Data are taken from Table 8.28 on page 326 of Rosner, Fundamentals of Biostatistics, Fifth edition.
The purpose of this study was to demonstrate that soy beans inoculated with nitrogen-fixing bacteria grow adequately without the use of expensive and environmentally deleterious synthesized fertilizers.
> podwt <- data.frame(wt=c(1.76,1.45,1.03,1.53,2.34,1.96,1.79,1.21,0.49,0.85,1,1.54,1.01,0.75,2.11,0.92), treat=factor(c(rep("I",8),rep("U",8)))) > podwt wt treat 1 1.76 I 2 1.45 I 3 1.03 I 4 1.53 I 5 2.34 I 6 1.96 I 7 1.79 I 8 1.21 I 9 0.49 U 10 0.85 U 11 1.00 U 12 1.54 U 13 1.01 U 14 0.75 U 15 2.11 U 16 0.92 U
Compute mean, variance and standard deviation for the inoculated and uninoculated groups separately.
> sapply(split(podwt$wt,podwt$treat),mean) I U 1.63375 1.08375 > sapply(split(podwt$wt,podwt$treat),var) I U 0.1763125 0.2598839 > sqrt(sapply(split(podwt$wt,podwt$treat),var)) I U 0.4198958 0.5097881 > boxplot(split(podwt$wt,podwt$treat),xlab="Treatment",ylab="Pod Weight",col="green")
Use lm() to fit a Linear Model, and store the result in the lm object fitpodwt.
> fitpodwt <- lm(wt~treat, data=podwt)
summary() displays the fitted coeficients and their t-tests.
> summary(fitpodwt) Call: lm(formula = wt ~ treat, data = podwt) Residuals: Min 1Q Median 3Q Max -0.60375 -0.25875 -0.09375 0.19875 1.02625 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.6338 0.1651 9.895 1.06e-07 *** treatU -0.5500 0.2335 -2.355 0.0336 * --- Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 Residual standard error: 0.467 on 14 degrees of freedom Multiple R-Squared: 0.2838, Adjusted R-squared: 0.2327 F-statistic: 5.548 on 1 and 14 DF, p-value: 0.03361
anova() displays the anova table.
> anova(fitpodwt) Analysis of Variance Table Response: wt Df Sum Sq Mean Sq F value Pr(>F) treat 1 1.2100 1.2100 5.548 0.03361 * Residuals 14 3.0534 0.2181 --- Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
There is some evidence (P = 0.034) from these data that the treatment is effective.