. We note this for future reference:

Lemma 4.19. The only possible eigenvalues for an orthogonal transformation are
±1.
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Theorem 4.20. Let U : V → V be an orthogonal transformation. Then there
exists an ONB B such that the matrix AB

U representing U with respect to B is of the
form

AB
U =


D1 0 0 · · · 0
0 D2 0 · · · 0

0 0 A3
. . .

...
...

...
. . . . . . 0

0 0 · · · 0 Am

 ,

where D1 = Is, D2 = −It for some s, t ≥ 0 and all Ai’s are 2 × 2-matrices of the
form

Ai =
[

cos θi sin θi

− sin θi cos θi

]
.

Proof. Let T : V → V denote the linear transformation T = U +U∗ = U +U−1.
Clearly, T is self-adjoint, and according to Corollary 4.14 we can decompose V into
an orthogonal sum of eigenspaces with respect to the eigenvalues λi of T ,

V = V1 ⊕ V2 ⊕ · · · ⊕ Vr,

where Vi = n(T − λi) = Eλi
. Since U commutes with T , and therefore also with

T − λi, the subspace Vi is U -invariant by Lemma 3.18. We can therefore restrict our
attention to one of the subspaces Vi and hence assume that T has only one eigenvalue
λ and that V = Eλ.

In this case, we have

T − λ = U + U−1 − λ = 0.

We multiply by U and obtain

U2 − λU + 1 = 0,

and therefore the minimal polynomial mU (x) divides x2−λx+1. Lemma 4.18 shows
that the only possible eigenvalues of U are ±1, and therefore x ± 1 are the only
possible linear factors dividing x2 − λx + 1. This happens precisely when λ = ±2.
We obtain the following three possibilities:

λ = 2, mU (x) = x− 1
λ = −2, mU (x) = x + 1
λ 6= ±2, mU (x) = x2 − λx + 1 irreducible.

We note that in the first two cases the minimal polynomial is of degree 1, since it
splits and therefore U is diagonalizable.

Let us look at the case that mU (x) = x2 − λx + 1 is irreducible. Let v be any
non-zero vector in V . Clearly v and Uv are linearly independent, since U has no
eigenvectors. The subspace 〈v〉 = S(v, Uv) spanned by v and Uv is U -invariant, since

U2v = λUv − v ∈ 〈v〉,

and it is also U∗-invariant, since U∗ = U−1 and

U−1v = λv − Uv ∈ 〈v〉.
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Lemma 4.7 implies that the subspace 〈v〉⊥ is again U -invariant. Hence,

V = 〈v〉 ⊕ 〈v〉⊥

is an orthogonal decomposition of V into U -invariant subspaces. This reduces the
problem to the study of a single cyclic subspace 〈v〉 of dimension 2. We note that on
a 2-dimensional space the minimal polynomial has the following interpretation.

mU (x) = x2 − λx + 1 = x2 − tr(U)x + det(U),

so that
trU = λ, det U = 1.

The following lemma then finishes the proof. �

Lemma 4.21. Let A be an orthogonal 2× 2-matrix of determinant 1. Then A has
the form

A =
[

cos θ sin θ
− sin θ cos θ

]
.

Proof. Let

A =
[
a b
c d

]
.

Since A is orthogonal, we have

AAt = AtA = I,

which leads to the following equations:

a2 + b2 = 1, c2 + d2 = 1, ac + bd = 0, a2 + c2 = 1, b2 + d2 = 1, ab + cd = 0.

We obtain
a = ±d, c = ∓b.

If b = c 6= 0, then d = −a, and therefore

det A = ad− bc = −a2 − b2 = −1,

contradicting the fact that det A = 1. We therefore must have c = −b, which implies
that d = a.

Since a2 + b2 = 1, we can write a = cos θ, b = sin θ, and therefore

A =
[

cos θ sin θ
− sin θ cos θ

]
,

as claimed. �





CHAPTER 5

CODING THEORY

The basic idea behind coding theory is the following. Suppose we want to send a
message that consists of a string of 0’s and 1’s. This message is divided into words of
length k, i.e., we are sending k-tuples one after another. These words are elements of
the vector space Fk

2. During transmission, errors may occur in the original message,
and we want to be able to detect and, if possible, correct these errors. In doing so,
we embed Fk

2 into a larger vector space Fn
2 , i.e., we send n − k control digits, which

hopefully will enable us to detect and correct at least some errors.

Definition 5.1. A (n, k)-code C is a subset of Fn
2 with 2k elements. Any bijection

Fk
2 → C

is called an encoding. The quotient k
n is called the information rate of the code

C.

We will consider elements of Fn
2 as row vectors in this section. Let us consider

some examples:

Example 5.2. n = 4, k = 2, Repetition Code.
We take C = {(a b a b) ∈ F4

2} and encode

(a b) 7→ (a b a b).

If one error occurs during transmission, then we can detect it, but not correct it. If,
for example, (b b a b) is received, then we know that an error must have occurred, but
the original message might have been either (a b a b) or (b b b b).

Example 5.3. n = 3, k = 2, Parity Check Code.
We take C = {(a b a + b) ∈ F3

2} and encode

(a b) 7→ (a b a + b).

Since the sum of the digits in each code word is 0, we can again detect one error but
not correct it. Note that the information rate is 2

3 for this code, whereas it was 1
2 in

the first example.

Example 5.4. n = 6, k = 2, Repetition Code.
We take C = {(a b a b a b) ∈ F6

2} and encode

(a b) 7→ (a b a b a b).

This time, if only one error occurs, we still have two copies of the original message,
and therefore we can correct 1 error. We can also detect two errors. If, e.g., we
receive (a a b b a b), then we know that at least two errors must have occurred.
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Again, we can find a better code with higher information rate that has the same
properties.

Example 5.5. n = 5, k = 2.
We take C = {(00000), (01101), (10011), (11110) ∈ F5

2} and encode

(00) 7→ (00000)

(01) 7→ (01101)

(10) 7→ (10011)

(11) 7→ (11110).

This code has already some interesting features. Any two code words differ in at least
3 positions. Hence, if 1 error occurs, then there is a unique code word that differs
from the received word in 1 position, and if 2 errors occur, then the received word is
not a code word. Therefore, this code will again correct 1 error and detect 2 errors.

We will say that a code C is r-error-detecting (r-error-correcting) if it detects
(resp., corrects) up to r errors. Example 5.5 gives a good code, since the code words
are far apart in the vector space. We want to analyze this more generally.

Definition 5.6. Given x, y ∈ Fn
2 , the Hamming-distance d(x, y) between x

and y is defined as the number of positions in which x and y differ.

Lemma 5.7. The Hamming-distance has the following properties:
a. d(x, y) ≥ 0, and d(x, y) = 0 ⇐⇒ x = y.

b. d(x, y) = d(y, x)

c. d(x, z) ≤ d(x, y) + d(y, z).

Proof. Only part c needs a little thought. If x and z differ in position i, then
either x and y or y and z differ in position i, which proves the triangle inequality. �

Lemma 5.7 tells us that the Hamming-distance defines a metric on Fn
2 .

Definition 5.8. The closed ball of radius r around x is defined as

Br(x) = {y ∈ Fn
2 | d(x, y) ≤ r}.

In order to measure how far apart code words are, we define:

Definition 5.9. Let C be a (n, k)-code. Then

d = d(C) = min
x 6=y

x,y∈C

d(x, y)

is called the minimum distance of C, and C is then called an (n, k, d)-code.

In our first two examples, the minimum distance is 2. In the last two examples,
it is 3. In order to formulate the first non-trivial result, we recall that, for any real
number x, the Gauss bracket [x] is defined as the largest integer ≤ x.

Theorem 5.10. An (n, k, d)-code C can detect up to d− 1 errors and correct up
to [d−1

2 ] errors.



5. CODING THEORY 67

Proof. If up to d − 1 errors occur during transmission, then the original code
word is changed in at most d− 1 positions. Since the minimal distance between code
words is d, the received word is not a code word. Therefore, we know that errors
have occurred.

Let r = [d−1
2 ]. Then

r =

{
d−1
2 if d is odd,

d−2
2 if d is even.

In any case, 2r + 1 ≤ d. In order to show that C is r-error-correcting, we will show
that the closed balls Br(x) of radius r around code words x are disjoint. The received
message, which has ≤ r errors, will then lie in exactly one ball, and we recover the
original word as the center of that ball.

Let x, z be different code words. Then, for any y ∈ Fn
2 , we have by Lemma 5.3

that
2r + 1 ≤ d ≤ d(x, z) ≤ d(x, y) + d(y, z),

hence either d(x, y) ≥ r + 1 or d(y, z) ≥ r + 1, which means that y cannot lie in both
Br(x) and Br(z). �

With r = [d−1
2 ] as above, we know that the balls Br(x) around different code

words x are disjoint. Let us determine when these balls cover Fn
2 completely.

Lemma 5.11. The ball Br(x) contains(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

r

)
elements.

Proof. If d(x, y) = i, then x and y differ in exactly i positions. There are
(
n
i

)
possibilities for choosing i positions out of n. Hence, there are exactly

(
n
i

)
elements

at distance i from x. Summing over i = 0, 1, . . . , r gives the result. �

Since we have 2k distinct code words, the union of the disjoint balls Br(x) cover

2k

((
n

0

)
+

(
n

1

)
+ · · ·+

(
n

r

))
elements in Fn

2 . Since Fn
2 contains 2n vectors, we obtain:

Proposition 5.12. For an (n, k, d)-code C, let r = [d−1
2 ]. Then(

n

0

)
+

(
n

1

)
+ · · ·+

(
n

r

)
≤ 2n−k.

Definition 5.13. An (n, k, d)-code C is called optimal if equality holds in Propo-
sition 5.12, i.e., if the balls Br(x) around the code words cover the whole vector space
Fn

2 .

Let us take for example d(C) = 3, in which case r = 1. Then(
n

0

)
+

(
n

1

)
= 1 + n,
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and the condition for an optimal code reads

1 + n = 2n−k.

If we define t = n− k, then the condition is

n = 2t − 1, k = n− t.

We will see below that, for each t ≥ 2, there exists an optimal (2t−1, 2t−1−t, 3)-code.
Note that in Example 5.5 we have a (5, 2, 3)-code, but

6 = 1 + 5 < 23 = 8,

hence this code is not optimal. Optimal codes with d(C) = 3 have the information
rate

1− t

2t − 1
,

which is very good for large t.
We now turn to linear codes:

Definition 5.14. An (n, k)-code C is linear if C is a linear subspace of Fn
2 . If G

is an k× n-matrix G with rows that form a basis of C, then G is called a generator
matrix for C.

If G is a generator matrix for C, then encoding is very simple. The linear map

x 7→ xG

from Fk
2 to Fn

2 is one-to-one.
Let us find generator matrices in Examples 5.2–5.5. We can take

G =
[
1 0 1 0
0 1 0 1

]
G =

[
1 0 1
0 1 1

]
G =

[
1 0 1 0 1 0
0 1 0 1 0 1

]
G =

[
1 0 0 1 1
0 1 1 0 1

]
respectively. Note that we have arranged the basis vectors so that G has the form

G = [Ik | A].

This is called the standard form of G, which we will assume from now on. It has
the advantage that the first k digits of the encoded word are the original ones. Since
G has rank k, the nullspace n(G) of G has dimension n− k. Let {b1, b2, . . . , bn−k} be
a basis of n(G). Then Gbt

i = 0 for i = 1, 2, . . . , n−k. Let H be the (n−k)×n-matrix
with rows b1, b2, . . . , bn−k. We obtain

GHt = 0.

Definition 5.15. The matrix H is called a parity check matrix for C.
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The reason for this name is the following. We have

(xG)Ht = 0

for all vectors x ∈ Fk
2, and therefore

cHt = 0

for all vectors c ∈ C. Equivalently,

Hct = 0

for all code words c. Since H has rank n− k and since C has dimension k, this shows
that C = n(H). We therefore have:

Proposition 5.16. Let C be a linear (n, k)-code with generator matrix G and
parity check matrix H. Then

C = {xG | x ∈ Fk
2} = {c ∈ Fn

2 | Hct = 0}.

Remark 5.17. Since we assume G = [Ik | A] to be in standard form, we can take

H = [At | In−k].

To see this, note that

GHt = Ik ·A + A · In−k = 2A = 0

since the entries of A are in the field F2. In Example 5.5, we have

H =

0 1 1 0 0
1 0 0 1 0
1 1 0 0 1

 .

We have seen above that for general codes the error-detecting and correcting prop-
erties are reflected by the minimal distance. For linear codes, the minimal distance
is easy to calculate from the parity check matrix. We start with a definition.

Definition 5.18. Given x ∈ Fn
2 , we define its weight w(x) to be the number of

non-zero digits in x. In other words,

w(x) = d(x, 0).

Lemma 5.19. Let C be a linear code. Then

d(C) = min
x 6=0
x∈C

w(x).

Proof. We have w(x) = d(x, 0) and d(x, y) = w(x − y). Since C is linear, it
contains x− y for every x, y ∈ C. �

We now have:

Proposition 5.20. Let C be a linear (n, k, d)-code with parity check matrix H.
The minimal distance d = d(C) is the maximal number d for which no d− 1 columns
of H are linearly dependent but some d columns are.
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Proof. Let c1, c2, . . . , cn denote the columns of H. Then for any x ∈ Fn
2 , x =

(x1 x2 . . . xn), we have that the column vector Hxt is

x1c1 + x2c2 + · · ·+ xncn,

and
Hxt = 0 ⇐⇒ x ∈ C.

This shows that linear dependence relations between the columns arise only from
code words. By Lemma 5.19, at least d digits in each code word are non-zero and
exactly d digits are non-zero in some code word. Hence, the smallest dependence
relation has to involve exactly d columns. �

Corollary 5.21. We have d(C) = 3 if and only if no two columns of H are the
same but some three columns are dependent.

Corollary 5.22. We have d− 1 ≤ n− k.

Proof. Since no d− 1 columns of H are linearly dependent, the matrix H must
have rank ≥ d− 1. On the other hand, we know that H has rank n− k. �

As promised, we can now construct optimal linear codes of minimal distance 3.
Let t ≥ 2 be given. Let n = 2t − 1 and k = n − t. The parity check matrix of such
a linear code will be a t× n-matrix, no 2 columns of which are the same. So we can
take for the columns of H all the non-zero vectors in Ft

2. This gives the desired code,
called a Hamming-code.

Examples 5.23. a. t = 2, so n = 3, k = 1.
We have

H =
[
1 1 0
1 0 1

]
, G = [1 1 1].

b. t = 3, so n = 7, k = 4.
We have

H =

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1


and

G =


1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

 .

We note that optimal codes are very easy to decode. Every vector in Fn
2 lies in

exactly one ball of radius r around a code word, and we decode the vector by taking
the center of the ball. Assume that we are in the situation of Example 5.23b, so
r = 1, and that we receive a word

x = (0 1 1 0 0 0 1).

We can calculate
Hxt = (0 1 0)t.
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On the other hand, the vector (0 1 0)t is the sixth column of H and therefore equal
to Het

6, where e6 is the sixth standard basis vector of F7
2. Therefore H(x− e6)t = 0,

so
x− e6 = (0 1 1 0 0 1 1)

is a code word. Since x− e6 is within radius 1 of x, we decode x into (0 1 1 0 0 1 1).





APPENDIX A

THE RATIONAL CANONICAL FORM

Throughout, V denotes a finite-dimensional F -vector space and T : V → V is a
linear transformation. The goal in this section is to show that there is a refinement
of the decomposition of V into a direct sum of T -invariant subspaces discussed in
Section 2. We first look at the “smallest” possible non-zero T -invariant subspaces.
Let v ∈ V, v 6= 0. Any T -invariant subspace containing v has to contain all vectors
Tmv for m = 1, 2, . . .. On the other hand, the subspace 〈v〉 of V generated by v and
all vectors Tmv, m = 1, 2, . . . is already T -invariant and therefore contained in any
other T -invariant subspace containing v.

Definition A.1. Given v 6= 0 ∈ V , the T -invariant subspace 〈v〉 of V is called the
cyclic subspace generated by v. Note that 〈v〉 depends on the given transformation
T . If we want to emphazise this dependence, we call 〈v〉 T -cyclic or cyclic relative
to T .

Since V is finite-dimensional, there exists k ≥ 1 for which the vectors

v, Tv, T 2v, . . . , T k−1v

are linearly independent, but T kv is dependent on v, Tv, . . . , T k−1v, so

T kv = a0v + a1Tv + · · ·+ ak−1T
k−1v

for some a0, . . . , ak−1 ∈ F . The dimension of 〈v〉 is clearly equal to k and the set
Bv = {v, Tv, . . . , T k−1v} is an ordered basis for 〈v〉.

We can rewrite the relation for T kv as

(T k − ak−1T
k−1 − · · · − a1T − a0)v = 0.

If we define
mv(x) = xk − ak−1x

k−1 − · · · − a1x− a0,

then we obtain mv(T )(v) = 0, and clearly mv(x) is the monic polynomial of smallest
degree with this property. We refer to mv(x) as the order of v or the T -annihilator
of v. If g(x) is any polynomial in F [x] such that g(T )v = 0, then we can use the
Euclidean algorithm and write

g(x) = Q(x)mv(x) + R(x)

with R(x) = 0 or deg R(x) < deg mv(x). We obtain:

0 = g(T )v = Q(T )mv(T )v + R(T )v = R(T )v,

and therefore R(x) = 0, because of the minimality of mv(x). This shows:

Lemma A.2. If g(x) ∈ F [x] satisfies g(T )v = 0, then mv(x) | g(x).
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We obtain the following important result.

Corollary A.3. For every non-zero vector v, the order mv(x) divides the min-
imal polynomial mT (x) of T :

mv(x) | mT (x)

Proof. The minimal polynomial has the property that mT (T ) = 0, so that in
particular mT (T )v = 0 for all vectors v ∈ V . The result follows from Lemma A.2. �

Let us consider the special case that the degree of mv(x) is equal to 1. This is
equivalent to the fact that Tv = λv for some λ ∈ F , and mv(x) = x − λ. In other
words, the 1-dimensional cyclic subspaces 〈v〉 are precisely the subspaces generated
by eigenvectors v of T :

Lemma A.4. The cyclic subspace 〈v〉 is 1-dimensional if and only if v is an
eigenvector for T .

In particular, we see that V has a basis of eigenvectors if and only if V can be
decomposed into a direct sum of 1-dimensional cyclic subspaces.

Let Tv denote the restriction of T to the T -invariant cyclic subspace 〈v〉. The
matrix ATv

Bv
describing Tv with respect to the basis Bv = {v, Tv, . . . , T k−1v} of 〈v〉 is

called the companion matrix of Tv. It is easy to calculate:

Lemma A.5. The companion matrix of Tv is equal to
0 0 · · · 0 a0

1 0 · · · 0 a1

0 1 · · · 0 a2
...

...
. . .

...
...

0 0 · · · 1 ak−1


.

Proof. For 1 ≤ i ≤ k − 1, the ith basis vector in Bv is mapped under T to the
(i + 1)th basis vector. The last basis vector T k−1v is mapped under T to

T kv = a0v + · · ·+ ak−1T
k−1v,

which gives the result. �

There are three polynomials attached to Tv and the cyclic subspace 〈v〉: the order
mv(x), the mimimal polynomial mTv(x), and the characteristic polynomial cTv(x) of
Tv. They are related to each other as follows:

Proposition A.6. Let 〈v〉 be a cyclic subspace of V , and let Tv denote the re-
striction of T to 〈v〉. Then we have

mv(X) = mTv(x) = cTv(x).

Proof. From Corollary A.3, we obtain mv(x) | mTv(x). By definition, mv(T )(v) =
0. Since mv(T ) commutes with any power of T , we have

mv(T )(T iv) = T imv(T )v = 0.

Hence, mv(T ) = 0 on 〈v〉, which implies that mTv(x) | mv(x). Since both polynomials
are monic, they are equal.
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As before, let

mv(x) = xk − ak−1x
k−1 − · · · − a1x− a0,

and let A = ATv
Bv

denote the companion matrix. We have to calculate the determinant
of

x · I −A =


x 0 · · · 0 −a0

−1 x · · · 0 −a1

0 −1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · −1 x− ak−1


and show that it equals xk − ak−1x

k−1 − · · · − a1x− a0. We do this by induction on
k. If k = 1, then the result is clear. Let us expand the matrix x · I−A along the first
row. Then

det(x · I −A) = (x)×

∣∣∣∣∣∣∣∣∣
x 0 · · · 0 −a1

−1 x · · · 0 −a2
...

...
. . .

...
...

0 0 · · · −1 x− ak−1

∣∣∣∣∣∣∣∣∣− a0.

By induction, the determinant of the (k − 1)× (k − 1)-matrix
x 0 · · · 0 −a1

−1 x · · · 0 −a2
...

...
. . .

...
...

0 0 · · · −1 x− ak−1


is equal to

xk−1 − ak−1x
k−2 − · · · − a1.

Hence,

cTv(x) = det(x · I −A) = x(xk−1 − ak−1x
k−2 − · · · − a1)− a0

= xk − ak−1x
k−1 − · · · − a1x− a0,

as claimed. �

In order to obtain the refined decomposition of V into a direct sum of cyclic
subspaces, we can first use primary decomposition, Theorem 3.20, to reduce to the
case that mT (x) = p(x)e for some irreducible polynomial p(x). Since the order mv(x)
divides mT (x) for each non-zero v ∈ V , we have

mv(x) = p(x)ev

for some ev ≤ e. Hence, the only possible orders are p(x), p(x)2, . . . , p(x)e. Let
d = deg p(x). Then the dimension of 〈v〉 is equal to

dim 〈v〉 = d · ev,

and therefore the only possible dimensions for a cyclic subspace 〈v〉, and therefore
for the smallest T -invariant subspaces are d, 2d, . . . , ed. We want to use a slightly



76 A. THE RATIONAL CANONICAL FORM

different basis for 〈v〉 than before. Let us rewrite the usual ordered basis as

v, Tv, . . . , T d−1v,
T dv, T d+1v . . . , T 2d−1v,

...
...

...
...

T d(ev−1)v T d(ev−1)+1v . . . T dev−1v.

Define b0, b1, . . . bd−1 by

p(x) = xd − bd−1x
d−1 − · · · b1x− b0.

For each i with 1 ≤ i ≤ ev − 1, we can replace the power T div in the basis by p(T )i v.
In this way, we obtain a new ordered basis B′

v of the following form:

B′
v =


v, Tv, . . . , T d−1v

p(T )v, p(T )Tv . . . , p(T )T d−1v
...

...
...

...
p(T )ev−1v p(T )ev−1Tv . . . p(T )ev−1T d−1v

 .

Let us denote by Cv the subspace of 〈v〉 with basis {v, Tv, . . . , T d−1v}. We note that
Cv is not T -invariant if ev > 1. The basis B′

v immediately produces a decomposition
of 〈v〉 of the form

〈v〉 = Cv ⊕ p(T )Cv ⊕ · · · ⊕ p(T )ev−1Cv.

Lemma A.7. Assume that mv(x) = p(x)ev for some irreducible polynomial p(x).
Then, for 1 ≤ i ≤ ev, we have

〈v〉 ∩ n(p(T )i) = p(T )ev−i〈v〉.

Proof. We have p(T )ip(T )ev−i〈v〉 = p(T )ev〈v〉 = 0 , and therefore

p(T )ev−i〈v〉 ⊂ 〈v〉 ∩ n(p(T )i).

Assume now that w ∈ 〈v〉∩ n(p(T )i). Then we can write w in terms of the direct
sum decomposition

〈v〉 = Cv ⊕ p(T )Cv ⊕ · · · ⊕ p(T )ev−1Cv

uniquely as
w = v0 + p(T )v1 + · · ·+ p(T )ev−1vev−1,

where the vj are vectors from Cv. Applying p(T )i and using the fact that p(T )iw = 0
we obtain

0 = p(T )iv0 + · · ·+ p(T )i+ev−1vev−1 = p(T )iv0 + · · ·+ p(T )ev−1vev−i−1,

since p(T )ev = 0 on the subspace 〈v〉. Now

p(T )iv0 + · · ·+ p(T )ev−1vev−i−1 ∈ p(T )iCv ⊕ · · · ⊕ p(T )ev−1Cv,

and therefore each individual vector p(T )i+jvj has to be zero. This shows that

w = p(T )ev−ivev−i + · · ·+ p(T )ev−1vev−1 = p(T )ev−i(vev−i + · · ·+ p(T )i−1vev−1),

as claimed. �
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Corollary A.8. Let mv(x) = p(x)ev , let w ∈ 〈v〉, and let mw(x) = p(x)ew .
Then

〈w〉 = p(T )ev−ew〈v〉.

Proof. We have
w ∈ 〈v〉 ∩ n(p(T )ew),

so w ∈ p(T )ev−ew〈v〉 by Lemma A.7. Since p(T )ev−ew〈v〉 is T -invariant, it contains
with w also the cyclic subspace 〈w〉:

〈w〉 ⊂ p(T )ev−ew〈v〉.

Both these subspaces of 〈v〉 have the same dimension d · ew, d = deg p(x). Hence,
they are equal. �

The following result is crucial for the decomposition of a vector space into a direct
sum of cyclic subspaces.

Proposition A.9. Assume that the minimal polynomial mT (x) for T : V → V
equals p(x)e. Let W be a T -invariant subspace of V . For each vector v ∈ n(p(T ))
with v 6∈ W , we have

W ∩ 〈v〉 = (0).

Proof. Let w ∈ W ∩ 〈v〉, and assume that w 6= 0. Since both W and 〈v〉 are
T -invariant, so is their intersection. Thus,

〈w〉 ⊂ W ∩ 〈v〉.

In particular, 〈w〉 ⊂ 〈v〉. Now, we have mv(x) = p(x) since v ∈ n(p(T )). Hence,
mw(x) = p(x) as well, since we are assuming that w 6= 0. Corollary A.8 implies now
that 〈w〉 = 〈v〉. Hence, 〈v〉 ⊂ W ∩ 〈v〉. In particular, v ∈ W , contradicting our
assumption that v 6∈ W . Therefore, w = 0. �

Here are some consequences.

Corollary A.10. Assume that mT (x) = p(x)e, and assume that W is a T -
invariant subspace of V such that n(p(T )) 6⊂ W . Then there exist v1, . . . , vs ∈ n(p(T ))
such that

W + n(p(T )) = W ⊕ 〈v1〉 ⊕ 〈v2〉 ⊕ · · · ⊕ 〈vs〉.

Proof. Since n(p(T )) 6⊂ W , we find a non-zero vector v1 ∈ n(p(T )), v1 6∈ W .
Proposition A.9 implies that W + 〈v1〉 = W ⊕〈v1〉. If W ⊕〈v1〉 = W + n(p(T )), then
we are done. Otherwise we find v2 ∈ n(p(T )), v2 6∈ W ⊕ 〈v1〉, and again Proposition
A.9 shows that W ⊕ 〈v1〉+ 〈v2〉 = W ⊕ 〈v1〉 ⊕ 〈v2〉. We can proceed in this way until

W ⊕ 〈v1〉 ⊕ 〈v2〉 ⊕ · · · ⊕ 〈vs〉

contains n(p(T )), which means that

W + n(p(T )) = W ⊕ 〈v1〉 ⊕ 〈v2〉 ⊕ · · · ⊕ 〈vs〉.

�

We can now prove the first main result of this section:
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Theorem A.11. Assume that the minimal polynomial mT (x) of T : V → V has
the form mT (x) = p(x)e for some irreducible polynomial p(x) ∈ F [x]. Then there
exist vectors v1, v2, . . . , vr ∈ V with

V = 〈v1〉 ⊕ 〈v2〉 ⊕ · · · ⊕ 〈vr〉.
The number r and the set of orders {mvi(x) = p(x)ei} attached to v1, v2, . . . , vr are
uniquely determined by T .

Proof. We proceed by induction on the power e in the minimal polynomial
mT (x) = p(x)e. If e = 1, then V = n(p(T )), and taking W = (0) in Corollary A.10,
we obtain that

V = n(p(T )) = 〈v1〉 ⊕ 〈v2〉 ⊕ · · · ⊕ 〈vr〉.
Each cyclic subspace 〈vi〉 has order mvi(x) = p(x) and is of dimension d = deg p(x).
Therefore

dim V = rd,

which determines r and the set of orders simply consists of r copies of p(x).
Assume now that e ≥ 2 and that the theorem is true for all linear transformations

on finite-dimensional F -vector spaces for which the minimal polynomial has the form
p(x)e−1. We consider the linear map

p(T ) : V → V.

Let Ṽ denote the range of p(T ),

Ṽ = p(T ) V,

which is a T -invariant subspace of V . The restriction of T to Ṽ has minimal polyno-
mial p(x)e−1. The induction hypothesis implies that

Ṽ = 〈w1〉 ⊕ 〈w2〉 ⊕ · · · ⊕ 〈ws〉
and that s and the set of orders mwi(x) are uniquely determined. We now choose
vectors v1, . . . , vs in V such that

p(T ) vi = wi for i = 1, . . . , s.

Then clearly the order mvi(x) = p(x)ei of vi is equal to

mvi(x) = p(x)mwi(x).

In particular, all ei ≥ 2. Every basis vector p(T )jT kvi of 〈vi〉 is mapped under p(T )
to p(T )jT kwi, which implies that

p(T )〈vi〉 = 〈wi〉 for i = 1, . . . , s.

We now claim that, in fact, the sum of the cyclic subspaces 〈vi〉 is again a direct
sum:

〈v1〉+ 〈v2〉+ · · ·+ 〈vs〉 = 〈v1〉 ⊕ 〈v2〉 ⊕ · · · ⊕ 〈vs〉.
To see this, let us assume that

0 = u1 + · · ·+ us

for some ui ∈ 〈vi〉. Applying p(T ), we obtain

0 = p(T )u1 + · · ·+ p(T )us.
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But p(T )ui ∈ 〈wi〉, and the sum of the 〈wi〉 is direct. Therefore,

p(T )ui = 0 for i = 1, . . . , s.

We obtain
ui ∈ 〈vi〉 ∩ n(p(T )) = p(T )ei−1〈vi〉,

where we used Corollary A.8. We now note that ei ≥ 2, so

p(T )ei−1〈vi〉 ⊂ 〈wi〉.
This shows that, for 1 ≤ i ≤ s, the vector ui is in fact in 〈wi〉. But the sum of the
〈wi〉’s is direct, so ui = 0 for all i.

Let us define
W = 〈v1〉 ⊕ · · · ⊕ 〈vs〉.

This is a T -invariant subspace of V . If n(p(T )) 6⊂ W , then we can use Corollary A.10
to find additional cyclic subspaces 〈vs+1〉, . . . , 〈vr〉 ∈ n(p(T )) such that

W + n(p(T )) = 〈v1〉 ⊕ 〈v2〉 ⊕ · · · ⊕ 〈vr〉.
We finally have to show that

V = W + n(p(T )).

This is an easy application of the dimension formula. First note that

dim(W + n(p(T ))) = dim W + dim n(p(T ))− dim(W ∩ n(p(T ))).

Now dim W = dim Ṽ + dim(W ∩ n(p(T ))), and therefore

dim(W + n(p(T ))) = dim Ṽ + dim n(p(T )) = dim V,

as claimed.
Let us assume that we have another decomposition of V into cyclic subspaces,

V = 〈v′1〉 ⊕ 〈v′2〉 ⊕ · · · ⊕ 〈v′q〉.

Let us assume that the first t vectors v′i have orders p(x)e′i with e′i ≥ 2 and the
remaining ones are in the nullspace of p(T ), and let

W ′ = 〈v′1〉 ⊕ 〈v′2〉 ⊕ · · · ⊕ 〈v′t〉.
Applying p(T ), we obtain

Ṽ = p(T )〈v′1〉 ⊕ p(T )〈v′2〉 ⊕ · · · ⊕ p(T )〈v′t〉.
The induction hypothesis implies that t = s and that the set orders of the vectors
p(T )v′i is the same as the set of orders of the wi. Hence, the set of orders for the v′i is
the same as that of the vi’s. But this shows that dim W ′ = dim W and hence q = r,
which finishes the proof. �

Here is a list of important consequences of Theorem A.11:

Corollary A.12. Let T : V → V be a linear transformation with minimal poly-
nomial mT (x) = p(x)e and characteristic polynomial cT (x). Let d = deg p(x).

a. mT (x) | cT (x).

b. cT (T ) = 0 (Cayley-Hamilton Theorem).

c. cT (x) = p(x)n with n · d = dim V .
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d. If V = 〈v1〉 ⊕ 〈v2〉 ⊕ · · · ⊕ 〈vr〉 and mvi = p(x)ei for i = 1, . . . , r, then

e = max{e1, e2, . . . , er}.
e. The number r of cyclic subspaces is related to the dimension of the nullspace

of p(T ) by
d · r = dim n(p(T )).

Proof. Let
V = 〈v1〉 ⊕ 〈v2〉 ⊕ · · · ⊕ 〈vr〉

be a decomposition of V into a direct sum of cyclic subspaces, and let Ti denote the
restriction of T to 〈vi〉. By Lemma 3.17,

cT (x) = cT1(x) · · · cTr(x).

Moreover, by Proposition A.6,

cTi(x) = mTi(x) = mvi(x).

Since mvi(x) is equal to p(x)ei , we obtain a, b, and c. Since

mT (x) = p(x)e = lcm(mT1(x), . . . ,mTr(x)) = p(x)max{e1,e2,...,er},

there has to be at least one vector vi for which mvi(x) = p(x)e, which proves part d.
We have, by Lemma A.7,

n(p(T )) = n(p(T )) ∩ 〈v1〉 ⊕ · · · ⊕ n(p(T )) ∩ 〈vr〉 =

= p(T )e1−1〈v1〉 ⊕ · · · ⊕ p(T )er−1〈vr〉.
Now deg p(x) = d. Hence, each summand on the right-hand side has dimension d.
Therefore,

dim n(p(T )) = d · r,
which proves e. �

Because of primary decomposition, Theorem 3.20, we immediately obtain from
Theorem A.11 the following general result which works for arbitrary linear transfor-
mations on finite-dimensional F -vector spaces.

Theorem A.13 (Divisor Theorem). Let T : V → V be a linear transformation
on a finite-dimensional F -vector space. Assume that the minimal polynomial mT (x)
factors as

mT (x) = p1(x)e1p2(x)e2 · · · p(x)er

with distinct monic irreducible polynomials p1(x), . . . , pr(x). Then there exist vectors
v1, . . . vm ∈ V such that

V = 〈v1〉 ⊕ · · · ⊕ 〈vm〉,
and for each i the order mvi(x) of vi is equal to the power of some irreducible polyno-
mial pj(x) dividing mT (x). The number m of cyclic subspaces and the set of orders
{mv1(x), . . . ,mvm(x)} are uniquely determined by T .

Definition A.14. The set of orders {mv1(x), . . . ,mvm(x)} is called the set of
elementary divisors of T . The elementary divisors are uniquely determined by T ,
they are all powers of an irreducible polynomial, and they may well occur more than
once.
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Corollary A.12 generalizes to:

Corollary A.15. Let T : V → V be a linear transformation on a finite-dimensional
F -vector space. Then

a. mT (x) | cT (x). In particular, cT (T ) = 0 (Cayley-Hamilton).

b. mT (x) and cT (x) have the same prime divisors.

The decomposition of V into cyclic subspaces yields a nice matrix representation
for T , provided we choose a suitable basis for a cyclic subspace 〈v〉. At the beginning
of this chapter, we chose a basis B′

v of 〈v〉. In order to obtain an upper triangular
matrix in case that the order mv(x) is linear, we rearrange the basis vectors in B′

v in
the following way, and we denote the new basis by B̃v. Note that mv(x) = p(x)e and
deg p(x) = d.

B̃v =



p(T )ev−1v p(T )ev−1Tv . . . p(T )ev−1T d−1v
p(T )ev−2v p(T )ev−2Tv . . . p(T )ev−2T d−1v

...
...

...
...

p(T )v, p(T )Tv . . . , p(T )T d−1v
v, Tv, . . . , T d−1v


.

The calculation of the matrix representing T on 〈v〉 with respect to this basis is easy
once we know how to express

p(T )iT dv = T (p(T )iT d−1v)

in terms of the basis vectors. We write

p(T ) = T d − bd−1T
d−1 − · · · − b1T − b0,

so
T d = p(T ) + bd−1T

d−1 + · · ·+ b1T + b0.

We obtain

p(T )iT dv = p(T )i+1v + bd−1p(T )iT d−1v + · · ·+ b1p(T )iTv + b0p(T )iv.

If we define the following d× d-matrices,

A =


0 0 · · · 0 b0

1 0 · · · 0 b1

0 1 · · · 0 b2
...

...
. . .

...
...

0 0 · · · 1 bd−1


and

B =


0 0 · · · 0 1
0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

 ,
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then the d · e× d · e-matrix representing T with respect to the basis B̃v is of the form



A B 0 · · · 0

0 A B
. . .

...

0 0 A
. . . 0

...
. . . . . . . . . B

0 · · · 0 0 A

 .

If we take these bases on each cyclic direct summand in a decomposition of V , then
the associated matrix is called rational canonical form.

Example A.16. Assume that the elementary divisors of a linear transformation
T : V → V , where V is a real vector space, are given by

{x− 1, (x− 1)2, x2 + 1, (x2 + 1)3}.

Then we know that

V = 〈v1〉 ⊕ 〈v2〉 ⊕ 〈v3〉 ⊕ 〈v4〉,

where

mv1(x) = x− 1,

mv2(x) = (x− 1)2,
mv3(x) = x2 + 1,

mv4(x) = (x2 + 1)3.

Hence, the dimensions of the cyclic subspaces 〈vi〉 are given respectively by 1, 2, 2, 6,
and V is 11-dimensional. The characteristic polynomial of T is equal to the product
of the elementary divisors, so

fT (x) = (x− 1)3(x2 + 1)4.

The minimal polynomial of T is the lcm of the elementary divisors, so

mT (x) = (x− 1)2(x2 + 1)3.

With respect to the ordered basis

{v1, (T − 1)v2, v2, v3, T v3, (T 2 + 1)v4, (T 2 + 1)Tv4, v4, T v4}
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the rational canonical form of T is equal to

1
... 0 0

... 0 0
... 0 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... 1 1

... 0 0
... 0 0 0 0 0 0

0
... 0 1

... 0 0
... 0 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... 0 0

... 0 −1
... 0 0 0 0 0 0

0
... 0 0

... 1 0
... 0 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... 0 0

... 0 0
... 0 −1 0 1 0 0

0
... 0 0

... 0 0
... 1 0 0 0 0 0

0
... 0 0

... 0 0
... 0 0 0 −1 0 1

0
... 0 0

... 0 0
... 0 0 1 0 0 0

0
... 0 0

... 0 0
... 0 0 0 0 0 −1

0
... 0 0

... 0 0
... 0 0 0 0 1 0


The general problem is to find the elementary divisors and generators for the

corresponding cyclic subspaces. We illustrate this in the following examples.

Examples A.17. a. Let T : R5 → R5 be given by the matrix

A =


−1 2 −2 2 0
−1 1 −1 2 0
0 0 −1 2 0
0 0 −1 1 1
0 0 0 0 1

 .

The characteristic polynomial cT (x) is equal to

cT (x) = (x− 1)(x2 + 1)2,

so we know that mT (x) = (x− 1)(x2 + 1) or mT (x) = (x− 1)(x2 + 1)2.
The matrix representing T 2 + 1 is equal to

A2 + I =


0 0 0 0 2
0 0 0 0 2
0 0 0 0 2
0 0 0 0 2
0 0 0 0 2

 ,

which has rank 1. Thus,
dim n(T 2 + 1) = 4 = 2 · 2.

This shows that
mT (x) = (x− 1)(x2 + 1).
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Without calculating a basis, we know already that

R5 = 〈v1〉 ⊕ 〈v2〉 ⊕ 〈v3〉,
where v1 is an eigenvector for the eigenvalue 1 and v2 and v3 are in the nullspace of
T 2 + 1. The cyclic subspace 〈v1〉 is 1-dimensional, and the cyclic subspaces v2 and
v3 are each two-dimensional with bases v2, T v2 and v3, T v3, respectively. Then the
canonical form for T with respect to the ordered basis {v1, v2, T v2, v3, T v3} equals

1 0 0 0 0
0 0 −1 0 0
0 1 0 0 0
0 0 0 0 −1
0 0 0 1 0

 .

How do we find the basis vectors vi? We know that

R5 = n(T − 1)⊕ n(T 2 + 1).

The nullspace of T−1 is 1-dimensional generated by v1 = (1, 1, 1, 1, 1). The calculation
above for A2 + 1 shows that n(T 2 + 1) has basis e1, e2, e3, e4. Let us take

v2 = e1 = (1, 0, 0, 0, 0).

Then
T (v2) = Av2 = (−1,−1, 0, 0, 0).

The cyclic subspace 〈v2〉 does not contain e3 (or e4), so we can take v3 = e3. Then

Te3 = (−2,−1,−1,−1, 0),

and we are done.

b. Let us consider a slightly different example. This time we take A to be

A =


0 1 −2 2 0
0 0 −1 2 0
1 −1 −1 2 0
1 −1 −1 1 1
0 0 0 0 1

 .

Again, the characteristic polynomial is equal to

cT (x) = (x− 1)(x2 + 1)2.

We calculate

A2 + I =


1 0 −1 0 2
1 0 −1 0 2
1 0 −1 0 2
0 1 −1 0 2
0 0 0 0 2

 .

The rank of this matrix is equal to 3 and therefore

dim n(T 2 + 1) = 2,

which implies that
mT (x) = (x− 1)(x2 + 1)2
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and that

R5 = 〈v1〉 ⊕ 〈v2〉,

where v1 is an eigenvector for the eigenvalue 1 and 〈v2〉 is a cyclic subspace of dimen-
sion 4 with ordered basis

{(T 2 + 1)v2, (T 2 + 1)Tv2, v2, T v2}.

With respect to the ordered basis

{v1, (T 2 + 1)v2, (T 2 + 1)Tv2, v2, T v2},

we obtain the rational canonical form
1 0 0 0 0
0 0 −1 0 1
0 1 0 0 0
0 0 0 0 −1
0 0 0 1 0

 .

Again, the eigenspace for the eigenvalue 1 is 1-dimensional, generated by v1 =
(1, 1, 1, 1, 1). For v2, we can take any non-zero vector in the nullspace of (T 2 + 1)2

that is not in the nullspace of T 2 + 1. Since

(A2 + I)2 =


0 0 0 0 4
0 0 0 0 4
0 0 0 0 4
0 0 0 0 4
0 0 0 0 4

 ,

we see that e1, e2, e3, e4 is a basis for n((T 2 + 1)2). We can take v2 = e1. Then

Te1 = Ae1 = (0, 0, 1, 1, 0),

(T 2 + 1)e1 = (1, 1, 1, 0, 0),

(T 2 + 1)2Te1 = (1,−1,−1,−1, 0)

so that the ordered basis for R5 is equal to

{(1, 1, 1, 1, 1), (1, 1, 1, 0, 0), (1,−1,−1,−1, 0), (1, 0, 0, 0, 0), (0, 0, 1, 1, 0)}.

It may happen that all the irreducible polynomials dividing mT (x) (or cT (x)) are
linear: e.g., if V is a vector space over the field C of complex numbers. In this case,

mT (x) = (x− λ1)e1(x− λ2)e2 · · · (x− λr)er ,

where the λi are the distinct eigenvalues of T . The rational canonical form is then
called Jordan canonical form or Jordan normal form. It takes a very simple form.
Let 〈v〉 be a cyclic subspace with order mv(x) = (x− λ)e. The basis B̃v looks like

B̃v = {(T − λ)e−1v, (T − λ)e−2v, . . . , (T − λ)v, v},
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and the matrix is given by a Jordan block of size e× e:
λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 .

For examples of the Jordan canonical form, see Section 3.


