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Abstract A graphical technique is given for determining the outcome of two species competition for two

resources. This method is unifying in the sense that the graphical criterion leading to the various outcomes

of competition are consistent across most of the spectrum of resource types (from those that fulfill the

same growth needs to those that fulfill different needs) regardless of the classification method used,

and the resulting graphs bear a striking resemblance to the well-known phase portraits for two species

Lotka-Volterra competition. Our graphical method complements that of Tilman. Both include zero net

growth isoclines. However, instead of using the consumption vectors at potential coexistence equilibria
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to determine input resource concentrations leading to specific competitive outcomes, we introduce curves

bounding the feasible set (the set of all potential equilibria). The washout equilibrium (corresponding

to the supply point) occurs at an intersection of curves defining the feasible set boundary. The resource

concentrations of all other equilibria are found where zero net growth isoclines either intersect each other

or the feasible set boundary. A species has positive biomass at such an equilibrium only if its zero net

growth isocline is involved in such an intersection. The competitive outcomes are then determined from

the position of the single species equilibria, just as in the phase portrait analysis for classical competition

(rather than from information at potential coexistence equilibria as in Tilman’s method).

Keywords Multiple resource limitation · perfectly substitutable, essential, complementary, homologous,

heterologous, interactive, non-interactive · Lotka-Volterra competition · chemostat

Mathematics Subject Classification (2000) MSC 92D25 · MSC 92D40

1 Introduction

We present a graphical method for determining the outcome of two species competition for two resources.

This method complements the graphical method of Tilman [25] which is used to determine input resource

concentrations leading to specific competitive outcomes. While Tilman’s method requires information at

potential coexistence equilibria, we introduce curves bounding the feasible set (the set of all potential

equilibria). We locate the single species equilibria and coexistence equilibria and then determine the

competitive outcomes from the position of the single species equilibria, just as in the phase portrait

analysis for classical competition.

The graphical technique illustrated in this paper is presented for the chemostat. However, as in

León and Tumpson [17] and Tilman [24], the supply rate of nutrient could be given more generally and

species-specific death rates could be introduced. In the present context, our graphical technique is uni-

fying in the following senses. First, the graphical criterion leading to the various outcomes (coexistence,

bistability, competitive dominance) are consistent across the spectrum of resource types, regardless of
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the classification scheme used. Second, when applied to the classical model of two-species competition

(attributed to Lotka [20] and Volterra [27]) where resources are not explicitly modeled, the resulting

graph in phase space is startlingly similar to the graphs for the resource based competitive models. This

similarity holds despite the fact that the graph is given with respect to population size in the former

case and resource concentrations in the latter.

Before considering the resource-based approach, we remind the reader of the classical model and its

well-known phase portrait. We then describe our graphical technique. We conclude with a discussion of

resource classification issues and a comparison of our graphical method with that of Tilman. Technical

details, model derivations, generalizations, and local stability are relegated to appendices.

1.1 Classical Approach

The classical model of ecological competition, attributed to Lotka [20] and Volterra [27], is an extension

of the basic logistic model for the growth of a single population due to Verhulst [26], to include interaction

terms based on the law of mass action. In the case of n competing populations, for i = 1, . . . , n, the

model is given by

N ′
i(t) = riNi(t)

„
1 − Ni(t)

Ki

«
−

nX
j=1,j �=i

βijNi(t)Nj(t) (1)

For indices k, � ∈ {1, 2, . . . , n}, k �= �, Nk(t) denotes the size (in density or numbers) of the kth

population at time t, rk denotes the intrinsic growth rate of population k, Kk denotes the carrying

capacity of the environment for population k (in the absence of population �), and βk� denotes the

coefficient of competition, measuring the effect of competition on population k due to its interaction

with population �.

In the case of two competing species, the dynamics of this system can be determined using a stan-

dard phase plane analysis. There are several outcomes possible as depicted in Figure 1: either only

one population avoids extinction, or there is coexistence. Complete washout (all solutions tending to

(N1, N2) = (0, 0)) is not possible.
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Fig. 1 Potential phase portraits for the classical competition model. Dashed lines are used for the isoclines of

population N1 and dotted lines are used for those of population N2. Asymptotically stable equilibria are indicated

by • and unstable equilibria are indicated by ◦. Dynamics are (LEFT) competitive dominance (i.e., one population

wins and drives the other to extinction. In this case population N1 wins); (CENTRE) initial condition dependent

outcome (i.e., the positive equilibrium is a saddle point); (RIGHT) coexistence (i.e., the positive equilibrium is

globally asymptotically stable with respect to the positive cone).

1.2 Resource-Based Approach

Consider a general resource-based model describing the competition of n populations, N(t) = (N1(t), . . . , Nn(t))

for m resources R(t) = (R1(t), . . . , Rm(t)):

R′
j(t) = gj(Rj(t)) −

nX
i=1

Ni(t)μij(R(t)),

N ′
i(t) = Ni(t)(−Di + μi(R(t))), (2)

Rj(0), Ni(0) ≥ 0.

Here, Ni(t), i = 1, . . . , n denotes the biomass of the ith population of microorganisms at time t and

Rj(t), j = 1, . . . , m represents the concentration of the jth resource at time t.

The functions gj(Rj(t)) denote the supply rate of the resource j. Each Di can either denote the ith

species specific death rate or the sum of a species specific death rate and a dilution rate. For example,

Phillips [21] introduced model (2) with gj(Rj(t)) = (Sj − Rj(t))D, as a model of the chemostat, where

D denotes the dilution rate and Sj denotes the concentration of resource j in the feed vessel when only

one feed vessel is used. (See Butler and Wolkowicz [7] for the interpretation if more than one feed vessel

is used.)
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The functions μij(R) denote the rate of consumption of resource j by population i per unit of biomass

of population i and the functions μi(R) denote the growth rate of population i per unit of biomass of

population i. These are given as functions of the concentration of all of the limiting resources in the

environment. It is generally assumed that μi, μij : R
m
+ → R+ and that the μi, μij are continuously

differentiable almost everywhere. Also, it is natural to expect (and we will assume throughout) that if

the concentration of resource Rj is zero, there will be no consumption of resource Rj (so that μij(R) = 0

whenever Rj = 0) and no growth on resource Rj . Note that we make no explicit assumptions regarding

the relationship between the functions describing consumption and the functions describing growth,

making model (2) very general.

We illustrate the method in the context of two species competing for two resources using the two most

familiar resource-based models, one on each end of the resource spectrum. (See the Appendix B for more

details concerning the two resource-based models.) As in Phillips [21], we set gj(Rj) = (Sj − Rj)D in

model (2) and make the usual simplifying assumption that the species specific death rates are insignificant

compared to the flow rate, i.e., Di = D, i = 1, 2.

In both examples, it is reasonable to assume that the consumption of resource j by population i,

μij(R1, R2), increases with the availability of that resource. That is,

∂μij

∂Rj
(R1, R2) ≥ 0, for all R1, R2 > 0, i, j ∈ {1, 2}. (3)

In the first example it is assumed that the resources fulfill different growth needs and so must be

consumed together in order to promote growth. To derive the model in the form most often considered

in the literature [7, 11, 15, 16, 17, 18, 19, 24, 25], the Law of the Minimum is used, giving

R′
j = (Sj − Rj)D −

2X
i=1

Ni

Yij
min{pi1(R1), pi2(R2)},

N ′
i = Ni(−D + min{pi1(R1), pi2(R2)}), (4)

Rj(0), Ni(0) ≥ 0, i, j ∈ {1, 2}.
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Here, the Yij denote growth yield constants, and (consistent with (3)) it is assumed that pij : R+ → R+

are C1 with

pij(0) = 0, p′ij(Rj) > 0, for Rj > 0, i, j ∈ {1, 2}. (5)

A prototype is the Michaelis-Menten or Monod functional response to a single resource:

pij(Rj) =
mijRj

Kij + Rj
.

However, we will only assume (5), and will even relax this in Appendix C where we consider general-

izations. Such resources are referred to as essential by those using the classification of Tilman [24] and

perfectly complementary by those using the classification León and Tumpson [17]. In Appendix B.1 we

show that to obtain model (4), it seems necessary to assume additionally that consumption of the two

resources is in the correct proportions required for growth, thus avoiding any waste.

In the second example, we consider resources that fulfill the same growth needs, i.e., each can sustain

growth in the absence of the other. In this case growth is often modeled (e.g. [3, 17, 22]) by a sum of

the form:

μi(R1, R2) = Yi1μi1(R1, R2) + Yi2μi2(R1, R2), (6)

where the constants Yij again represent growth yield constants. It might be reasonable to assume that

growth by species i increases with resource availability:

∂μi

∂Rj
(R1, R2) > 0, for R1, R2 > 0, i, j ∈ {1, 2}. (7)

To capture the possible inhibitory effect that the abundance of one resource might have on consumption

of the other due to handling time (see [3, 22]), it might be reasonable to assume that while consumption

of a resource strictly increases with its availability, so that

∂μij

∂Rj
(R1, R2) > 0, for R1, R2 > 0, i, j ∈ {1, 2}, (8)

it also decreases with increasing availability of the other resource:

∂μij

∂Rk
(R1, R2) ≤ 0, for R1, R2 > 0, i, j, k ∈ {1, 2}, j �= k. (9)
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For example, the familiar Michaelis-Menten or Monod functional response generalized to the case of two

substitutable resources (see [28]) always satisfies (8) and (9). It also satisfies (7) for most reasonable

operating parameters. (See [4] for more details.) In this case model (2) becomes:

R′
j = (Sj − Rj)D −

2X
i=1

Ni

Yij

„
mijKikRj

Ki1Ki2 + Ki2R1 + Ki1R2

«
,

N ′
i = Ni

„
−D +

mi1Ki2R1 + mi2Ki1R2

Ki1Ki2 + Ki2R1 + Ki1R2

«
, (10)

Rj(0), Ni(0) ≥ 0, i, j, k ∈ {1, 2}, k �= j,

and the resources are considered perfectly substitutable in both the classification of Tilman and of León

and Tumpson.

2 Graphical Method

We now describe a graphical method for determining the outcome of competition using the phase plane

in (R1, R2)-space. The method will be described for the general model (2), and illustrated for models

(4) and (10).

To begin we describe the “feasible set” F in (R1, R2)-space, where the (R1, R2)-coordinate of any

equilibrium must be located. The boundary consists of curves along which R′
1 = 0 = R′

2, Ni = 0, and

Nj ≥ 0, and so passes through the (R1, R2)-coordinates of single-species equilibria. The point (S1, S2),

called the supply point in (R1, R2)-space, corresponds to the washout equilibrium in (R1, R2, N1, N2)-

space, and is found where the feasible set boundary for the two populations intersect. We then include

the zero net growth isoclines, curves in (R1, R2)-space along which the populations are neither increasing

nor decreasing (found by setting N ′
1 = 0 = N ′

2 with N1N2 �= 0). The(R1, R2)-coordinates of equilibria

are located at the intersections of these curves. A single species equilibrium for a particular population

corresponds to where its zero net growth isocline intersects the feasible set boundary corresponding to

the absence of the other species. Coexistence equilibria correspond to where the zero net growth isoclines

of both species intersect inside the feasible set. Stability of the equilibria is then determined from their

location on the graph, analogous to the phase plane analysis for the classical model.
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Step 1: Find the Feasible Set Boundary (FSB) for each population and plot them in (R1, R2)-space

using different line types for each population.

The feasible set boundary for population i (FSBi) is a curve in (R1, R2)-space along which population

i is at zero density. To find FSBi, set Ni = 0 in (2) with gj(Rj) = (Rj − Sj)D and solve R′
1 = 0 = R′

2

for Nj , so that

(S1 − R1)D

μj1(R1, R2)
= Nj =

(S2 − R2)D

μj2(R1, R2)
. (11)

Eliminate Nj and plot the resulting curve in (R1, R2)-space starting at the supply point and moving

toward the axes. On this curve Ni is zero and Nj is positive (except at the supply point).

For model (4) this gives

R2 = S2 − Yj1

Yj2
(S1 − R1), (12)

a line joining the supply point to the coordinate axes (see Figure 2 (TOP)).

For model (10) this gives

R2 =
Kj2mj1S2R1

Kj1mj2(S1 − R1) + Kj2mj1R1
,

a curve joining the supply point to the origin (see Figure 2 (BOTTOM)).

Step 2: Identify the Feasible Set F (where the (R1, R2)-components of any equilibrium must be

located) as the bounded region with boundary defined by the portion of each FSB from the supply point

to its intersection with a coordinate axis as well as (by continuity) the portion of the coordinate axes

between these intersections.

Typical feasible sets are depicted by the shaded regions in Figure 2 (TOP) for model (4) and (BOTTOM)

for model (10). For convenience, we use the leftmost configurations in what follows.

Step 3: Find the Zero Net Growth Isocline (ZNGI) for each population and plot them in (R1, R2)-

space using the same line type used for population i as used for its FSBi.

The ZNGI for population i (ZNGIi) is the curve of resource concentrations along which the decline in

biomass density is balanced by its growth and so the net biomass of that population remains unchanged.
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Fig. 2 The dashed and dotted curves correspond to FSB1 and FSB2, respectively. The shaded regions indicate

typical feasible sets in the case of (TOP) model (4) and (BOTTOM) model (10). The biomass at potential equilibria

of both populations is nonnegative for resource concentrations inside the feasible set, and at least one population

would have negative biomass outside.

To determine the zero net growth isocline for population i (ZNGIi), set N ′
i = 0 with Ni �= 0, so that

μi(R1, R2) = D. (13)

For model (4) the ZNGIi correspond to L-shaped curves in (R1, R2)-space with vertex at (R1i , R2i)

( see Figure 3 (TOP)) and for model (10) to a line in the (R1, R2)-plane joining (R1i , 0) to (0, R2i) (see

Figure 3 (BOTTOM)). See Appendix A for the definition of the generalized break-even concentrations Rji
,

in each case.

Step 4: Define the Invasive Set Ii as those resource concentrations in the feasible set that are

sufficient so that the decline of population i is at least balanced by its growth. Therefore, if ZNGIi

intersects the feasible set F , it divides F into two regions,

Ii = {(R1, R2) ∈ F : μi(R1, R2) ≥ D},
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0
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Fig. 3 The ZNGIs are included with the feasible sets in the case of (TOP) model (4) and (BOTTOM) model (10).

ZNGI1 and FSB1 are dashed; ZNGI2 and FSB2 are dotted. The invasive set Ii corresponds to that portion of

the feasible set F (shaded region) between the supply point and ZNGIi, i.e. the portion of F above and to the

right of ZNGIi.

and its complement. (See Figure 3.) Observe that since the resources are noninhibitory, (S1, S2) ∈ Ii.

We call Ii the invasive set for species i, since we will show that if the single species equilbrium

for species j (i.e. with Nj > 0) lies inside Ii, then species i can invade (and hence that single species

equilibrium is unstable). However, if the single species equilbrium for species j lies outside Ii, then

species i cannot invade (and the equilibrium is locally asymptotically stable).

Step 5: Identify Equilibria

Each intersection of a dashed curve and a dotted curve in the feasible set corresponds to an equi-

librium point (except at the origin). Ni is positive at such an equilibrium point, if and only if ZNGIi is

involved in the intersection.

– The intersection of the two FSBs at the supply point corresponds to the washout equilibrium.

– Any point where a population’s ZNGIi intersects an FSBj (with i �= j), corresponds to a single

species equilibrium with that population present, i.e. Ni > 0.
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– Points where ZNGI1 and ZNGI2 intersect in the interior of F correspond to coexistence equilibria,

i.e. both species present.

Step 6: Determine the Stability of Equilibria and the Outcome of Competition

We begin by assuming that ZNGIi intersects both FSBj and ZNGIj at most once, i, j ∈ {1, 2},

i �= j, and that at any such intersection the curves actually cross (i.e. the intersection is transversal). In

Appendix C we examine the implications of generalizing to multiple crossings of ZNGIi and FSBj (C.1)

and multiple crossings of the ZNGI (C.2).

Any intersection of a ZNGIi with an FSBj represents a single species equilibrium with Ni positive. We

also assume that this equilibrium would be globally asymptotically stable in the corresponding growth

model, i.e., with respect to the (R1, R2, Ni)-subsystem. These assumptions hold, for example, for models

(4) and (10), for the classical two species Lotka-Volterra competition model (1) if viewed in this context

(as will be described in Section 3), and even more generally (see Appendix C.3).

– If neither ZNGI intersects F , the invasive set for both species is empty and so neither species can

invade. In this case the washout equilibrium is globally asymptotically stable. Otherwise, the invasive

set of at least one species is non-empty and contains the supply point. At least one species can invade

and so the washout equilibrium is unstable. The former is depicted in Figure 4 (TOP) for both model

(4) (LEFT) and model (10) (RIGHT).

– If only ZNGIi intersects FSBj , i �= j, then there is a unique single species equilibrium where pop-

ulation Ni is positive. The invasive set Ii contains the supply point so that species i can invade

and the washout equilibrium is unstable. However, Ij = ∅, so species j cannot invade and the sin-

gle species equilibrium (involving Ni) remains locally asymptotically stable, now with respect to

(R1, R2, N1, N2)-space. Species i is the only survivor. This is depicted in Figure 4 (BOTTOM) for both

model (4) (LEFT) and model (10) (RIGHT) .

– If each ZNGIi intersects FSBj , (i, j = {1, 2}, i �= j), then there are two single species equilibria,

one for each population. Population Ni is positive where ZNGIi is involved in the intersection. If

population Ni’s single species equilibrium lies in Ij , then population j can invade, and hence popu-
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0
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Fig. 4 Potential phase portraits for (LEFT) model (4); (RIGHT) model (10). Asymptotically stable equilibria are

indicated by • and unstable equilibria are indicated by ◦. (TOP) When neither ZNGI intersects the feasible region,

the washout equilibrium is globally asymptotically stable: (BOTTOM) If one and only one of the ZNGI intersects F ,

then there is a unique single species equilibrium that is locally asymptotically stable: (LEFT) with population N1

(dashed) positive, since ZNGI1 is involved in the intersection; and (RIGHT) with population N2 (dotted) positive,

since ZNGI2 is involved in the intersection.

lation Ni’s single species equilibrium is unstable with respect to (R1, R2, N1, N2)-space. Otherwise,

it remains locally asymptotically stable.

– When both single species equilibria are of opposite stability, the unstable one lies inside the

invasive set of its competitor and the stable one lies outside the invasive set of its competitor. Since

the ZNGI intersect at most once, there is no coexistence equilibrium and we have competitive

dominance. This is shown in Figure 5 (LEFT) for both model (4) (TOP) and model (10) (BOTTOM).

– When the single-species equilibria have the same stability, each either lies inside the invasive set

of its competitor (so that both are unstable), or lies outside the invasive set of its competitor (so

that both are locally asymptotically stable).

– If both single-species equilibria are stable, then the ZNGIs intersect at a unique coexistence

equilibrium in F and it is unstable. This corresponds to initial condition dependent outcomes,

and is illustrated in Figure 5 (CENTER) for both model (4) (TOP) and model (10) (BOTTOM). See

Appendix D.2 for justification of the instability of the coexistence equilibrium.
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– If both single species equilibria are unstable, then the ZNGIs intersect at a unique coexistence

equilibrium in F and it is stable up to Hopf bifurcation. This is illustrated in Figure 5 (RIGHT)

for both model (4) (TOP) and model (10) (BOTTOM). (Again, see Appendix D.2 for a discussion

of the stability of the coexistence equilibrium.) However, it can be shown that the system is

uniformly persistent whether or not there is a Hopf bifurcation, so that both species coexist. The

proof of this involves an argument similar to the proof given for Theorem 3.16 in [3] using the

Butler-McGehee Lemma (see Lemma A.1 of [9]).

0

(S1, S2)

∩Ii

R1

R2

0

(S1, S2)

∩Ii

R1

R2

0

(S1, S2)

∩Ii

R1

R2

0 R1

R2 (S1, S2)

∩Ii

0 R1

R2 (S1, S2)

∩Ii

0 R1

R2 (S1, S2)

∩Ii

Fig. 5 Potential phase portraits for (TOP) model (4) and (BOTTOM) model (10). Dynamics are (LEFT) competitive

dominance (N1 (dashed) wins and drives N2 (dotted) to extinction); (CENTRE) initial condition dependent out-

come (the positive equilibrium is a saddle point); (RIGHT) coexistence (either the positive equilibrium is locally

asymptotically stable or it has undergone a Hopf bifurcation). Here again asymptotically stable equilibria are

indicated by • and unstable equilibria are indicated by ◦, except in (RIGHT), where • in the interior of the feasible

region indicates uniform persistence. Note that ∩Ii corresponds to that portion of the shaded region above and

to the right of both ZNGIs.
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3 Graphical method applied to classical model (1)

The graphical method presented in Section 2 is basically a generalization of the standard phase plane

analysis for the classical two species Lotka-Volterra competition model if one notes that the equilibria

of the resource-based model actually have four components, and so are of the form (R̄1, R̄2, N̄1, N̄2).

Therefore, points in (R1, R2)-space correspond naturally to points in (N1, N2)-space. For example, the

supply point (S1, S2) corresponds to the washout equilibrium E0 = (S1, S2, 0, 0) and hence to the

origin in (N1, N2)-space. All other equilibria correspond to points in (N1, N2)-space with either only one

component positive (single species equilibria) or with both components positive (coexistence equilibria).

As well, the feasible set boundaries correspond to the coordinate axes, the feasible set to the entire first

quadrant, and ZNGIs to the usual isoclines joining the axes:

Ni +
βijKi

ri
Nj = Ki, i, j ∈ {1, 2}, i �= j.

The invasive set is that part of the feasible set on the side of the isocline containing the origin:

Ii = {(N1, N2) ∈ F : Ni +
βijKi

ri
Nj ≤ Ki}, i, j ∈ {1, 2}, i �= j.

In the classical model it is understood that the carrying capacity of each population is positive, and hence

the ZNGI of each population intersects the feasible set. The identification of equilibria works exactly

the same as in Step 5 of Section 2. The determination of the stability of equilibria and the outcome

of competition follows just as it does in Step 6 of Section 2 (see Figure 6). Observe that the washout

equilibrium is always in the invasive set of both species and so is always unstable.

4 Discussion

4.1 Classification Issues

In this paper we consider multiple resource competition in the chemostat for fixed input resource con-

centrations. We begin by describing a general mathematical model in system (2). When more than one
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Fig. 6 Potential phase portraits for the classical competition model. Dynamics are (LEFT) competitive dominance;

(CENTRE) initial condition dependent outcome; (RIGHT) coexistence. The invasive set Ii for each species corresponds

to that portion of the feasible set F (shaded region) between the origin (identified with the supply point) and

ZNGIi. Therefore, ∩Ii corresponds to that portion of the shaded region below and to the left of both ZNGIs.

resource is potentially limiting, it becomes important to consider how resources are consumed and then

used by the competitors. Several authors have considered this issue and different terminology has been

proposed (e.g., [1, 2, 8, 17, 23, 24, 25]) to classify the spectrum of resource types: from resources that

fulfill different growth needs on the one extreme to resources that fulfill the same growth needs on the

other extreme.

With multiple limiting resources, it is necessary to consider how consumption and growth are affected

by changes in resource concentration. León and Tumpson [17] and Rapport [23] classify resources in

terms of how they fulfill nutritional requirements, and obtain a spectrum of resource types: perfectly

substitutable resources, imperfectly substitutable resources, and perfectly complementary resources. The

tool they use to classify resource pairs is indifference curves. Here, the curve μi(μi1, μi2) = C projected

onto the (μi1, μi2)-plane give pairs of values of μi1 and μi2 for which the growth rate is constant. They

call resources for which indifference curves are linear perfectly substitutable resources. Such resources

are alternative sources of the same required nutrient. An example for a bacterium might be two carbon

sources or two sources of nitrogen. Related studies include [5, 3, 22, 28]. At the other extreme are the

perfectly complementary resources (for which indifference curves form rectangular corners). These fulfill

different growth needs, and so must both be consumed in order to promote growth. For example, a

nitrogen source and a carbon source might be classified as essential for a bacterium. Related studies

include [7, 15, 16, 17, 19, 23, 28]. Nutrients that fall into neither of these categories fill out the spectrum
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and are referred to as imperfectly substitutable. The species could survive on either of these resources

alone, but growth is enhanced when the resources are combined. In this case, the indifference curves are

convex to the origin.

Tilman [24] classifies resources according to the shape of the resource growth isoclines, i.e. the shape

of the curves μi(R1, R2) = C projected onto the (R1, R2)-plane instead of the (μi1, μi2)-plane. (See

Figure 2 of [24].) Resources are substitutable when one can sustain the population in the absence of

the other. For such resources, the resource growth isoclines intersect the R1 and R2 axes. These range

from complementary (bowing toward the origin) through perfectly substitutable (straight lines) and

antagonistic (bowing away from the origin) to switching (forming right angle corners pointing away

from the origin). When one resource is required and the other may partially substitute for the first, the

resources are termed hemi-essential; here, the resource growth isoclines cross one of the resource axes

but eventually run parallel to the other. Resources are essential with respect to each other when both

are required for growth. The resource growth isoclines for perfectly essential resources form right-angled

corners pointing toward the origin. In some cases such resources are also perfectly complementary in the

sense of León and Tumpson [17]. Hence there are two potential sources of confusion: the use of the same

terms for different resource types and the use of different terms for the same resource types. For interactive

essential resources, the corner is replaced by a curve. Finally, resources that inhibit growth at high

concentrations will yield resource growth isoclines that form closed curves. Other terminology introduced

to describe mixed substrate utilization for nutrients that satisfy the same physiological requirements for

growth include homologous (Harder and Dijkhuizen [12]) or non-interactive (Bader et al [2]), whereas

heterologous (Egli [8]) and interactive (Bader [1]) have been used for nutrients that satisfy different

physiological requirements. The graphical method presented here does not depend on the terminology

chosen to classify resources. Though it involves the curve μi(R1, R2) = C, it is of no consequence whether

this curve represents a resource growth isocline or is obtained by projecting an indifference curve into

the (R1, R2)-plane.
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It has been well-established [6, 13, 14, 29] that the basic model of exploitative competition in the

chemostat for a single, non-reproducing, growth-limiting resource predicts that at most one population

will survive. This remains the case when the model is refined to include a delay in the process of

conversion of nutrient to viable biomass (see e.g., [30, 31, 32]), and is in keeping with the principle of

competitive exclusion: two populations that compete for the exact same resources cannot stably coexist

[10]. We restrict our attention to two populations competing for two resources, in order to compare the

possible outcomes of the classical model (where coexistence is possible) with those of the resource-based

approach. We find that the general framework provided by system (2) is adequate to capture virtually

all of the resource types described in this section. The details of the corresponding model derivations for

the extremes is provided in Appendix B.

4.2 Unification with classical model and across resource types

Given that system (2) is four-dimensional, it might be surprising that the graphical method of Sec-

tion 2 allows for meaningful graphical comparisons with the two-dimensional classical model (1). The

remarkable correspondence between the phase portraits is depicted in Figure 7. In these figures, dashed

lines are used for the isoclines of species N1 and dotted lines are used for those of species N2. Recall

that the supply point (S1, S2) in (R1, R2)-space corresponds to the extinction equilibrium point (0, 0)

in (N1, N2)-space. Since the phase portraits for model (4) and model (10) are shown in (R1, R2)-space,

the phase portraits in the classical case (Figure 6) are shown upside down in (N1, N2)-space in order to

emphasize the similarity.

In the leftmost column, the outcome of competition for each system is competitive dominance, i.e.

species N1 wins and drives species N2 to extinction. In each case the ZNGIs do not intersect inside the

feasible region, so that there is no coexistence equilibrium. The single species equilibrium where N2 is

positive lies in I1, so that species 1 can invade and the equilibrium is unstable. At the same time, the
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single species equilibrium where N1 is positive is not in I2, so that species 2 cannot invade and the

equilibrium is stable.

In the center column, the outcome of competition for each system is initial condition dependent (i.e.,

the positive equilibrium is unstable and there are two stable single species equilibria). In each case the

ZNGIs intersect inside the feasible region, so that there is a coexistence equilibrium. Each single species

equilibrium lies outside the invasive set of the other species, and hence is stable. Since both single species

equilibria are stable, the coexistence equilibrium is unstable (see Step 6 of Section 2).

In the rightmost column, competition results in the survival of both species. In each case the ZNGIs

again intersect inside the feasible region, so that there is a coexistence equilibrium. Here, each single

species equilibrium lies inside the invasive set of the other species, and hence is unstable. Since both

single species equilibria are unstable, the coexistence equilibrium is stable (up to Hopf bifurcation), and

the system is uniformly persistent. For related global results, see [3, 6].

Notice that the figures in each column are topologically equivalent in the sense that if one stretches the

zero net growth isoclines in the second row so that they are all straight lines, then the graph would look

the same as the graph in the bottom row. Figure 7(MIDDLE) (where resources fulfill different needs) and

Figure 7(BOTTOM) (where resources fulfill the same needs) represent extremes in a continuum of resource

types. Typical resources likely fall between these extremes. The continuous deformation of one set of

figures to the other will preserve the basic structure, thus demonstrating a unification across resource

types. Moreover, the dynamics in any given column is consistent, thus demonstrating a unification of the

resource-based models with the classical model in the context of the graphical method described herein.

4.3 Comparison with Tilman’s Graphical Method

In a series of papers and monographs [24, 25], Tilman examines two-species competition for two resources.

There it is assumed that growth rate depends directly on resource availability and that the consumption

rate has the special form μij(R) = μi(R)hij(R), where hij(R) is the function describing the amount of
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Fig. 7 Similarity of the phase portraits in the case of: (TOP) classical; (MIDDLE) model (4); (BOTTOM) model (10).

Dashed lines are used for species N1 and dotted lines for species N2. The symbols • and ◦ are as in Figure 5.

The phase portraits in the classical case are shown upside down in (N1, N2)-space, in order to emphasize the

similarity. Dynamics are (LEFT) competitive dominance (species N1 wins and drives species N2 to extinction);

(CENTRE) initial condition dependent outcome; (RIGHT) coexistence. Notice that if one identifies (0, 0) with (S1, S2)

and stretches the figures in the second and third rows so that the isoclines are all straight lines, then they would

look essentially the same as the figure for the classical case just above them.

resource Rj required to produce each new individual of species Ni. We feel it is reasonable to assume that

the functions describing the rate of consumption of resources, μij , should depend directly on resource

availability. Although not necessary for our analysis, we think that the functions modelling the growth

rate, μi, on the other hand, should be a function of the amount of each resource consumed, and hence

depend only indirectly on the availability of the resources, as given by

μi(R(t)) = μi(μi1(R(t)), μi2(R(t)), . . . , μim(R(t))).
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With the notable exception of essential, switching, and inhibitory resources, all of the resource types

described by Tilman produce resource growth isoclines (and hence ZNGIs) corresponding to decreasing

functions in the (R1, R2)-plane. If one imposes only condition (7) on model (2), only monotone de-

creasing ZNGIs are obtained. With the addition of ((8) and (9)) or ((8) and (21)), FSBj is monotone

increasing (Appendix C.1) so that ZNGIi and FSBj can intersect at most once, and at most one single-

species equilibrium can exist. Moreover, a single-species equilibrium is locally asymptotically stable in

the corresponding three-dimensional subsystem when it exists (see [21]). The local asymptotic stability

of single-species equilibria in the full four-dimensional system then follow from the invasion criterion, as

described in Section 4.2.

In the context of model (2), Tilman would define the consumption vector of species i at resource

concentration (R∗
1, R∗

2) to be

ci =

0
BB@

μi1(R∗
1, R∗

2)

μi2(R∗
1, R∗

2)

1
CCA .

He further determines ZNGIs precisely as in Step 3. Tilman divides (R1, R2)-space into regions based

on the relative positions of the ZNGIs and the slopes of the consumption vectors at the intersection of

the ZNGIs (if any). Different competitive outcomes can be obtained depending on the region in which

(S1, S2) is located. (See Figure 24 of [25].)

When the ZNGIs do not intersect (see Figure 5 (LEFT)), the pattern of dominance (as a function of

the location of the supply point) is easily supported by our graphical technique. When the two ZNGIs

intersect (see Figure 5 (CENTER) and (RIGHT)), Tilman considers the system of equations obtained by

setting R′
1 = 0 = R′

2. (These equations, together with the condition Ni = 0, were used in Step 1 to

determine FSBi.) At the intersection (R∗
1, R∗

2) of the ZNGIs, this yields

2X
i=1

Niμi1(R∗
1, R∗

2) = (S1 − R∗
1)D,

(14)

2X
i=1

Niμi2(R∗
1, R∗

2) = (S2 − R∗
2)D.
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He considers this to be a linear system for N∗
1 and N∗

2 , and solves to obtain

N∗
1 =

(S1 − R∗
1)μ22(R∗

1, R∗
2) − (S2 − R∗

2)μ21(R
∗
1, R∗

2)

Δ(R∗
1, R∗

2)
,

(15)

N∗
2 =

(S2 − R∗
2)μ11(R∗

1, R∗
2) − (S1 − R∗

1)μ12(R
∗
1, R∗

2)

Δ(R∗
1, R∗

2)
,

where Δ(R∗
1, R∗

2) is the determinant of the coefficient matrix associated with (14):

Δ(R∗
1, R∗

2) = μ11(R
∗
1, R∗

2)μ22(R
∗
1, R∗

2) − μ12(R
∗
1, R∗

2)μ21(R
∗
1, R∗

2). (16)

Let Ci denote the slope of the consumption vector of species i at the intersection:

Ci =
μi2(R∗

1, R∗
2)

μi1(R∗
1, R∗

2)
.

Without loss of generality, assume C1 < C2. Noting that each of N∗
1 and N∗

2 in (15) shares a factor of

Δ(R∗
1, R∗

2), it follows from their numerators that the corresponding solution (N∗
1 , N∗

2 ) will have both

coordinates positive provided

C1 <
(S2 − R∗

2)D

(S1 − R∗
1)D

< C2.

The left inequality indicates that N∗
2 will be positive provided the ratio of the net supply rate of resource

two to that of resource one exceeds C1. Similarly, the right inequality indicates that N∗
1 will be positive

provided C2 exceeds the net supply rate of resource two to that of resource one. These inequalities

then yield conditions that must be satisfied by the supply point in order to ensure the feasibility of the

coordinates of (N∗
1 , N∗

2 ). In particular, the ordered pair (S1, S2) must satisfy R∗
2 + DC1(S1 − R∗

1) < S2

in order to ensure that N∗
2 > 0 and S2 < R∗

2 + DC2(S1 − R∗
1) in order to ensure that N∗

1 > 0.

In Tilman’s graphical method the dilution rate is fixed, and the input nutrient concentrations (S1, S2)

that lead to specific competitive outcomes are determined based on information at potential coexistence

equilibria. That is, determination of the feasibility of (N∗
1 , N∗

2 ) relies on information obtained at the

intersection of the ZNGIs. This is in contrast to the graphical method presented here, where existence,

location, and stability of single-species equilibria is determined for fixed (S1, S2) from single-species
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information. For given species and input concentrations, the feasible set is fixed. The zero net growth

isoclines (and hence the location of equilibria) move in response to changes in the dilution rate D. Thus,

one can progress from Figure 4(TOP) through Figure 4(BOTTOM) to Figure 5 (and hence from washout

through competitive exclusion to coexistence) by decreasing D.

Appendices

A ZNGIs and Generalized Break-Even Concentrations

It is well-known that the outcome of competition for a single non-reproducing resource in the chemostat depends

on the relative value of the so-called break-even concentrations. In the case of multiple limiting resources there is

a surface of break-even concentrations, those values of the vector R = (R1, . . . , Rm) such that μi(R) = D. In the

case of two limiting resources this defines a level curve in (R1, R2)-space, typically referred to as a zero net growth

isocline, since N ′
i = 0 at all points on the curve. The nature of this curve will be determined by the manner in

which the resources are combined to promote growth.

A.1 Generalized Break-Even Concentrations: Resources fulfill different growth needs as in (4).

In order to describe the zero net growth isoclines for resources fulfilling different growth needs, it will be convenient

to establish the following notation for the break-even concentration for population i on resource Rj when the

other resource is abundant and hence nonlimiting. Define Rji
so that

pij(Rji
) = D. (17)

By the monotonicity of pij(Rj), Rji
is a uniquely defined extended positive real number provided we assume that

Rji
= ∞ if pij(Rj) < D for all Rj ≥ 0. When both resources are supplied in growth-limiting amounts, we have

μi(R1i , R2) = D for all R2 ≥ R2i and μi(R1, R2i ) = D for all R1 ≥ R1i , giving an L-shaped curve of break-even

concentrations with corner at (R1i , R2i ) in the (R1, R2)-plane. More generally, when two resources fulfill different

needs (and hence neither can sustain the population independently) the zero net growth isocline need not form

corners. However, it does not intersect the R1 and R2 axes, but runs parallel to them asymptotically.
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A.2 Generalized Break-Even Concentrations: Resources fulfill the same growth needs as in (10).

In order to describe the zero net growth isoclines for resources that fulfill the same growth needs, it will be

convenient to establish the following notation for the break-even concentration for population i on resource Rj

when the other resource is absent. Since each resource can sustain growth in the absence of the other, there is a

finite concentration R1i of resource R1 satisfying μi(R1i , 0) = D and a finite concentration R2i of resource R2

with μi(0, R2i ) = D. In fact, there is a continuous decreasing function R1 = ϕi(R2) from (R1i , 0) to (0, R2i ) such

that ϕi(0) = R1i , ϕi(R2i ) = 0, and μi(ϕi(R2), R2) = D.

B Model Derivations

B.1 Resources that fulfill different growth needs

We first consider resources that fulfill different growth needs, and so must be used together by the consumer. In

this case, the Law of the Minimum is customarily used to model the growth rate based on consumption, giving

μi(R1, R2) = min{Yi1μi1(R1, R2), Yi2μi2(R1, R2)}.

Here Yij = 1
cij

is a growth yield factor and cij denotes the number of units of resource j that an individual of

population i must consume in order to produce a new unit of its own biomass. Then model (2) becomes

R′
j = (Sj − Rj)D −

2X
i=1

Niμij(R1, R2),

N ′
i = Ni(−D + min{Yi1μi1(R1, R2), Yi2μi2(R1, R2)}), (18)

R1(0), R2(0), N1(0), N2(0) ≥ 0.

It is reasonable to assume that the consumption of resource j by population i, μij (R1, R2), is a monotone increasing

function of resource j, as in (3).

To derive the model in the form most often considered in the literature [7, 11, 15, 16, 17, 18, 19, 24, 25], it

seems necessary to assume further that consumption of the two resources is also in the correct proportions required

for growth, thus avoiding any waste. Hence, the consumption of a resource in abundant supply is dictated by

the availability of the other resource when the latter is in relatively short supply. In particular, this means that

if μi1(R1) denotes the amount of R1 that would be consumed by Ni if R2 is plentiful, then to avoid waste, the

corresponding amount of R2 consumed would have to be c12
c11

μi1(R1). Similarly, if μi2(R2) denotes the amount

of R2 that would be consumed by Ni if R1 is plentiful, then to avoid waste, the corresponding amount of R1
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consumed would have to be c11
c12

μi2(R2). Therefore,

μi1(R1, R2) = min

j
μi1(R1),

c11

c12
μi2(R2)

ff
= c11 min

j
μi1(R1)

c11
,
μi2(R2)

ci2

ff

and

μi2(R1, R2) = min

j
c12

c11
μi1(R1), μi2(R2)

ff
= c12 min

j
μi1(R1)

c11
,
μi2(R2)

ci2

ff
.

To simplify notation, and have the model appear in the form most familiar in the literature (e.g. [7, 15, 17, 19]),

define pij(Rj) =
µij(Rj)

cij
and impose assumption (5) in keeping with (3) to obtain system (4).

The assumption that resources are consumed in the proportions required for growth has lead to one of the

most familiar models for multiple resource limitation in the literature, and so this will be one of the models

we use to illustrate our graphical method. Since the indifference curves (in the (μi1, μi2)-plane) for this model

are right-angled, it is often referred to as the model for perfectly complementary resources by those using the

resource classification of León and Tumpson. By (5), the resource growth isoclines (in the (R1, R2)-plane) also

form corners. Thus, this is also called the model for essential resources by those using the classification of Tilman.

(Note that Tilman used the classification “complementary resources” in a completely different sense, as a special

case of his substitutable resources.)

In order to describe the zero net growth isoclines for resources fulfilling different growth needs, it will be

convenient to establish the following notation for the break-even concentration for population i on resource Rj

when the other resource is abundant and hence nonlimiting. Define Rji
so that

pij(Rji
) = D. (19)

By the monotonicity of pij(Rj ), Rji
is a uniquely defined extended positive real number provided we assume

that Rji
= ∞ if pij(Rj) < D for all Rj ≥ 0. When both resources are supplied in growth-limiting amounts,

we have μi(R1i , R2) = D for all R2 ≥ R2i and μi(R1, R2i ) = D for all R1 ≥ R1i , giving an L-shaped curve of

break-even concentrations with corner at (R1i , R2i ) in the (R1, R2)-plane. More generally, for model (18), when

two resources fulfill different needs (and hence neither can sustain the population independently) the zero net

growth isocline need not form corners. However, it does not intersect the R1 and R2 axes, and runs parallel to

them asymptotically. This will be in stark contrast to the resources considered in the next section

B.2 Resources that fulfill the same growth needs

We now consider resources such that each can sustain growth in the absence of the other, and hence the zero net

growth isocline intersects both axes. Thus, there is a finite concentration R1i of resource R1 with μi(R1i , 0) = D
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and a finite concentration R2i of resource R2 with μi(0, R2i ) = D. In this case that resources fulfill the same

growth needs, growth is often modeled (e.g. [3, 17, 22]) by a sum (as in (6)):

μi(R1, R2) = Yi1μi1(R1, R2) + Yi2μi2(R1, R2),

where the constants Yij are growth yield constants. In this case, the indifference curves (in the (μi1, μi2)-plane)

are linear and so the resources are called perfectly substitutable according to the resource classification of León

and Tumpson. On the other hand, such resources are only called perfectly substitutable in the classification of

Tilman if the resource growth isoclines (obtained by further projecting μi(R1, R2) = C into the (R1, R2)-plane)

are linear. This is the case when the familiar Michaelis-Menten or Monod functional response is generalized to

the case of two perfectly substitutable resources (see [28]). That is, choosing

μi1(R1, R2) =
mi1Ki2R1

Ki1Ki2 + Ki2R1 + Ki1R2
, μi2(R1, R2) =

mi2Ki1R2

Ki1Ki2 + Ki2R1 + Ki1R2
, (20)

(as in (10)) yields both indifference curves and resource growth isoclines that are linear, and hence the two

classifications are consistent. However, we need not deviate far from (20) to find an example for which this

consistency fails to hold. Taking

μi1(R1, R2) =
mi1R1

Ki1 + R1
and μi2(R1, R2) =

mi2R2

Ki2 + R2

in (6) we obtain linear indifference curves, but resource growth isoclines that are convex, linear, or concave,

depending on the values of the parameters, and hence classified as complementary, perfectly substitutable, or

antagonistic, in the terminology of Tilman.

As one of the examples to illustrate our method, we assume (6) and (10) hold, since the resulting model can

be referred to as perfectly substitutable in the classifications of both León and Tumpson and Tilman, and because

the resulting model represents an extreme case compared to model (4). However, the method can be applied

more generally. For example, when resources fulfill the same needs for growth and we impose (6), it might be

reasonable to assume that the consumption of resource j by population i increases strictly with the availability

of resource j, as in (8), but that it decreases with the availability of the other resource, as in (9) (see [3, 22]).

The latter (9) incorporates the possibly inhibitory effect that the abundant presence of one resource might have

on the consumption of the other due to handling time. In particular, the generalized Michaelis-Menten functions

(20) satisfy these assumptions.

B.3 Resources that fall between the extremes

In reality, use of most resources fall somewhere in between the extremes discussed thus far, and the level curve

of break-even concentrations might intersect one axis and not the other. The graphical method we present can
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be applied very generally to locate single-species and coexistence equilibria and determine their stability. In fact,

only the basic assumptions given in Section 1.2 for model (2) are necessary to locate the equilibria. Additional

assumptions are needed only to determine their stability, though these condition are not restrictive. Besides the

special cases discussed in the previous subsections, stability can be determined for model (2) without requiring

(6) provided we assume (7), (8), and

|∂μi1

∂R2
(R1, R2)|, |∂μi2

∂R1
(R1, R2)| are relatively small i = 1, 2, (21)

so that the external concentration of one resource has a relatively small effect on the consumption of the other. This

allows for more complicated resources that might fully or partially fulfill the same requirement for growth, and/or

might have a synergistic or inhibitory effect if taken together. Perhaps such an assumption is not unreasonable;

indeed, León and Tumpson [17] only consider the case when there is no such effect, i.e.

∂μi1

∂R2
(R1, R2) =

∂μi2

∂R1
(R1, R2) = 0.

Details concerning the stability are provided in Section 2 and Appendix D. Note that the method also works when

the resources are inhibitory at high concentrations, in which case the level curve of break-even concentrations

could be a closed curve.

C Generalizations

Step 6 in Section 2 was stated under the assumption that ZNGIi intersects both FSBj and ZNGIj at most once,

i, j ∈ {1, 2} and that any such intersection is transversal. We also assumed the resulting single species equilibrium

to be globally asymptotically stable with respect to the (R1, R2, Ni)-subsystem. Here we examine the implications

of generalizing these assumptions.

C.1 Multiple crossings of ZNGIi and FSBj

First we consider the nature of the feasible set boundaries in (R1, R2)-space. From (11), FSBj is given by

μj2(R1, R2)(S1 − R1) = μj1(R1, R2)(S2 − R2). (22)

In the case of model (4), FSBj is a line with slope Yj1/Yj2 > 0 (see (12)). Otherwise, consider R2 in (22) to be a

function of R1. Differentiating with respect to R1 we have

∂R2

∂R1

„
∂μj2

∂R2
(S1 − R1) + μj1 − ∂μj1

∂R2
(S2 − R2)

«

= μj2 − ∂μj2

∂R1
(S1 − R1) +

∂μj1

∂R1
(S2 − R2).
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Fig. 8 The existence and stability of equilibria in the three-dimensional subsystem of (4) involving N1 (in the

absence of N2) is depicted when resources are inhibitory at high concentrations. The dashed rectangle denotes

ZNGI1 with interior R1, while the dotted line depicts FSB2.

Under assumptions ((8) and (9)) or ((8) and (21)), it follows that ∂R2/∂R1 > 0. If ZNGIi is decreasing, it can

intersect FSBj at most once.

For an example in which ZNGIi and FSBj intersect more than once, we turn to the case of inhibition in the

context of essential resources, i.e. the resources are limiting at both low and high concentrations. (See [7].) Here

we remove the assumption on the derivative of pij and assume that each equation pij(Rj) = D has precisely two

solutions. Denote these solutions by R1
ji

< R2
ji

, and note that p′ij(R
1
ji

) > 0 while p′ij(R
2
ji

) < 0. That there are

two such solutions will impact neither the FSBs nor F , but ZNGIi now forms a rectangle in the (R1, R2)-plane.

Denote by Ri the interior of this rectangle. Note that ZNGIi intersects FSBj at most two times.

As depicted in Figure 8, we first consider a single species N1 growing on the two resources (i.e. N2 = 0).

(Of course, the choice of subscripts is completely arbitrary.) We consider the stability of this three-dimensional

subsystem of (4). If the supply point is in R1, then the washout equilibrium is unstable; if it is not in the closure

of R1, then it is locally asymptotically stable. Recall that FSB2 is determined by R′
1 = 0 = R′

2 with N2 = 0,

i.e. in the absence of species N2. Single-species equilibria correspond to intersections of ZNGI1 and FSB2. These

equilibria alternate in stability as one moves from the supply point to a coordinate axis. This follows from a

standard local stability computation involving the eigenvalues of the three-dimensional Jacobian evaluated at the

single-species equilibrium. One of the eigenvalues has the opposite sign to p′1j(R
k
j1

), while the remaining two are

both equal to −D.

Now suppose that competitor N2 is introduced, and consider how this affects the stability of the equilibria just

discussed as they occur in the full four-dimensional system. If the supply point is in R1 ∪R2, then the washout

equilibrium is unstable. If it is not in the closure of R1 ∪R2, then it is locally asymptotically stable. A standard

linear analysis of the full four-dimensional system at an equilibrium of the form E1 = (R̄11 , R̄21 , N̄1, 0) reveals that

three of the eigenvalues remain as in the previous paragraph. The fourth eigenvalue is given by G2(R̄11 , R̄21 )−D,
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0

(S1, S2)

R1

R2

0

(S1, S2)

R1

R2

Fig. 9 How the inclusion of ZNGI2 for competitor N2 affects the stability of the single-species equilibria involving

N1 in Figure 8(RIGHT).

and hence its sign is determined by the invasion criterion. It follows that E1 remains unstable with the addition of

competitor N2 if it was unstable in the (R1, R2, N1)-subsystem. Further, suppose E1 was locally asymptotically

stable in the (R1, R2, N1)-subsystem. If (R̄11 , R̄21 ) is not in the closure of R2, then E1 remains asymptotically

stable (see Figure 9(LEFT)). However, if (R̄11 , R̄21 ) is in R2, then E1 is unstable (see Figure 9(RIGHT)).

Finally, any intersection of the ZNGIs in F that is not on the boundary of F corresponds to a coexistence

equilibrium. The issue of the stability of such an equilibrium is complicated, since this system can exhibit nontrivial

dynamics. See Butler and Wolkowicz [7] for a more detailed discussion. For example, it is shown that a coexistence

equilibrium can undergo a Hopf bifurcation.

C.2 Multiple intersections of the ZNGI

Now consider the stability of equilibria when there are multiple crossings of the ZNGIs, as in Figure 9A of [24].

We will require the following notation:

– The supply point (S1, S2) corresponds to the washout equilibrium E0 = (S1, S2, 0, 0).

– If ZNGI1 intersects FSB2, denote the point of intersection by (R̄11 , R̄21 ). This corresponds to a single-

species equilibrium of the form E1 = (R̄11 , R̄21 , N̄1, 0) with N̄1 > 0. Similarly, if ZNGI2 intersects FSB1,

denote the point of intersection by (R̄12 , R̄22 ). This corresponds to a single-species equilibrium of the form

E2 = (R̄12 , R̄22 , 0, N̄2) with N̄2 > 0.

– Identify coexistence equilibria, denoted E∗ = (R∗
1 , R∗

2 , N∗
1 , N∗

2 ) with N∗
i > 0, i = 1, 2, as points where ZNGI1

and ZNGI2 intersect in the interior of F .

Theorem 3.14 of [3] holds for any monotone decreasing ZNGI under assumptions ((8) and (9)) or ((8) and

(21)). In particular, for any intersection (R∗
1 , R∗

2) of the ZNGIs, we have

min{R̄11 , R̄12} < R∗
1 < max{R̄11 , R̄12},
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and the determinant (16) maintains its sign on the interval

(min{R̄11 , R̄12}, max{R̄11 , R̄12}).

As one moves from the single-species equilibrium along the corresponding ZNGI, only the inequality |ϕ′
1(R

∗
1)| >

|ϕ′
2(R

∗
1)| reverses with each transversal crossing of the ZNGIs. Thus, A4 > 0 and A4 < 0 (in turn) at each crossing.

(See Appendix D.2.)

C.3 Assumptions for Step 6 in Section 2 hold more generally

Step 6 in Section 2 was stated under the assumption that any single-species equilibrium is globally asymptotically

stable with respect to the (R1, R2, Ni)-subsystem. Indeed, this is the case for system (4) (see [7]) and for system

(2) with gj(Rj) = (Sj − Rj)D and Di = D assuming (6), (7), (8), and (9) (see [3]). A standard linear analysis

of the (R1, R2, Ni)-subsystems of (2) (based in the chemostat) indicates that local asymptotic stability of such

an equilibrium does not require (6) and (9), under assumptions (7) and (8) provided (21) holds. (See [21] and

Appendix D.1).

D Local Stability

D.1 Stability of a single species equilibrium

Determining the local asymptotic stability of an interior equilibrium from the corresponding variational matrix is

necessarily computational. For the (R1, R2, Ni)-subsystem, necessary and sufficient conditions have been estab-

lished both for perfectly substitutable resources (model (2) with assumptions (6), (7), (8), and (9) see [3]) and for

essential resources (model (4) with assumptions (5), see [7]). In this appendix we give the details of a standard

linear analysis of the (R1, R2, Ni)-subsystems of (2). Consider

R′
j = (Sj − Rj)D − Niμij(R1, R2),

N ′
i = Ni(−D + μi(R1, R2)).
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Let us assume that a one-species survival equilibrium Ei = (R̄1i , R̄2i , N̄i) exists, and examine the local stability

properties of Ei. The variational matrix evaluated at Ei is given by

0
BBBBBBBBBBBBBB@

−D − N̄i

Yi1

∂μi1

∂R1
− N̄i

Yi1

∂μi1

∂R2
− 1

Yi1
μi1

− N̄i

Yi2

∂μi2

∂R1
−D − N̄i

Yi2

∂μi2

∂R2
− 1

Yi2
μi2

N̄i
∂μi

∂R1
N̄i

∂μi

∂R2
0

1
CCCCCCCCCCCCCCA

.

The characteristic equation of V (R̄1i , R̄2i , N̄i), the variational matrix evaluated at Ei, is given by λ3 + A1λ2 +

A2λ + A3, where

A1 = 2D +
N̄i

Yi1

∂μi1

∂R1
+

N̄i

Yi2

∂μi2

∂R2
,

A2 = D2 +
N̄2

i

Yi1Yi2

„
∂μi1

∂R1

∂μi2

∂R2
− ∂μi2

∂R1

∂μi1

∂R2

«

+ N̄i

„
μi2

Yi2

∂μi

∂R2
+

μi1

Yi1

∂μi

∂R1
+

D

Yi1

∂μi1

∂R1
+

D

Yi2

∂μi2

∂R2

«
,

A3 = N̄iD

„
μi1

Yi1

∂μi

∂R1
+

μi2

Yi2

∂μi

∂R2

«

+
N̄2

i

Yi1Yi2

„
∂μi

∂R2

„
μi2

∂μi1

∂R1
− μi1

∂μi2

∂R1

«
+

∂μi

∂R1

„
μi1

∂μi2

∂R2
− μi2

∂μi1

∂R2

««
,

and A1A2 − A3 = B1N̄3
i + B2N̄2

i + B3N̄i + B4, where

B4 = 2D3,

B3 = 3D2

„
1

Yi1

∂μi1

∂R1
+

1

Yi2

∂μi2

∂R2

«
+ D

„
μi1

Yi1

∂μi

∂R1
+

μi2

Yi2

∂μi

∂R2

«

B2 = D

„
1

Yi1

∂μi1

∂R1
+

1

Yi2

∂μi2

∂R2

«2

+
2D

Yi1Yi2

„
∂μi1

∂R1

∂μi2

∂R2
− ∂μi2

∂R1

∂μi1

∂R2

«

+
1

Y 2
i1

∂μi

∂R1

∂μi1

∂R1
μi1 +

1

Yi1Yi2

„
∂μi

∂R1

∂μi1

∂R2
μi2 +

∂μi

∂R2

∂μi2

∂R1
μi1

«
+

1

Y 2
i2

∂μi

∂R2

∂μi2

∂R2
μi2

B1 =
1

Yi1Yi2

„
∂μi1

∂R1

∂μi2

∂R2
− ∂μi2

∂R1

∂μi1

∂R2

« „
1

Yi1

∂μi1

∂R1
+

1

Yi2

∂μi2

∂R2

«
.

An examination of the Ai and Bi indicates that such an equilibrium is locally asymptotically stable whenever

(7), (8), and (21) hold.

D.2 Stability of a unique coexistence equilibrium

We examine the details of the stability of a coexistence equilibrium at a unique intersection of the ZNGI. De-

termining the local asymptotic stability of an interior equilibrium from the corresponding variational matrix is
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necessarily computational. Necessary and sufficient conditions have been established for model (4) with assump-

tions (5) (see [7]), and necessary conditions have been established by various authors for special cases of model

(2) [3, 17]. In this section, we examine this same question in the context of the most general model (2). Denote

by λ4 + A1λ3 + A2λ2 + A3λ + A4 the characteristic polynomial of the variational matrix of (2) evaluated at a

coexistence equilibrium E∗ = (R∗
1 , R∗

2, N∗
1 , N∗

2 ). Then a necessary condition for E∗ to be locally asymptotically

stable is

A4 =

„
∂μ1

∂R1

∂μ2

∂R2
− ∂μ1

∂R2

∂μ2

∂R1

«
(μ11μ22 − μ12μ21) > 0, (23)

where each of these quantities is evaluated at the interior equilibrium (if it exists). Suppose the ZNGIs intersect

transversally at (R∗
1 , R∗

2) inside the feasible set. Without loss of generality, assume that R̄11 < R̄12 , as it is in

Figure 5. We will examine each factor of A4 in turn.

Consider the first multiplicative factor of A4. Suppose that μi(R1, R2) is increasing in both variables. As

in Lemma 3.5 of [3], one can show that there exists a C1 function ϕi(R1) (corresponding to ZNGIi) satisfying

μi(R1, ϕi(R1)) = D with

ϕ′
i(R1) = − (∂/∂R1)μi(R1, ϕi(R1))

(∂/∂R2)μi(R1, ϕi(R1))
< 0.

If the single-species equilibria are locally asymptotically stable (as in Figure 5(BOTTOM,MIDDLE)), then (R̄11 , R̄21 )

is in the complement of I2 while (R̄12 , R̄22 ) is in the complement of I1. This implies |ϕ′
1(R

∗
1)| < |ϕ′

2(R
∗
1)|, so that

∂μ1

∂R1

∂μ2

∂R2
− ∂μ1

∂R2

∂μ2

∂R1
< 0.

If the single-species equilibria are unstable (as in Figure 5(BOTTOM,RIGHT)), then (R̄11 , R̄21 ) is in I2 while

(R̄12 , R̄22 ) is in I1. This implies |ϕ′
1(R

∗
1)| > |ϕ′

2(R
∗
1)|, so that

∂μ1

∂R1

∂μ2

∂R2
− ∂μ1

∂R2

∂μ2

∂R1
> 0.

We now examine the second multiplicative factor of A4. At the intersection of the ZNGIs, the equations

R′
1 = 0 = R′

2 yield N∗
1 and N∗

2 as in (15) with Δ(R∗
1 , R∗

2) as in (16). Note that Δ(R∗
1 , R∗

2) is indeed the second

factor. The techniques of Lemma 3.13 and Theorem 3.14 of [3] can be applied under assumptions ((8) and (9))

or ((8) and (21)) to show that Δ(R∗
1 , R∗

2) > 0 (since R̄11 < R̄12 , as in Figure 5). In particular, consider the

numerator of N∗
i in (15) to be a function of R1 by restricting R2 to ϕj(R1), and denote the result by Ni(R1).

It can be shown that Ni(R̄1j ) = 0, N1(R1) is decreasing on (R̄11 , R̄12 ), and N2(R1) is increasing on (R̄11 , R̄12 ).

Thus, each is positive, and so Δ(R∗
1, R∗

2) > 0. Therefore, if the single-species equilibria are locally asymptotically

stable, A4 < 0 (and so E∗ is unstable). However, if the single-species equilibria are unstable, then A4 > 0. (Note

that Δ(R∗
1 , R∗

2) < 0 when R̄11 > R̄12 .)
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For model (4), consider the configuration in Figure 5(TOP,MIDDLE). At E∗ species one is limited by resource

two (so that μ1(R∗
1 , R∗

2) = p12(R∗
2)) and species two is limited by resource one (so that μ2(R∗

1, R∗
2) = p21(R∗

1)).

Therefore, at (R∗
1 , R∗

2),

∂μ1

∂R1

∂μ2

∂R2
− ∂μ1

∂R2

∂μ2

∂R1
= −p′12 · p′21 < 0.

At Ē1, μ11(R1, R2) = p11(R1)/Y11, μ12(R1, R2) = p11(R1)/Y12, and N̄2 = 0. Along the vertical portion of

ZNGI1, the numerator of N∗
2 in (15) is given by

(S2 − R2)p11(R1)/Y11 − (S1 − R1)p11(R1)/Y12.

This is a decreasing function of R2, so as R2 decreases from R̄21 to R21 , this expression increases from zero.

At (R11 , R21 ) species one becomes limited by resource two, so that μ11(R1, R2) = p12(R2)/Y11, μ12(R1, R2) =

p12(R2)/Y12, and the numerator of N∗
2 in (15) is given by

(S2 − R2)p12(R2)/Y11 − (S1 − R1)p12(R2)/Y12.

This is an increasing function of R1, so as R1 increases from R11 to R∗
1 , this expression increases still more. Thus,

the numerator of N∗
2 in (15) is positive at E∗. Similarly, one can show that the numerator of N∗

1 in (15) is positive

at E∗. This gives Δ(R∗
1 , R∗

2) > 0, implying that A4 < 0 and the coexistence equilibrium is unstable. Note that

other configurations are possible in Figure 5(TOP,MIDDLE) (by moving one or both of the FSBs), but the argument

will proceed as above.

For the configuration in Figure 5(TOP,RIGHT), species one is limited by resource one (so that μ1(R∗
1 , R∗

2) =

p11(R∗
1)) and species two is limited by resource two (so that μ2(R∗

1 , R∗
2) = p22(R∗

2)). Therefore, at (R∗
1 , R∗

2),

∂μ1

∂R1

∂μ2

∂R2
− ∂μ1

∂R2

∂μ2

∂R1
= p′11 · p′22 > 0.

As in the previous paragraph, one can determine that the numerators of both N∗
1 and N∗

2 in (15) are positive

at E∗, giving Δ(R∗
1, R∗

2) > 0, so that A4 > 0. It is interesting to note that in the case of Figure 5(TOP,RIGHT),

where the coexistence equilibrium is stable, each species must be limited by the same resource at the coexistence

equilibrium that it would be limited by at the single-species equilibrium.

For essential resources, the interpretation of the sign of this first component is the same as in the previous case

but can be more simply stated: each species is limited by a different resource. The second component of A4 now

yields the following necessary condition for stability: the product of the consumption rates of the nutrient that is

limiting (essential) or more limiting (substitutable) for each species is larger than the product of the consumption

rates of the non-limiting (essential) or less limiting (substitutable) nutrient for each species.
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