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Abstract. If a system of several populations of microorganisms compete exploitatively 
for a single nonreproducing limiting nutrient which is introduced into and washed out of 
the system at a cnnstant rate, then competitive exclusion results, Provided that there 
are no inhibition effects, the population requiring the lowest "break-even" 
concentration of nutrient will be the winner. This outcome can be changed if a predator 
population is introduced into the system. In this paper we explore some of the 
possiblities of coexistence and competition reversal that may arise. 
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INTRODUCTION 

If two or more distinct populations of 
microorganisms complete for a non-reproducing, 
limiting substrate, then in the simpler 
circumstances, sometimes referred to as "pure 
competition" it would appear that at mnst one of 
the populations can be maintained. There is a 
useful laboratory experiment that models this 
type of competition, namely the chemostat, in 
which the competing populations are sustained in 
a growth chamber and a single essential, 
growth-limiting nutient is supplied at a constant 
rate from a feed bottle. Removal of nutrient, 
microorganisms, by-products and other growth 
media also takes place, usually at the same rate 
at which nutrient is supplied so that the volume 
of the system is preserved. The chemostat can be 
regarded as a rather successful, if somewhat 
simplified, aid to the understanding of growth 
and competition kinetics in a natural enviroment, 
in that individual features which affect the 
outcomes (rates of nutrient input and washout, 
"Michaelis-Menten constants", inhibition factors, 
etc.) are under the control of the experimenter. 
For a detailed account of snme of the 
experimental features of the chemostat, see, for 
example (Aris h Humphrey, 1977; Hansen h Hubbell, 
1981; Jost et al., 1973; Monos, 1942; Novick & 
Szilard, 1950; Veldamp, 1977; Waltman et al., 
1980). 

The chemostat is of interest to", to the modeller 
of competitive systems since it provides a simple 
prototype on which to test modelling hypotheses. 

Under the assumption that the chemostat can be 
described by a system of ordinary differential 
equations in which Michaelis-Menten kinetics 
pertain, Hsu et al. (1977)gave a complete 
mathematical analysis. They showed that the 
competitor requiring the lowest "break-even" 
concentration of nutrient will be the only 
population to survive. By "break-eve"" 
concentration we mean the level of nutrient 
required to compensate for the natural death 
(washout) rate of the population so that it could 
be maintained in the absence of competition. 
This result was extended t" the case of arbitrary 
monotone nutrient uptake rates by Armstrong 6 
McGehee (1980). We gave an essentially complete 
analysis of the model with arbitrary nutrient 
uptake rates - without the assumption of 
monotonicity (dutler 6 Wolkowlcz, 1985). This 
allows one to consider the situation, for 
example, in which inhibition effects "ccur. The 

Outcome is still that at most one population will 
SUl-ViVS) though now that survivor may depend on 
the initial configuration of the system. 

There are a "umber of ways in which we might 
modify the chemostat to alter the outcome of the 
competition as described above. One way is to 
supply the nutrient at a periodic rate rather 
than at a cnnstant rate, or to allow washout to 
take place at a periodic rate (Butler et al.. 
1985; Smith, 1981). Another possibility is to 
allow interspecies interference. A third 
possibility, which is the one we wish to pursue 
in this paper, is to introduce into the system a 
population which predates on one of the competing 
microorganisms. The authors first considered a 
model for that situation in (Butler 6 Wolkowicz, 
1986), leading to a system of four populations 
(substrate, two competitors and predator), and we 
shall summarize some of our results later. 

The purpose of this present paper is to initiate 
a" explanation of what can happen if a predator 
is introduced into a system with three or more 
competing microorga"isms. Although our results 
are far from complete at this point, we have bee" 
able to discover, both numerically and 
qualitatively, some unexpected consequences which 
could not have easily been predicted from our 
earlier studies with two competitors. 

MODEL EQUATIONS 

Let S(t) denote the concentration of nutrient 
at time t , xi(t) the concentration of the ith 
microoga"ism population for i = l,Z,...,n, and 
y(t) the concentration of the predator 
population. In the most general model to be 
considered, we allow the predator to predate upon 
the jth competing population, and obtain a system 
of ordinary differential equations 

s’(t) = 1 - s(t) - ; 
I=1 

xi(t)Pi(S(t)) 

x;(t) = xi(t){-1 + Pi(S(t))] , 
i = l,Z,...,n; i # j (1) 

X;(t) = Xj(t){-' + Pj(S(t))] - Y(t)qj(xj(t)) 

y'(t) = y(t){-1 + qj(Xj(t))J 
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The nutrient uptake functions 

to be monotone increasing with 

Pi(O) - 0 and such that there 

positive number Xi for which 

Pi(S) are assumed 

S , such that 

exists a unique 

Pi(Xi) = 1 * Ai 

is then the “break-even” concentration required 

for population Xi to be maintained in the 

absence of competition or predation, and we 

assume that our competing population have been 

labelled so that 0 < al < X2< . . . < Xn < 1 . 

The predation function q 
j 

is also assumed to be 

monotone increasing with qj(0) - 0 , and we 

sssume that there exists a unique positive number 

6j 
for which q j(6 j) - 1 . Later on we shall 

introduce a” additional parameter to describe the 

predation function. We have assumed that each 

Xi < 1 otherwise the ith competitor will always 

vash out of the system, regardless of the 

competitio”. In (1). input and vashout rates 

have been normalieed to be 1. Finally, for 

technical mathematical reasons, we assume that 

the pi and q 
j 

are continuously differentiable 

functions and that p;(Xi) > 0 , q;(aj) > 0 . 

PREDATION ON A LESS-FAVOURED COMPETITOR 

In the absence of any predation, xl is the 

favoured competitor (with the lowest ). value); 

x2’ .*.pX” will all wash out of the system and 

5 will be maintained asymptotically in an 

equilibrium state. Not surprisingly, if the 

predator predates on a competitor other than xl , 

the competitive outcome will be unchanged. This 

is our first result and subsequently we need only 

consider the system (1) with j = 1. 

Theorem 1 Let j 2 -_ 

(1) with positive 

have lim S(t) - Xl 
t+- 

lilt 
t+- xk 

(t) = 0 , k = 

2 . Then for any solution of 

initial conditions, we shall 

, lim xl(t) - 1 - al , 
t+- 

2....,n, and lim y(t) - 0 . 
t*- 

PREDATION ON TUE FAVOURED COMPETITOR IN A 

MODEL WIT8 TWO COMPETITORS 

(1) with j - 1, n - 2 was considered by 

Butler 6 Wolkowicr (1986). To discuss the result 

from that paper which concerns us here, it will 

be necessary to introduce a positive parameter 6 

into the predation function q = ql , and write 

the system as 

S’(t) - 1 - S(t) - f 
i-l 

xi(t)Pi(S(t)) 

xi(t) - xl(t){-1 + Pl(S(0)j - Y(t)q(a.xl(t)) 

xi(t) - x2(t){-1 + p2(S(t))l (2) 

Y’(t) - y(t){-1 + q(6*x,(t))) 

5th IClw 

We assume that 

lim 9(6,E) - - 
64+ 
example, if q 

q(6.6) - 1 and that 

for any fixed c > 0. For 

represents Lotka-Volterra, 

Michaelis-Menten or multiple saturation kinetics, 

then q can be psrsmetised in this way. We can 

regard decreasing the parameter 6 .ss 

corresponding to increasing the intensity of 

predation. 

Before stating the following result, it will be 

appropriate to give a precise definition of what 

we mea” by persistence of the system (2) 

Definition. (2) vi11 be called persistent if 

for all solutions with positive initial 

conditions. we have each solution component 

bounded away from zero as time gets large, i.e. 

lim s(t) > 0 , where x stands for S , xl ,x2 
z= 
or y . 

In other words, the 

populations coexist 

initial conditions. 

Theorem 2 (Butler 6 -_ 
sufficiently small, 

system is persistent if al1 

in the system, regardless of 

Wolkowics, 1986). If 6 is 

i.e. the intensity of 

predation is sufficiently high then (2) is 

persistent. 

Theorem 2 asserts that x2 can compete 

sucesrfully with xl provided the predation is 

sufficiently intense. The coexistence of the 

competitors may not necessarily be in 

equilibrium; some examples indicate that the 

populations undergo periodic oscillations. 

tvo 

PREDATION ON TEE FAVOURED COMPETITOR IN A 

MODEL WITH THREE COMEPTITORS 

We consider (l), with j - 1, n = 3 . As in 

below, it will be convenient to introduce a 

parameter into the predation function q - ql, 

write (l), as 

end 

S’(t) - 1 - S(t) - 4 
i-l 

x*(t)p1(S(t)) 

*i(t) * *l(t){-1 + Pl(S(t))] - Y(t)q(6s*l(t)) 

x;(t) - x,(t){-1 + Piwo)] , i - 2.3 (3) 

y'(t) - Y(t){-1 + q(d,y(t)) 

We recall that in pure competition. x2 

outcompetes x 
3 ’ and in the absence of 

predation, xl outcompetes both of them. Based 
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on our knowledge of the behavlour of (2), we 

might conjecture that at a certain Intensity of 

predation, x2 can coexists with x 
1 ’ and 

either (a) x3 is unable to compete successfully 

at any level of predation or (b) if the intensity 

of predation is sufficiently high, x3 can coexist 

with xl and 
“2’ 

Possibility (a) does occur if the kinetics of the 

system take a certain form; indeed we can make 

such B statement about a model with ” 

competitors: 

Theorem 3. Consider -- the system 

S’(t) - 1 - s(t) - i 
i-1 

xi(t)Pi(S(t)) 

Xi(t) _ Xl(t){-1 + qWt))l - y(t)q(6,x,(t)) 

xi(t) - x,(t){-1 + pi(S(t))j , i - 2,3,...,” 

y’(t) = y(t){-1 + n(6,x,(t))l 
(4) 

Suppose the predation function q is of 

Lotka-Volterra type and the predation functions 

pi are either of Lotka-Volterra type or of 

Michaelis-Menten type. Then for all 6 > 0, “e 

will have lim x,(t) - 0 for i > 3 and the 

system willt:duce asymptotically to (2). 

As yet we have not managed to demonstrate either 

theoretically or numerically that possibility (b) 

- coexistence of all three competitors - can take 

place. 

What we have discovered is the rather surprising 

result that a third possibility can occur, that 

of the reversal of competitive outcome between 

x2 
and 

*3* 

Theorem 4. In (3), let the kinetics of each -- 
interaction be Michaelis-Menten. Specifically, 

let 

n(6,x) - mx 6(m-1) + x ’ pi(S) - 2 (i-1,2,3), 
i 

where m, m 
I ’ ai are positive CO”sta”t8. 

Then there is a choice of parameter values 6, m, 

5 ’ ai such that 0 < hl< X2 < X3 < 1 and for 

which the following is true: 

(i) for all solutions of (3) with positive 

initial conditions, with the exception of those 

solutions that lie on a single exceptional orbit, 

we have lim xl(t) > 0 , lim x,(t) > 0. 
G TGY 

(II) for at least some of the solutions of (3) 

with positive initial conditions, “e have 

llm x,(t) - 0. 
t+- 

SKETCH OF PROOFS 

Some general remarks are in order: 

1. Under our hypotheses, the uptake and 

predation functions are sufficiently smooth that 

Initial value problems for (1) and subsequent 

specializations of this system are uniquely 

solvable. 

2. Solutions oith positive (non-negative) 

initial conditions remain positive (“on-negative) 

and exist and are bounded for all positive time. 
” 

Indeed the hyperplane II: S + 1 
i-l 

xi+y=l is 

a global attractor for solutions with positive 

initial conditions. 

Proof of Theorem 1. ---- By virtue of the above 

remarks, any solution (S(t), xl(t),...,xn(t), 

y(t)) of (1) with positive initial conditions 

has a “““empty, compact omega limit set R lying 

in II, and Q consists of full orbits in iI. 

Let (5, Xl ,...) x , 
n” 

7, be an orbit in R, and 

denote s(t) + 1 xi(t) + y(t) by i(t). Then 
i-l 

z(t) z 1, and so l’(t) 5 0. Suppose that there 

exists t, such that 
” 

%to) = A1 , at, )<O . 
Then 

0 = Z’(to) = S’(to) + y x’(t ) 
i=l i 0 

+ Y’ho) 

n 

( 1 Xf(to)i-l + Pl(hl)l - ;(to) 
i-1 

CO, 

which is a contradiction. Thus there is no such 

that t 
P 

. This leaves the following 
possibi ities: 

(I) S(t) 5 X1 for all t , in which case lim 
t+m 

xi(t) - 0 for al1 i > 2. - 

(ii) S(t1) > Xl for some tl , in which case 

S(tl) > Xl for all t 2 tl. This implies that 

xl(t) is mO”OtD”e increasing for t 1 t1. This 

in turn implies that lim s(t) = Al (see Butler 
t*m 
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and Wolkowics, 1985) and now we must have 

lim c(t) - 0 for all 1 > 2. Thus the critical 
t*- 

point EX , 
1 

defined by S - Xl, xl - l-11, _. 

x2 - . . . - xn = y - 0 , belongs to 8. But it 

is easily varified that Ek is asymptotically 

stable, and so we havb n -lf12 1 
I1 ' 

which implies 

that the given solution of (1) satisfies 

lim s(t) - A 
t+- 

1 , lim xl(t) - l-I1 , lim x2(t) - 
t+- t- 

. . . - lim x,,(t) - lim y(t) - 0, as claimed. 
t+- t+- 

Proof of Theorem 3. -_-- This is proved for general 

n with the use of a Liapunov function in much 

the same way that the same result is proved in 

the special case n - 2 (i.e. for the system (2)) 

by Wolkowicz (1984). We omit the computational 

details. 

Proof of Theorem 4. ---- Denote the non-negative cone 

in (S,x1,x2,x3,y)-space by C. Fix al , a2 , a3, 

ml , m2 . so that a 
2 
< a * 3, ml , m2 > 1 and 

11 < x2. (For uptake functions pi(S) of the 

form assumed in this theorem, Xi - ai/(mi-1)) . 

There is an interval of values of m3 2 m2 for 

which we shall have X2 < 13. If 6>0 is 

chosen sufficiently small, the system (3) will 

have the following features: 

(I) the critical points are the following seven 

points in c: 

E1 
- (l,O,O,O,O) , gA - (X,.1-ll,O.O,O) , 

Ei2 
- (~2#o,1-A2*o,~) , 

E 
A3 

- (x3,0.0.1-x3.0) , E*. = (S*.d,O.O,Y*) , 

where 

yf = 6(-l+pl(s*)) , 1-s* - 6Pl(S*) , 

i - (x,.6.4,,O.F,) . f 
,. A 

x2 )‘3 
- (X3.6.0.r3,~3) . 

where 

^x -1-a _ 
i i - 6~10~) , yi - 6(-l+pl(Xi)). 

(i - 2.3). 

(ii) in the restriction of (3) to the hyperplane 
_ 

P2: 
x3 - O ' El2 

is unstable and the restricted 

system is persistent in (S,xl,x2,y)-space with an 

attractor A2 which is global except for the 

critical point E^ 
i2 ' 

(iii) in the restriction of (3) to the 

hyperplane P3: x2 - 0, s,, is unstable and the 
3 

restricted system is persistent in 

(S,xl,x3.y)-space with an attractor A 
1 

which is 

global except for the critical point E 

x3 

. 

(iv) the stable manifold of f 
i2 

intersects 

the interior of the non-negative cone in 

(S,x1,x2,x3,y)-space in a single orbit which 
,. 

"connects" E^ 
a3 

to E 
I2 

. 

Next it may be shown that if m3 is chosen 

so that A3 is close to A2 , then the orbits in 

A2 
uniformly repel" in the direction of 

increasing x3, and the orbits in 
A3 

"uniformly 

attract" in the direction of decreasing x2. 

Furthermore it may be shown that the collection 

G of the invariant sets comprising all the 

equilibria of the system, together with A2 and 

A3, form an "acyclic covering" of the omega limit 

sets of the restriction of (3) to ac. i.e. the 

"boundary flow" defined by (3) is "acyclic" 

(Butler 6 Waltman, 1986). Now the stable sets of 

each of those elements of b which lie in the 

plane P2 are disjoint from the interior of C, 

with the exception of the singular orbit 

described in (iv) above. It follows from 

arguments somewhat similar to those given in 

Butler 6 Waltman (1986) that for all solutions of 

(3) with positive initial conditions, with the 

exception of those lying on the singular orbit, 

we have lim 
zs3 

(t) > 0. Now by (iii) and the 

choice of 
m3* 

the set A3 is (locally) 

asymptotically stable for (3) and so there will 

exist solutions of (3) for which e x2(t) - 0. 
t*- 

Remarks. 1. The above statements about the 

local dynamical behaviour near the critical 

points of the system (3) are a straightforward 

matter of verification; however, the assertion of 

the existence of a global manifold which is both 

the stable manifold of i 
,. 

manifold of E 
X3' 

and the Q 

and the unstable 

iscussion concerning 

the uniform repulsion and attraction of orbits in 

A29 A3 , respectively, require considerably more 

delicate arguments. The details of this analysis 

will appear elsewhere. 

2. It is evident that the situation can 

arise in which the outcome between competitors 

x2 
and x3 is initial condition dependent. 

That is to say, the domain of positive initial 

conditions is split into two nonempty regions, 
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one of which corresponds to solutions of (3) in 

which x 
2 

survives and x 3 dies out, the other 

which corresponds to the reverse consequence. 

This may occur if there are locally stable 

periodic orbits in each of the hyperplanes P2 , 

p3’ 

DISCUSSION 

For a chemostat with monotone uptake functions in 

which there is "pure" competition (competition 

through exploitation of the single,limlting, 

non-reproducing resource. without predation), one 

competitor out-competes all of his rivals. There 

is some belief in ecological circles (Levi", 

1970; Paine, 1966) that predation can account 

for diversity in ecosystems, with the corollary 

that elimination of the predator may interfere 

with the balance between competing populations 

and lead to the collapse of the system or some 

part of it. Ideally, our long-term goal would be 

to establish (or refute) the existence of a 

mechanism of population interactions that 

supports such a belief. Although we are vary far 

from suceeding in this objective in the current 

paear. which can only be regarded as a 

preliminary report on these ideas, we hope that 

it will cast some light on the possible types 

behaviour of these somewhat complex systems. 
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