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Abstract

Enstrophy E plays an important role in the study of regularity of solutions to

the three–dimensional Navier–Stokes equation. The best estimates for its growth

available to–date do not rule out the possibility of enstrophy becoming unbounded

in finite time which would indicate loss of regularity of solutions. It is therefore in-

teresting to investigate sharpness of such finite–time bounds for enstrophy growth.

We consider this question in the context of Burgers equation which is used as a

“toy model”. The problem of saturation of finite–time estimates for the enstrophy

growth is stated as a PDE–constrained optimization problem

max
φ

[E(T ) − E(0)] subject to E(0) = E0,

where the control variable φ represents the initial condition, which is solved numer-

ically using an adjoint–based gradient method for a wide range of time windows

T and initial enstrophies E0. We show that this optimization problem admits a

discrete family of maximizers parameterized by the wavenumber m whose members

are rescaled copies of the fundamental maximizer corresponding to m = 1. It is

found that the maximum enstrophy growth in finite time scales with the initial

enstrophy as Eα
0 where α ≈ 3/2. The exponent is smaller than α = 3 predicted

by analytic means, therefore suggesting possible lack of sharpness of analytical

estimates.

Keywords: Enstrophy Growth; Burgers Equation; Optimization; Estimates;

Blow–up Problem
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1 Introduction

This investigation is motivated by an open question of mathematical fluid mechan-

ics concerning the global–in–time existence of solutions of the three–dimensional (3D)

Navier–Stokes system corresponding to arbitrary smooth initial data [1]. While the situ-

ation in regard to two–dimensional (2D) flows is quite satisfactory, i.e., smooth solutions

corresponding to smooth initial data with arbitrary size are guaranteed to exist globally

in time, for 3D flows only the existence of suitable weak solutions has been established

for arbitrary times [2]. Since an analogous result is not available for strong (classical)

solutions in 3D, the possibility that such solutions may lose their regularity in finite time,

resulting in the so–called “blow–up”, cannot be ruled out. If starting from smooth initial

data the Navier–Stokes equation should lead in a finite time to the formation of singu-

larities, then this would undermine the validity of this equation as a model of the flows

of viscous incompressible fluids. The importance of this problem has been recognized by

the Clay Mathematics Institute which has identified this problem as one the “Millennium

Challenges” for the mathematics community [3], offering a suitable monetary prize for

its resolution. The current state of the mathematical theory relevant to this problem is

reviewed in the monographs by Constantin and Foias [4], Doering and Gibbon [5] and

Temam [6]. We add that analogous open questions concerning the regularity of solutions

in 3D pertain to the inviscid Euler equation [7, 8].

One approach to the problem relies on the fact, established in [9], that the velocity

field u(t,x) : R
+ × R

3 → R
3 remains smooth as long as the enstrophy, defined as

E(t) ,
1

2

∫

Ω

|∇ × u(t,x)|2 dΩ, (1)

where Ω is the flow domain and “,” means “equal to by definition”, remains bounded.

We note that for flows defined, as is often the case for this problem, on domains with

periodic boundary conditions in all three directions, enstrophy (1) can be expressed in

terms of the velocity gradient ∇u as E(t) = (1/2)‖∇u(t, ·)‖2
L2(Ω), where ‖·‖L2(Ω) denotes

the L2 norm of functions defined on Ω. The maximum values that the enstrophy can

attain over a time interval are determined by its rate of growth dE(t)/dt, and the best

estimate available to–date for this quantity is [5]

dE(t)

dt
≤ 27C3

32ν3
E(t)3, (2)

where C = 2
√

2/π and ν is the kinematic viscosity of the fluid. Details of the derivation

of (2) can be found, for example, in [10]. It should be remarked that the incompress-

ibility condition ∇ · u = 0 is not explicitly taken into account in the derivation of (2).

Instantaneous estimate (2) was recently found to be sharp up to a constant prefactor by

2



Lu and Doering [10, 11], however, sharpness of this estimate over finite time windows is

an open problem. We observe that integrating this estimate in time indicates a blow–up

of the enstrophy bound occurring at the time t0 = 16ν3

27C3E2
0
, where E0 is the initial value

of the enstrophy. Therefore, establishing whether or not estimate (2) is sharp over fi-

nite time windows can have important consequences for the resolution of the regularity

problem.

One possible approach to obtain insights concerning sharpness of estimate (2) for

finite times is to compute numerically solutions characterized by large growth of enstro-

phy to see whether this growth saturates the estimate. In fact, such investigations were

first undertaken in the context of the Euler equation, and in his pioneering work Kerr

[12] predicted a finite–time blow–up. These calculations were later revisited, together

with several other configurations, by Hou and coworkers [13] offering no support for

finite–time blow–up in the Euler equation. In the context of computational studies of

the blow–up problem for the Navier–Stokes system we should also mention the work of

Pelz [14], and Ohkitani & Constantin [15]. Another related research direction involves

the study of complex–valued extensions of the Euler and Navier–Stokes equations. The

idea is that solutions to the equations which are real–analytic functions of the space vari-

ables possess singularities in the complex plane, and the distance from the real axis to

the nearest singularity, referred to as the width of the analyticity strip [16], further char-

acterizes the smoothness of the solution. Therefore, migration of such complex–plane

singularities towards the real line might be a signature of an approaching blow–up. In

the context of this approach we only mention recent studies [17, 18], and refer the reader

to the references quoted therein for further details. On the other hand, modifica-

tions of the hydrodynamic evolution equations which lead to solutions in the

form of entire functions of the space variables were studied in [19]. It should

be emphasized that in all the computational investigations of the blow–up problem men-

tioned above the initial conditions considered as possible candidates for blow–up were

postulated in a rather ad–hoc manner.

A fundamentally different approach to this problem originated with the work of Lu

and Doering [10, 11] who framed the question about sharpness of estimate (2) as an

optimization problem. More specifically, they solved computationally, using a gradient

descent method, a family of optimization problems in the following form

max
u∈H1(Ω), ∇·u=0

dE
dt
,

subject to E = E0,

(3)

where dE
dt

, the instantaneous rate of growth of enstrophy, can be expressed in terms of

vector field u using the Navier–Stokes equation, and H
1(Ω) denotes the Sobolev space of

vector–valued functions with square–integrable gradients. Solutions of problem (3) are
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thus solenoidal vector fields u with prescribed enstrophy E0 which achieve the highest

possible enstrophy growth. Solving problem (3) numerically for a range of different values

of E0, Lu and Doering were able to find a family of vector fields u saturating estimate

(2) up to a constant prefactor, i.e., whose rate of enstrophy growth scales with the

third power of E0 [10, 11]. However, since optimization problem (3) is “instantaneous”,

i.e., formulated at a single instant of time, it is not obvious whether using the optimal

solutions of problem (3) as initial conditions for the Navier–Stokes system, the rate of

growth of enstrophy allowed by estimate (2) would be sustained over some time leading

to eventual blow–up in finite time.

In order to obtain some insights regarding sharpness of estimate (2) over finite time

windows, one would need to solve an optimization problem analogous to (3), but formu-

lated on a finite time interval [0, T ] for some T > 0, and this is a long–term objective of

the present research effort. Needless to say, solution of such an optimization problem, in

which the full Navier–Stokes equation appears as the constraint, is in fact a formidable

computational task. In this investigation we are concerned with a closely related, albeit

much simpler, problem in which the finite–time optimization problem is posed for a

one–dimensional (1D) model problem, namely the viscous Burgers equation. While the

existence theory of classical solutions to Burgers equation is complete and guarantees

the global–in–time existence of smooth solutions from smooth initial data of arbitrary

size [20], it is possible to derive estimates for the growth of enstrophy similar to (2)

and questions concerning their sharpness are still quite relevant. To be precise, the best

available estimate for the instantaneous rate of growth of enstrophy in viscous Burgers

equation is [11]

dE(t)

dt
≤ 3

2

(

1

π2ν

)1/3

E(t)5/3 (4)

which, after integrating with respect to time over the interval [0, T ], leads to the following

upper bound on the finite–time maximum of enstrophy corresponding to the initial

enstrophy E0 [21, see Appendix A in the present work for derivation]

max
t∈[0,T ]

E(t) ≤
[

E1/3
0 +

(

L

4

)2(
1

π2ν

)4/3

E0

]3

−→
E0→∞

(

L

4

)6(
1

π2ν

)4

E3
0 , (5)

where L is the size of the domain. Assessing the sharpness of estimate (5), which

has been obtained using techniques commonly applied to the 3D Navier–Stokes problem,

is the main goal of this investigation. The structure of this paper is as follows: in the

next Section we present a formal statement of the optimization problem and in the

following Section we describe a computational approach to the solution of this problem;

computational results are presented in Section 4, whereas discussion and conclusions are

deferred to Section 5; in Appendix A we present some details concerning the derivation of
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estimate (5), whereas in Appendix B some additional information is provided as regards

the adjoint–based method used to solve the optimization problem.

2 Saturation of Enstrophy Estimates for Burgers Equa-

tion

We consider viscous Burgers equation on 1D periodic domain Ω , [0, 1], i.e., we set

L = 1 in (5),

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0 in (0, T ] × Ω, (6a)

u(x) = φ(x) in Ω at t = 0, (6b)

Periodic BC for t > 0, (6c)

where “BC” stands for “boundary conditions”, φ(x) denotes the initial data and the

enstrophy is now defined as

E(t) =
1

2

∫ 1

0

∣

∣

∣

∣

∂u(t, x)

∂x

∣

∣

∣

∣

2

dx. (7)

Sharpness of estimate (4) was also addressed by Lu and Doering [10, 11] who considered

the following instantaneous optimization problem

max
u∈H1(Ω)

dE
dt
,

subject to E = E0,

(8)

where H1(Ω) denotes the Sobolev space of scalar–valued functions periodic on Ω with

square–integrable derivatives, and the rate of growth of enstrophy can be expressed in

terms of the field u as

dE
dt

= −ν
∥

∥

∥

∥

∂2u

∂x2

∥

∥

∥

∥

2

L2

+
1

2

∫ 1

0

(

∂u

∂x

)3

dx. (9)

Remarkably, Lu and Doering [10, 11] were able to determine the maximizer ũ of problem

(8) in closed form, namely

ũ(x) =

∫

v(x′) dx′, where (10a)

v(x) = (β2 − β3) sn2

(

√

β1 − β3

8ν
x

)

+ β3, (10b)
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Figure 1: Scaling of maxt>0 E(t) with respect to E0 for solutions of initial–value problem

(6) with instantaneously optimal initial data (10). Power law (14) which describes

this relation has the exponent α = 1.048 ± 0.018.

in which sn(·) is the elliptic function of the first kind and the constants β1, β2 and β3

are given by

β1 = 32νK(m)E(m), (11a)

β2 = 32νK(m) (E(m) − (1 −m)K(m)) , (11b)

β3 = 32νK(m) (E(m) −K(m)) . (11c)

The functions K(m) and E(m) in equations (11) are the complete elliptic integrals of

the first and second kind, respectively, whereas the parameter m ∈ (0, 1) satisfies the

equation

1024ν2

3
K3 [(2 +m)K − 2(1 +m)E] − 1024ν2K2 (K −E)2 = 2E0, (12)

where the dependence of K and E on m has been omitted for brevity.

For large values of the enstrophy E0 the rate of growth of enstrophy exhibited by the

field ũ(x) was found to scale as

dE
dt

≈ 0.2476

ν1/3
E5/3

0 (13)
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confirming that instantaneous estimate (4) is in fact sharp up to a prefactor [10, 11].

An important question is whether the time–dependent solutions starting from instan-

taneous optimizers of problem (8) can actually saturate finite–time bound (5). Solving

initial–value problem (6) with such instantaneous optimizers corresponding to different

enstrophy levels E0 taken as the initial data, i.e., φ(x) = ũ(x; E0), leads to the following

scaling of the maximum enstrophy as a function of the initial enstrophy E0 (see also

Figure 1)

max
t∈[0,T ]

E(t) ≈ Cα Eα
0 , (14)

where Cα = 2.681 and α = 1.048±0.018. Details regarding the calculation of the

power–law fits and the discussion of the numerical technique used to solve

system (6) are deferred to Section 4.

We note that, as regards the behavior in time of the enstrophy E(t) characterizing the

solutions of initial–value problem (6), two distinct scenarios are possible depending on

the values of E0 and ν: the enstrophy may either decrease monotonously with time, or it

may exhibit transient growth followed by eventual decrease. In all cases shown in Figure

1 we made sure to take the length T of the time window sufficiently long, so that the

enstrophy maximum always falls inside the interval [0, T ]. By comparing the exponents

in estimate (5) and power–law fit (14), i.e., 3 vs. 1, we conclude that the system evolution

starting from the instantaneously optimal state ũ as the initial condition is in fact quite

far from saturating estimate (5). This observation leads to the question whether there

may exist initial data which does not solve instantaneous problem (8), but may come

closer to saturating (5) than (14). Therefore, one would wish to study the following

problem corresponding to the enstrophy growth over a finite time window [0, T ]

max
φ∈H1(Ω)

{

max
t>0

[E(t) − E0]
}

subject to

{

System (6)

E(0) = E0

,
(15)

where the initial enstrophy value E0 is a parameter. Due to non–differentiability of

the function maxt(·), problem (15) is in fact non–smooth, and while non–smooth opti-

mization techniques exist [22], in practice such problem remain quite difficult to solve

computationally. Thus, we will replace problem (15) with the following computationally

more tractable problem
max

φ∈H1(Ω)
[E(T ) − E(0)]

subject to

{

System (6)

E(0) = E0

,
(16)

where the length T of the time window and the initial enstrophy E0 are two parameters.

We note that instead of applying the function maxt(·) as in (15), in (16) we now perform
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a parametric study with respect to the length of the time window. By solving problem

(16) for a broad range of values of T and E0 we will seek to obtain the following power

law, cf. (5),

max
t>0

Ẽ(t) = CαEα
0 (17)

for some Cα > 0 and 0 < α ≤ 3, where

Ẽ(t) , max
φ∈H1(Ω)

E(t;φ) (18)

is the enstrophy corresponding to solutions of (6) with the optimal initial

condition φ̃ obtained from (16). In Section 4 we will present a posteriori evidence

that no maximizers are in fact lost when problem (16) is solved instead of (15). A

numerical approach to solution of problem (16) is introduced in the next Section.

3 Solution of the Finite–Time Optimization Problem

In order to put problem (16) into a suitable form we define the cost functional J :

H1(Ω) → R as

J (φ) ,

∫ T

0

dE
dτ

dτ = E(T ) − E0, (19)

where φ, the initial data in Burgers system (6), is the control variable, and the right–

hand side (RHS) in (19) depends on φ through (6) and (7). Optimization problem (16)

is now restated as
max

φ∈H1(Ω)
J (φ)

subject to
1

2

∥

∥

∥

∥

dφ

dx

∥

∥

∥

∥

2

L2

= E0.
(20)

We formulate our approach below in the “optimize–then–discretize” framework [23] where

the optimality conditions for problem (20) and expressions for the cost functional gra-

dient are derived in the continuous (PDE) setting and only then discretized. Defining

the augmented cost functional as

Jλ(φ) , J (φ) + λ

(

1

2

∥

∥

∥

∥

dφ

dx

∥

∥

∥

∥

2

L2

− E0

)

, (21)

where λ ∈ R is the Lagrange multiplier, the first–order optimality condition (with respect

to the initial data φ) characterizing the maximizer φ̃ is

∀φ′ ∈ H1(Ω) J ′

λ(φ̃;φ′) = J ′(φ̃;φ′) + λ

∫ 1

0

dφ̃

dx

dφ′

dx
dx, (22)
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where the Gâteaux differential is defined as J ′(φ;φ′) , d
dǫ
J (φ + ǫφ′)

∣

∣

ǫ=0
and φ′ is an

arbitrary perturbation direction. The maximizer φ̃ is approximated as φ̃ = limn→∞ φ(n)

using an iterative ascent algorithm based on the Polak–Ribière version of the conjugate

gradients method [24] combined with a projection approach ensuring that the constraint

in (20) is satisfied (up to numerical round–off errors) at every iteration n. Denoting p(n)

the ascent direction at the n–th iteration, we define the function ψ : R
+ → SE0 , where

SE0 , {φ ∈ H1(Ω) : 1
2
‖dφ/dx‖2

L2
= E0} is the constraint manifold, as

ψ(τ) ,
(2E0)

1/2

∥

∥

dφ(n)

dx
+ τ dp(n)

dx

∥

∥

L2

(φ(n) + τp(n)) (23)

which represent a “radial” projection of the element (φ(n) + τp(n)) on the constraint

manifold SE0 . Then, consecutive approximations of the maximizer φ̃ are computed as

follows

φ(n+1) = ψ(τn), n = 1, 2, . . . (24a)

φ(0) = φ0, (24b)

where φ0 is a suitably chosen initial guess, and the optimal step length τn is determined

via

τn = arg max
τ>0

[J (ψ(τ))] , (25)

which can be described as “arc minimization” (in contrast to line minimization [24],

because the mapping τ → φ(τ) traces an “arc” on the constraint manifold SE0 , see

Figure 2). Procedure (25) is implemented using an adaptation of Brent’s method [28].

Using the Polak–Ribière version of the conjugate gradients method, the ascent direction

at the n–th iteration is computed as follows

p(n) = ∇
H1J (n) − βnp

(n−1), where (26a)

βn =

〈

∇
H1J (n),∇H1J (n) − ∇

H1J (n−1)
〉

H1

∥

∥∇
H1J (n−1)

∥

∥

2

H1

, (26b)

where 〈·, ·〉 denotes the inner product in the space indicated by the subscript. A cen-

tral element of approach based on (23)–(26) is the cost functional gradient ∇
H1J rep-

resenting the infinite–dimensional sensitivity of functional (19) to perturbations φ′ ∈
H1(Ω). It is related to Gâteaux differential via the Riesz Representation Theorem [25]

as J ′(φ;φ′) = 〈∇H1J , φ′〉H1(Ω). As shown in Appendix B, the gradient ∇
H1J can be

obtained by solving the following boundary–value problem

∇
H1J − ℓ2

d

dx2
∇

H1J =u∗
∣

∣

t=0
+

d2

dx2
φ in Ω, (27a)

Periodic BC, (27b)
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where u∗(t, x) is a solution of the adjoint system

∂u∗

∂t
+ u

∂u∗

∂x
+ ν

∂2u∗

∂x2
= 0 in [0, T ) × Ω, (28a)

u∗(T, x) = − d2

dx2
u(T, x) in Ω, (28b)

Periodic BC for 0 < t ≤ T, (28c)

and ℓ is a fixed length–scale parameter. It should be noted that u in (28a) and (28b)

is the solution of governing system (6) for the given initial data φ. We emphasize that

by obtaining ∇
H1J as solution of problem (27) it is ensured that the cost functional

gradient is an element of the Sobolev space H1(Ω), rather than only L2(Ω). We also

remark that the parameter ℓ controls the degree of smoothness of the gradient ∇
H1J

[26]. A summary of our maximization algorithm is presented below

Algorithm 1 For given values of T and E0:

1. Set n = 0, define tolerance tol.

2. Set initial guess for control variable φ0.

3. Do

• Solve direct problem (6).

• Solve adjoint problem (28).

• Calculate the H1 gradient with (27).

• Calculate ascent direction p(n) using Polak–Ribière formula (26).

• Find step size τn via arc maximization (25).

• Set φ(n+1) = ψ(τn).

• Evaluate ∆J =
[

J (φ(n+1)) − J (φ(n))
]

/J (φ(n)).

• n 7→ n+ 1.

4. while ∆J > tol.

Some details concerning the numerical solution of the different PDEs involved in Algo-

rithm 1 will be presented in Section 4.

10



φ(n)

φ(n+1)

p(n)

SE0

τ (n)

Figure 2: Schematic representation of arc maximization defined in (23)–(25). The dotted

line represents the direction of the projection.

4 Results

In this Section we report the computational results obtained applying Algorithm 1 to

solve problem (20) for a broad range of time windows T and initial enstrophies E0, namely

T ∈ [10−3, 1] and E0 ∈ [10−3, 103]. In all computations reported hereafter we will assume

ν = 10−3. Direct and adjoint system, (6) and (28), were solved with the pseudo–spectral

Fourier–Galerkin method with dealiasing where the equations were discretized using

N = 1024 grid points. Discretization in time combined the Crank–Nicolson method

applied to the viscous terms with the RK4 method applied to the advection terms.

The time step was adjusted individually based on the CFL condition in every case.

The tolerance used in Algorithm 1 was tol = 10−12. All elements of Algorithm 1

were thoroughly validated and the convergence of the optimization results with

refinement of the spatial resolution was carefully verified on a number of

selected cases. We refer the reader to dissertation [29] for all details. Exponents of

the power laws reported in this work are given in the form

e = e0 ± σe,
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where e0 is the exponent obtained by a global least–squares fit performed

over the entire scaling region, and

σe =

√

√

√

√

1

M − 1

M
∑

i=1

(ei − e0)2

is the “standard deviation” in which ei, i = 1, . . . ,M , are the exponents ob-

tained by “local” least–squares fits based on three adjacent data points.

Given the nonlinearity of Burgers equation (6a), optimization problem (20) will in

general be non–convex, hence optimality condition (22) characterizes only local maxi-

mizers. Consequently, depending on the choice of the initial guess φ0, Algorithm 1 may

converge to different locally maximizing solutions. While there are no general methods

allowing one to identify global maximizers in such problems, it is very important to carry

out a systematic search for such solutions. We did this for every value of T and E0 using

a family of initial guesses of the form

φ0(x) = −
√
E0

πm
sin (2πmx) , m = 1, 2, . . . , (29)

where m is the wavenumber (we have also tested several initial guesses given in terms of

functions other than trigonometric, e.g., instantaneously optimal solutions ũ, cf. (10), but

in all cases the same maximizers were found as using (29) for the given value of m). The

rationale for using initial guesses (29) is that for different wavenumbers m such functions

are orthogonal to each other in the space H1(Ω), hence initializing Algorithm 1 in

such orthogonal directions represents an efficient way to “probe” an infinite–dimensional

control space. The optimal initial conditions φ̃(m) found using initial guesses (29) with

m = 1, 2, 3, 4 and corresponding to different values of T and E0 are shown in Figure 3.

While the optimal initial conditions found for different wavenumbers in (29) are clearly

different, they exhibit similar trends with changes of the parameters. In particular, we

note that for a fixed E0 and increasing T the fields φ̃(m), m = 1, . . . , 4 change from a

shock wave type solution to rarefaction wave type solutions.

In order to establish correspondence between optimizing solutions obtained from

initial guesses (29) with different wavenumbers m, we consider the following rescaling of

Burgers equation (6). Given two domains Ω = [0, 1] and ΩL = [0, 1/L], where L ∈ N,

and the corresponding independent variables x ∈ Ω and ξ ∈ ΩL, we have the relations

ξ ,
x

L
, τ ,

t

L2
, (30a)

w(τ, ξ) , Lu(t(τ), x(ξ)), (30b)

and the following transformations for the derivatives

∂w

∂τ
= L3∂u

∂t
,

∂w

∂ξ
= L2∂u

∂x
,

∂2w

∂ξ2
= L3∂

2u

∂x2
. (31)
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Figure 3: Optimal initial conditions (a,b) φ̃(1) and (c,d) φ̃(2). Figures (a,c) correspond to

fixed enstrophy E0 = 103 and different time intervals: (thick solid line) T = 10−3, (thin

solid line) T = 10−2, (thin dashed line) T = 10−1.5, (thin dotted line) T = 10−1 and

(thick dotted line) T = 100; the arrow in Figure (a) indicates the trend with increasing

T . Figures (b,d) correspond to a fixed time interval T = 10−1.5 and different enstrophies:

(thin solid line) E0 = 10−3, (thin dashed line) E0 = 10−1.5, (thick solid line) E0 = 100,

(thick dashed line) E0 = 101.5 and (thick dotted line) E0 = 103.
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Figure 3: (continued) Optimal initial conditions (e,f) φ̃(3) and (g,h) φ̃(4). See previous

caption for details.
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Figure 4: (a) Optimal initial conditions φ̃(m) obtained with initial guesses (29) with

wavenumbers (thick solid) m = 1, (thick dashed) m = 2, (thin solid) m = 3 and (thin

dashed) m = 4; (b) the same optimal initial conditions as in Figure (a) rescaled according

to (30).

If u is a solution of Burgers equation (6) in (0, T ) × Ω, then

0 = ∂tu+ u∂xu− ν∂2
xu =

1

L3

(

∂τw + w∂ξw − ν∂2
ξw
)

(32)

which means that w defined in (30b) is also solution of Burgers equation in (0, T/L2)×ΩL.

We note that changing the wavenumber of initial guess (29) from 1 to some m > 1 can

in fact be interpreted as rescaling (30) with L = m, provided the solution enstrophy is

also rescaled according to

EL(τ) = L4E
(

t
L2

)

. (33)

Therefore, by adjusting the length of the time window and the enstrophy level as in

(30a) and (33), optimization problems (20) solved with initial guesses (29) characterized

by different wavenumbers m are shown to be equivalent. Indeed, in Figure 4a we present

the optimal initial conditions φ̃(m) obtained starting from initial guesses (29) with m =

1, 2, 3, 4, where the parameters E0 and T were in all cases determined from (30a) and (33).

In Figure 4b we note that when rescaling (30) is applied to these different maximizers

φ̃(m), they all collapse, implying that the maximizers φ̃(m) corresponding to initial guesses

with different m > 1 are in fact rescaled copies of one “fundamental” maximizer φ̃(1).

In an effort to find local maximizers φ̃ characterized by the largest enstrophy growth,

we also solved problem (20) with initial guesses formed as linear combinations of expres-

sions (29) with different values of the wavenumber m. In all such attempts, however,

the maximizers found would always be the same as the ones obtained for the initial
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Figure 5: (a) Terminal enstrophy Ẽ(T ) vs. length T of the optimization window corre-

sponding to the initial guesses (circles) φ0(x) = A1 sin(2πx)+A2 sin(4πx), where A1 and

A2 are chosen so that E0 = 102, (dashed line) (29) with m = 1 and (solid line) (29) with

m = 2; (b) schematic illustrating convergence to the fundamental maximizer φ̃(1) and

its rescaled copy φ̃(2) starting from different initial guesses represented by arrows at the

origin.

guesses with one wavenumber only. Typical outcomes from such calculations are pre-

sented in Figure 5 where we show the results of optimizations starting from initial guess

φ0(x) = A1 sin(2πx) + A2 sin(4πx), where A1 and A2 are chosen so that 1
2

∫ 1

0
|dφ0/

dx|2 dx = E0. We see that this approach produces the same results as when initial guess

(29) is used with m = 1 or m = 2. This situation is schematically illustrated in Figure

5b, where the big and small star represent the maximizer φ̃(1) and its rescaled copy φ̃(m)

corresponding to m = L = 2, and the vectors at the origin represent the different initial

guesses used to find these solutions. We also used initial guesses generated randomly

according to several different rules, and in those attempts as well the maximum enstro-

phy found was not greater than when (29) is used. Thus, in view of this analysis, we

conclude that in determination of the exponent in power law (17) we can, without loss

of generality, use the results obtained using (29) with m = 1 as the initial guess, and

this is the data that will be discussed below (for simplicity, we will drop the subscripts

m).

In Figures 6a and 6b we show, respectively, the terminal enstrophy Ẽ(T ) and the

maximum enstrophy maxt∈[0,T ] Ẽ(t) as functions of the length T of the time window and

for different values of the initial enstrophy E0. We note that these data in fact coincide for

a large part of the parameter values meaning that in those cases the enstrophy maximum

is attained at the end of the time window, i.e., maxt∈[0,T ] Ẽ(t) = Ẽ(T ). In some cases the

16



enstrophy maximum is actually attained inside the interval [0, T ] (e.g., for E0 & 103 and

T & 2 · 10−2). Plotting this data as a function of E0 with T acting as a parameter shows

that the relations maxt∈[0,T ] Ẽ(t) vs. E0 and Ẽ(T ) vs. E0 have in fact the same envelope,

that is,

∀ E0 > 0, Emax , max
T

Ẽ(T ) = max
T

[

max
t∈[0,T ]

Ẽ(t)

]

. (34)

This observation may suggest that by solving optimization problem (16) instead of the

more fundamental problem (15) we do not in fact miss any maximizers. In Figure 7 we

note that, as predicted by analytic bound (5), there are two regimes characterized by

distinct power laws of the form

Emax =

{

Cα1 Eα1
0 , E0 → 0

Cα2 Eα2
0 , E0 → ∞ (35)

with α1 = 1.000± 0.003 and α2 = 1.531 ± 0.022, showing that, while for small E0

the exponent in (17) is close to one and hence in agreement with (5), for large

E0 the exponent in the power law is approximately 3/2 which is significantly

less than the value of 3 predicted by (5).

There are also other power laws one can uncover in our data. For example, in Figure

8 we show the dependence of

Tmax , arg max
T

[ max
t∈[0,T ]

Ẽ(t)], (36)

which represents the length of the time window yielding the largest enstrophy growth for

a given E0, as a function of E0. A power–law behavior can be observed for this quantity

for E0 sufficiently large and is given by

Tmax ≈ Cη Eη
0 , as E0 → ∞, (37)

where Cη = 0.7619 and η = −0.497 ± 0.017. It is interesting to analyze the relation

between the kinetic energy K0 , 1
2

∫ 1

0
u(0, x)2 dx and the enstrophy E0 for the instan-

taneous and finite–time optimizers ũ and φ̃. This data is shown in Figure 9 where

power–laws of the form

K0 ≈ Cθ Eθ
0 , as E0 → ∞, (38)

are clearly observed in both cases. The exponents obtained are θ = 0.678±0.005 for the

instantaneous case and θ = 0.978± 0.017 for the finite–time case. The proximity of the

latter exponent to unity implies that the optimizers φ̃ are close to saturating Poincaré’s

inequality. The constant Cθ = 0.0238 in (38) corresponds to about 97% of the Poincaré

constant CP = 1/(2π) (as is well known, see e.g., [10], the trigonometric functions sin

and cos are the only periodic functions exactly saturating Poincaré’s inequality, so we

should not expect Cθ to be equal to C2
P ).
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Figure 6: (a) Final enstrophy Ẽ(T ) and (b) maximum enstrophy maxt∈[0,T ] Ẽ(t) as func-

tions of the length T of the time window for different initial enstrophies E0.
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Figure 7: Maximum enstrophy maxt∈[0,T ] Ẽ(t) as a function of initial enstrophy E0 for

different T . Two distinct power laws can be observed characterized by the

exponents α1 ≈ 1 for small E0, and α2 ≈ 3/2 for large E0, cf. (35).
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Figure 8: Maximization time Tmax as a function of initial enstrophy E0. The exponent

of the corresponding power law is found to be η ≈ −1/2, cf. (37).

We close this Section by offering an alternative view of the obtained results, namely,

from the perspective of the complex–plane singularities associated with different so-

lutions (cf. discussion in Introduction). The key quantity of interest is the (time–

dependent) width δ(t) of the analyticity strip representing the time evolution of the

distance from the real line to the nearest singularity z0(t) in the complex plane, i.e.,

δ(t) , ℑ{z0(t)}. It is approximated using the method developed in [16] based on an

asymptotic expansion of the Fourier spectrum of the solution u(t, ·). The time evolution

of δ(t) for solutions of the instantaneous and finite–time (with two different T ) opti-

mization problems in shown in Figure 10a, whereas the corresponding time–evolution of

the enstrophy E(t) is shown in Figure 10b. We note that in all cases the minima of δ(t)

correspond to the maxima of E(t) with the analyticity strip achieving smaller widths in

the cases where the finite–time optimizers φ̃ were used as the initial data. This confirms

that the corresponding solutions of Burgers problem (6) can be indeed regarded as “less

regular” than the solutions starting from the instantaneously optimal initial condition

ũ.

5 Discussion and Conclusions

In this work we have developed a computational approach allowing one to identify so-

lutions of an initial–value problem for a PDE which may saturate analytic bounds for
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Figure 9: Energy K0 of the initial condition as a function of its enstrophy E0 for (stars)

solutions ũ of instantaneous optimization problem (8) and (circles) solutions φ̃ of the

finite–time optimization problem (16).

the growth of certain norms of the solution. This approach is formulated as a PDE–

constrained optimization problem which is solved numerically with a gradient–based

ascent method. The proposed method can therefore provide insights as to whether or

not a given norm estimate is sharp. Motivated by the 3D regularity problem for the

Navier–Stokes system, we have applied this method to study the estimates for the max-

imum enstrophy growth in 1D Burgers equation and concluded that the best available

estimates do not appear sharp. While the proposed method can in principle only char-

acterize local maximizers, we have shown computational evidence that the optimization

problem may admit a countably-infinite family of maximizers parametrized by the dom-

inating wavenumber such that each maximizer in the family is a rescaled copy of one

fundamental maximizer. The time–dependent solutions corresponding to such optimal

initial data reveal a number of power laws, and the corresponding exponents are col-

lected in Table 1 together with analytic predictions and the results corresponding to the

instantaneously optimal initial data computed in [10].

We speculate that, if a certain norm bound is found not to be sharp, the proposed

approach might provide some guidance how the bound could be tightened up. In this

regard, we note that in the derivation of estimate (5) in Appendix A an intermediate

inequality (45) was used to obtain an upper bound for
∫ t

0
E(s)ds. If we use the exact
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Figure 10: (a) Time evolution of the width δ(t) of analyticity strip for solutions to Burg-

ers system (6) with initial condition (thick, dashed line) ũ obtained from instantaneous

optimization problem (8), (thin, dashed line) φ̃ obtained form finite–time optimization

problem (16) with T = 0.1 and (thick line) φ̃ obtained form finite–time optimization

problem (16) with T = 1; (b) time evolution of enstrophy E(t) for the same solutions

as in Figure (a); the vertical lines represent the times when the minima and maxima of

the two quantities are attained.

power law

analytic

estimate

Instantaneous

optimization

problem (8)

Finite–time

optimization

problem (16)

maxt∈[0,T ] Ẽ(t) ≈ CαEα
0 α = 3 α = 1.048 ± 0.018 α = 1.531 ± 0.022

Tmax ≈ Cη Eη
0 — η = −0.607 ± 0.02 η = −0.497 ± 0.017

K0 ≈ Cθ Eθ
0 θ = 1 θ = 0.678 ± 0.005 θ = 0.978 ± 0.017

K(Tmax) ≈ Cµ Eµ
0 — µ = 0.695 ± 0.001 µ = 1.008 ± 0.013

K0 −K(Tmax) ≈ Cγ Eγ
0 — γ = 0.44 ± 0.032 γ = 0.68 ± 0.25

Table 1: Summary of the exponents characterizing the power laws obtained via ana-

lytic estimates and from the solution of the instantaneous and finite–time optimization

problems in the limit of large E0.
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value of this integral instead, cf. equation (44), we would arrive at

E1/3(t) − E1/3
0 ≤ C1

3

∫ t

0

E(s)ds =
C1

6ν
[K0 −K(t)]. (39)

The main difference between this last inequality and estimate (5) is that we do not

know, a priori, how the difference between the initial and terminal energy scales with

the initial enstrophy. More specifically, if we knew that this difference follows a power

law

K0 −K(t) ≈ Cγ Eγ
0 (40)

for some 0 < γ ≤ 1, then it might be possible to obtain a sharper estimate in inequality

(48) depending on the value of γ (note that, as shown in Appendix A, γ = 1

in estimate (5)). Figure 11 shows the difference K0 − K(Tmax), with Tmax defined in

(36), as a function of the initial enstrophy E0. Using the least–squares fitting described

in Section 4, we find that γ = 0.68 ± 0.25 in (40) which may give a more accurate a

posteriori estimate for the difference in energy levels, hence a better approximation for

the integral of the enstrophy over the time interval than (45). This may be, in our

opinion, one reason why the analytic estimate fails to be sharp and overestimates the

enstrophy growth. For comparison, Figure 11 also shows the difference K0 − K(Tmax)

for the case where the instantaneous optimizer ũ is used as the initial condition and the

corresponding exponent of power law (40) is γ = 0.44 ± 0.032. We need to emphasize,

however, that the analysis presented in this paragraph is not rigorous and the exponents

found do not represent the worst cases, but only the scaling observed for particular

families of solutions.

We conclude by mentioning some future directions for this research. Our next

step, already underway, is to address analogous questions for the 2D Navier–

Stokes system in a periodic domain. Starting from smooth initial data, the

2D Navier–Stokes problem also leads to smooth solutions existing globally

in time. The difference with the present case and the 3D case is that the

relevant quantity to be maximized is the L2 norm of the vorticity gradient,

the so–called palinstrophy, rather than enstrophy (which cannot grow in 2D

flows without forcing). Some estimates concerning the rate of growth of

palinstrophy are available in [30]. An ultimate goal of this research effort is

to solve a maximization problem analogous to (16) for the 3D Navier–Stokes system.

The principal idea is to observe whether the maximum enstrophy may grow in time at

a rate that could lead to a blow–up in finite time, cf. (2). Formulation of the opti-

mization problem in 2D and in 3D will be essentially the same as discussed

in the present study with the cost functional gradient expressed in terms of

solutions of a suitably defined adjoint system. Flow optimization problems

of this type have already been studied in the literature (although admittedly
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Figure 11: Difference K0 − K(Tmax), cf. (40), as a function of initial enstrophy E0 for

(stars) instantaneously optimal initial data (10) and (circles) initial data obtained from

finite–time optimization problem (20).

for rather low Reynolds numbers in the 3D case) and we refer the reader to

the monograph [23] and the papers [31, 32] for some results. While in the 2D

case this task appears fairly straightforward due to moderate computational

cost and uncomplicated analysis of the results, this will no longer be the

case in 3D where the computational cost of solving the optimization prob-

lem will be extremely large. As regards the formulation of our approach,

an interesting alternative may be to recast the PDE–constrained optimization

problem in terms of complex plane singularities (i.e., to directly minimize the width of

the analyticity strip).
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A Finite–Time Bound for Enstrophy Growth

To obtain the finite–time bound for enstrophy from equation (5) we start with the energy

K defined as

K(t) =
1

2
||u(·, t)||2L2

=
1

2

∫ L

0

|u(t, x)|2dx (41)

and its rate of growth

dK
dt

= −ν
∫ L

0

(

∂u

∂x

)2

dx = −ν
∥

∥

∥

∂u

∂x

∥

∥

∥

2

L2

, (42)

where for generality we assumed the domain [0, L] (to fix attention, in the

main body of this work we set L = 1). We notice that the energy is a decreasing

function of time bounded by the energy of the initial data, i.e.,

K(t) ≤ ||u(·, 0)||2L2
= ||φ||2L2

, ∀t ≥ 0. (43)

Integrating equation (42) in time we find that

1

2ν
[K0 −K(t)] =

∫ t

0

E(s)ds, t > 0, (44)

where K0 , K(0). Since K(t) > 0 ∀ t, we obtain

∫ t

0

E(s)ds ≤ 1

2ν
K0. (45)

Rewriting the right–hand side of inequality (4) as C0 EE2/3, where C0 , 3
2

(

1
π2ν

)1/3
, we

obtain

3
d

dt
E1/3 ≤ C0E (46)

which upon integration in time leads to

E1/3(t) − E1/3
0 ≤C0

3

∫ t

0

E(s)ds ≤ C0

6ν
K0 (47a)

≤L
2

16

(

1

π2ν

)4/3

E0, (47b)

where the fact that the fields u have zero mean allows us to use Poincaré’s inequality

K0 ≤
(

L
2π

)2 E0 in the last expression. Finally, we obtain

E(t) ≤
[

E1/3
0 +

(

L

4

)2(
1

π2ν

)4/3

E0

]3

. (48)
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B Extraction of Cost Functional Gradients

While these calculation are quite standard, they are included here to make the paper

self–contained. We begin by calculating the Gâteaux derivative of J

J ′(φ;φ′) =

∫ 1

0

∂u(T, x)

∂x

∂u′(T, x)

∂x
dx−

∫ 1

0

∂φ(x)

∂x

∂φ′(x)

∂x
dx, (49)

where u′(t, x) is the solution of the “perturbation” system

∂u′

∂t
+
∂uu′

∂x
− ν

∂2u′

∂x2
= 0 in Ω × (0, T ], (50a)

u′(x) = φ′(x) in Ω at t = 0, (50b)

Periodic BC for t > 0. (50c)

Applying integration by parts to the integrals in (49) and using periodic boundary

conditions (50c) we get

J ′(φ;φ′) = −
∫ 1

0

∂2u(T, x)

∂x2
u′(T, x) dx+

∫ 1

0

∂2φ(x)

∂x2
φ′(x) dx. (51)

Multiplying equation (50a) by the adjoint variable u∗ : [0, T ]×Ω → R and integrating

with respect to both space and time yields

0 =

∫ T

0

∫ 1

0

(

∂u′

∂t
+
∂uu′

∂x
− ν

∂2u′

∂x2

)

u∗ dx dt

=

∫ 1

0

[u∗u′]
T
0 dx−

∫ T

0

∫ 1

0

(

∂u∗

∂t
+ u

∂u∗

∂x
+ ν

∂2u∗

∂x2

)

u′ dx dt.

Setting ∂u∗

∂t
+ u∂u∗

∂x
+ ν ∂2u∗

∂x2 = 0, cf. (28a), in the last equation above reduces it to
∫ 1

0

φ′(x)u∗(0, x) dx =

∫ 1

0

u′(T, x)u∗(T, x) dx (52)

which, upon setting u∗(T, x) = − d2

dx2u(T, x), cf. (28b), and substituting in equation (51),

yields

J ′(φ;φ′) =

∫ 1

0

[

u∗(0, x) +
d2

dx2
φ(x)

]

φ′(x) dx =
〈

∇J , φ′

〉

L2

. (53)

In (53) we interpreted the Gâteaux differential in the light of Riesz Representation

Theorem [25] as an L2 inner product which allows us to identify the L2 gradient of the

cost functional as

∇
L2J = u∗(x)

∣

∣

t=0
+

d2

dx2
φ(x). (54)

However, in our maximization approach, cf. (26), we require our cost functional gradients

to be from the Sobolev space H1(Ω), hence, reinterpreting (53) in terms of the corre-

sponding H1(Ω) inner product, we obtain the gradient ∇
H1J as a solution of elliptic

boundary–value problem (27) in which (54) appears as the right–hand side.
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