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Overview

@ This talk will focus on model-based clustering via Gaussian
mixture models.

@ Model-based clustering and Gaussian mixture models are
introduced.

@ Popular techniques are reviewed.

@ New techniques are introduced and demonstrated on real data.
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Statistical Learning

@ Learning is that process by which knowledge is gained.

@ Statistical learning can be either supervised or unsupervised.

@ Models are said to learn in a ‘supervised’ fashion, when the
outcome variable is present.

@ In an ‘unsupervised’ learning situation, the outcome variable may
be either absent or non-existent.
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Classification Example

o Consider some classification techniques.

@ Supervised learning examples.

e Discriminant analysis.
e Logistic regression.
o CART.
o SVMs.

@ Unsupervised learning examples.

e Association rules.
o Cluster analysis.
e Self-organizing maps.
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Model-Based Clustering

Model-Based Clustering

@ Model-based clustering techniques can be traced at least as far
back as Wolfe (1963).

@ In more recent years model-based clustering has appeared in the
statistics literature with increased frequency.

o Typically the data are clustered using some assumed mixture
modeling structure.

@ Then the group memberships are ‘learned’ in an unsupervised
fashion.
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Model-Based Clustering

Finite Mixture Models

@ Assume

e The data are collected from a finite collection of populations.
e The data within each population can be modeled using a standard
statistical model.

o Gaussian mixture models have model density of the form

G
f(X) = Z ﬂ—g(b(x’/“l’gv zg)
g=1

e 7g is the probability that an observation belongs to group g.
o ¢(xX|pg, Xg) is the density of a multivariate Gaussian (p,, Zg).
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MCLUST & Variable Selection

@ MCLUST is probably the most well known model-based
clustering technique in the literature.

@ Variable selection is a technique that involves repeated
application of MCLUST.

@ Both are supported by R packages.

e mclust
o clustvarsel
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MCLUST

The Covariance Structure

e Banfield & Rafterey (1993), Celeux & Govaert (1995) and Fraley
& Raftery (1998, 2002) exploit an eigenvalue decomposition of
the group covariance matrices for the Gaussian mixture model.

@ The eigenvalue decomposition of the covariance matrix is of the
form
/
X, = \;DA.Dy,
where

e )g is a constant,

o D, is a matrix consisting of the eigenvectors of X, and

e A, is a diagonal matrix with entries proportional to the
eigenvalues of 2.
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The Models

@ This covariance

structure allows for a variety of constraints.

ID Volume Shape Orient. Covariance  Number of
Decomp. Cov. Parameters

Ell Equal Spherical — Al 1

VII Variable  Spherical — Akl G

EEI Equal Equal Ax-Alg AA P

VEI Variable Equal Ax-Alg AgA p+G—1

EVI Equal Variable Ax-Alg AA, pG—-—G+1

VVI  Variable  Variable Ax-Alg AgAg pG

EEE Equal Equal Equal ADAD’ p(p+1)/2
EEV Equal Equal Variable AD,ADj, Gp(p+1)/2—(G—1)p
VEV  Variable Equal Variable ~ A(D(AD],  Gp(p+1)/2—(G—-1)(p—1)
VVV  Variable  Variable  Variable XD A(D}  Gp(p+1)/2

@ The non-diagonal constraints have a number of covariance
parameters that is quadratic in data-dimensionality p.
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Variable Selection

The Idea

e Raftery & Dean (2006) propose a variable selection method
based on the use of Bayes factors (Kass & Raftery, 1995).

@ This is essentially a model selection problem.

@ Two models, M; and M, say, for data X are compared using the
using Bayes factors.
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Variable Selection

Bayes Factors

@ The Bayes factor, Bip, for model My versus model M5, is defined

as
p(X | My)

Bio = =+,
2 p(X | M)

where

POX | M) = [ p(X | 64, Mo)p(61 | My)db.

e 0O is the vector of parameters for model My, and
o p(Bx | My) is the prior distribution of My (Kass & Raftery, 2005).

@ Variables are then selected based on which model is the ‘best’.
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Variable Selection

Comments

@ Variable selection is often viewed as an improvement over
MCLUST.

@ Variable selection does not always outperform MCLUST.

@ In addition to model-based clustering, variable selection is a data
reduction technique.

o Examples are given later...

Paul McNicholas Model-Based Clustering: An Overview



Factor Analysis

Factor Analysis

@ Introduced by Spearman (1904) following the introduction of
Principal Components by Pearson (1901).

@ Developed for and by psychologists.

e Laid out as a statistical model by Bartlett (1953).

@ Spent much time as “the black sheep of statistical theory”
(Lawley & Maxwell, 1962).
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Factor Analysis — The Idea

o Consider a p-dimensional real-valued data vector x.

@ Assume x can be modeled using a g-dimensional vector of
real-valued (unobservable) factors u.

0 gL p.

@ Data reduction technique.
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Factor Analysis

The Factor Analysis Model

@ The model is
x=p+ Au-+e.

e N is a p x g matrix of factor loadings.
o u~ N(0,l,) are the factors.
o €~ N(0,W), where W = diag(v1, 92, ..., ¥p).

@ It follows that the marginal distribution of x is multivariate
Gaussian (p, AN + W),

@ N is not defined uniquely. If A is replaced by A* = AD where D
is orthonormal, then

AN + W = (NN + W
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Probabilistic Principal Component Analysis

The PPCA Model (Tipping & Bishop, 1999a)

@ A special case of the factor analysis model, with W = 9l

@ Therefore, the density of x is

f(x) = o(x|p, AN + 2l).

@ The maximum likelihood estimate (MLE) of p is X.

@ The MLEs for A and W are found using the EM algorithm
(Dempster et al. 1977).
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Probabilistic Principal Component Analysis

EM Algorithm for PPCA: E-Step

@ The E-step involves calculation of the expected complete-data
log-likelihood, denoted Q.

@ After some mathematics, it follows that @, evaluated with
n = [t =X, is given by

QN W) = C + g log |[W—1| — gtr (WIS} 4 ntr {w—li\fas}

n —
— S {Nv 'ne},

where 3 = N(AN + @)~ and © = (Iq —BA + Bsﬁ’).
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Probabilistic Principal Component Analysis

EM Algorithm for PPCA: M-Step

@ We need to maximize @ with respect to A and W.

e Graybill (1983), Liitkepohl (1996) and Magnus & Neudecker
(1999) give helpful results.

Olog |X| -1
=X
oX
otr(XA)
VY A
oxX
otr(AXB) .,
——FX—=B'A
oX
atr‘(XAXB) — B/x/A/ +A/x/B/
oX
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Probabilistic Principal Component Analysis

Results of Matrix Differentiation

e Differentiating @ with respect to A we obtain

o
N

e Solving the equation S;(A, W) = 0 we obtain

Si(A, W) = nw1s3 — nwlpe.

A=sge
o Differentiating Q with respect to W~ gives
0Q n n ., ~ n ™
AW =W ABS — - NO'N.
So( )= T > S"+nABS 5 (C]
e Solving the equation S;(A, W) = Sy(AA, ¢) = 0 we obtain
A 1 An
R ;tr{S — /\ﬁS}.
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MFA Model

e Tipping & Bishop (19995b) develop a mixture of PPCAs model.

@ MPPCA is actually a special case of the mixture of factor
analyzers model (Ghahramani & Hinton, 1997; McLachlan &
Peel, 2000).

@ The MFA model assumes a Gaussian mixture model, with a
factor analysis covariance structure;

G

F(x) = med(x | pg, AgNy + Wg).
g=1
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Eight PGMMs

@ The parameters Ay and W, can be constrained across groups.
@ There is also the isotropic constraint, W, = 1)l.

@ These constraints leads to eight PGMMs:

Model ID Loading Error Isotropic Covariance
Matrix Variance Parameters

CCC Constrained Constrained Const. {pg—q(qg—1)/2} +1
CCuU Constrained Constrained Unconst. {pg—q(g—1)/2} +p
Cuc Constrained Unconstrained Const. {pg—q(qg—1)/2} + G
Cuu Constrained Unconstrained ~ Unconst. {pg —q(q—1)/2} + Gp
ucc Unconstrained Constrained Const. G{pg —q(qg—1)/2} +1
ucu Unconstrained Constrained Unconst. G{pg—q(qg—1)/2} +p
uuc Unconstrained ~ Unconstrained Const. G{pg—q(g—1)/2} + G
uuu Unconstrained  Unconstrained  Unconst.  G{pqg — q(q — 1)/2} + Gp
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The Approach: AECM Algorithm

@ ‘Alternating expectation-conditional maximization' algorithm.

@ The PGMMs are fitted using the AECM algorithm (Meng & van
Dyk, 1997).

e The AECM algorithm (Meng & van Dyk, 1997) allows a different
specification of complete-data for each conditional maximization
step.

@ Mclachlan & Peel (2000) give extensive details of the fitting
algorithm in the UUU case.
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Model Fitting

AECM: Stage 1 (mg and p,)

This missing data are the component membership labels z,,.

These are replaced by their expected values

Zng O Fgd(Xnlitg, AgNy + W)

This leads to the expected complete-data log-likelihood, Q1.

e Maximizing Q; with respect to u, and 7, gives the estimates,
N &
~ Zn:l ZngXn
Be="CN &
D n=12ng

and 7y = ng/N.
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Model Fitting

AECM: Stage 2 (A; and W)

The missing data are the z,, and the latent variables u,,.

Expected complete-data log-likelihood, @5, is computed.

Constraints are imposed on Ag and W, or not.

(2 is then differentiated with respect to Az and lllg_l; for
example, in the UUU case

8Q A 7\U ) n _ Al _
S1(Ng, Wg) = (a/g\gg == [wglsg,@g - \ugll\geg}
0Q(Ng, W n A
Sy (Mg, W) = % =L {wg — S, +20,B3,Ss - /\ge'g/\;,]
g
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Further Generalization of Covariance Structure

@ More recently, we use
>, = I\gl\fg +V¥, = I\gl\’g +wgAg,

where

° Wy € R,
o A, = diag{¢1,¢2,...,0p}, such that |A,| = 1.

@ This leads to 12 models in total, all with a number of covariance
parameters that is linear in p.

w A= Number of Covariance Parameters
[pg—q(qg—1)/2] +[G +(p—1)]

A = =
C C U U
u C u u Glpg —q(q —1)/2] + [G + (p—1)]
C U C u [pg—a(g—1)/2] +[1+ G(p—1)]
u U C u Glpg —q(q —1)/2]+ [1+ G(p —1)]
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Italian Wines

[talian Wine Data

@ Forina et al. (1986) reported twenty-eight chemical properties of
Italian wines from the Piedmont region.

@ Three specific types: Barolo, Grignolino, Barbera.

@ 27 of these 28 properties are available from the UCI Machine
Learning Database.
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PGMMs

Best PGMM

@ The PGMM family of models were fitted for G =1,2,...,5 and
g=12,...,5.

@ The best model, in terms of both BIC (Schwartz, 1978) and ICL
(Biernacki et al., 2000), is a CUU model with G = 3, g = 4.
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PGMMs

Classification for Best PGMM

@ Classification table for the best PGMM.

1 2 3
Barolo 59
Grignolino 70 1
Barbera 438

@ Rand Index=0.99

o Adjusted Rand Index=0.98

Paul McNicholas Model-Based Clustering: An Overview



[SETIES
°

MCLUST

Results for MCLUST

@ Using the mclust software, the best MCLUST model was a VVI
model with three groups.

o Classification for MCLUST.

Barolo 58 1
Grignolino | 4 66 1
Barbera 48

@ Rand Index=0.95

o Adjusted Rand Index=0.90
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Results for Variable Selection

@ Nineteen variables were selected using variable selection via the
clustvarsel package (Dean & Raftery, 2006 ).

1 2 3 4
Barolo 52 7
Grignolino 17 54
Barbera 1 47

@ Rand Index=0.91

@ Adjusted Rand Index=0.78
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Summary

Model Comparison

@ Comparison of models applied to Italian wine data.

Model Rand Index Adjusted Rand Index
PGMM 0.99 0.98
MCLUST 0.95 0.90
Variable Selection 0.91 0.78

@ The best PGMM model had greater BIC than the best mclust
model.

@ MCLUST does better than Variable Selection.
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Leptograpsus Crabs Data

Crabs Data

@ Biological measurements on 200 crabs; 50 male and 50 female,
for each of two species; 50 orange and 50 blue.

Variable | Measurement
FL Frontal lobe size in millimeters.
RW Rear width in millimeters.
CL Carapace length in millimeters.
CcwW Carapace width in millimeters.
BD body depth in millimeters.

@ The data was sourced from the MASS library in R.

@ These data were also analyzed by Raftery & Dean (2006).
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Leptograpsus Crabs Data

Best PGMM

o All twelve PGMMs were fitted for G =1,2,...,5 and
g=12,...,5.

@ The best model, in terms of both BIC (Schwartz, 1978) and ICL
(Biernacki et al., 2000), is a CUUU model (G = 4,9 =1).

1 2 3 4 5
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Leptograpsus Crabs Data

Comment on Best PGMM

@ One latent variable (factor)...

6 10 14 18 20 30 40 50

" /K ,f /‘ﬂ [

] ‘ x: ; :

] ﬁ RW a ﬁ* W
I FT o
/ !‘ﬁy N / /’

4 | x| 5

< / jﬁ- / o /

@
O
T
10 15 20
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Leptograpsus Crabs Data

Classification for Best PGMM

@ Classification table for the best PGMM.

1 2 3 4
Blue Male 40 10
Female 50
Orange Male 50
Female 4 46

@ Rand Index=0.935

o Adjusted Rand Index=0.828
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Leptograpsus Crabs Data

Results for MCLUST

e Raftery & Dean (2006) report the results of applying MCLUST
and variable selection to the crabs data.

@ Classification for MCLUST.

1 2 3 4 5 6 7
Blue Male 32 18
Female 31 19
Orange Male 28 22
Female 24 21 5

@ Rand Index=0.851

@ Adjusted Rand Index=0.533
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Leptograpsus Crabs Data

Results for Variable Selection

@ Classification for variable selection.

1 2 3 4
Blue Male 40 10
Female 50
Orange Male 50
Female 5 45

@ Rand Index=0.931

@ Adjusted Rand Index=0.815
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Leptograpsus Crabs Data

Model Comparison

@ Comparison of models applied to crabs data.

Rand Index Adj. Rand Index Error Rate
PGMM 0.935 0.828 0.07
MCLUST 0.851 0.533 0.425
Var. Sel. 0.931 0.815 0.075

e Note that best PGMM model also has higher BIC / ICL than the
best MCLUST model.

o Comparison with variable selection via BIC / ICL is not valid.
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Clustering Longitudinal Data

Consider Longitudinal Data

@ How about clustering longitudinal data?

@ What type of covariance structure?

@ Cholesky decomposition?

@ Modified Cholesky decomposition — even better!.
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Modified Cholesky Decomposition

The Decomposition

e Pourahmadi (1999, 2000) exploits the fact that covariance matrix
Y of a random variable can be decomposed using the relation

TXT =D,
where
e T is a unique unit lower triangular matrix with diagonal elements
t; =1, and

e D is a unique diagonal matrix with strictly positive entries.

@ An alternative version of this relationship is written

s 1=TD'T.
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Modified Cholesky Decomposition

The Decomposition

@ T and D can be interpreted statistically in terms of an
autoregressive model.

@ This decomposition was also used by Pan & MacKenzie (2003,
2006).

e Pourahmadi et al. (2007) extended this decomposition to
account for multiple covariance matrices.
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The Models

Constraints

o Consider the Gaussian mixture model with group covariance
structure,
-1 _ 1/ -1
2, =TgDg T,

@ We can impose the following constraints to get a family of 8
models, 6 of which are new.

Model Tg=T D, =D Dy = &gl Cov. Para’s
NNN  Not Constrained  Not Constrained  Not Constrained  G[p(p — 1)/2] + Gp
NCN  Not Constrained Constrained Not Constrained  G[p(p —1)/2] + p

CNN Constrained Not Constrained  Not Constrained p(p —1)/2+ Gp
CCN Constrained Constrained Not Constrained p(p—1)/2+p
NNC  Not Constrained  Not Constrained Constrained Glp(p—1)/2]+ G
NCC  Not Constrained Constrained Constrained Glp(p—1)/2]+1
CNC Constrained Not Constrained Constrained p(p—1)/2+ G
CCC Constrained Constrained Constrained p(p—1)/2+1
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The Models

Model Fitting & Development

@ These models can be fitted using an expectation-conditional
maximization (ECM) algorithm (Meng & Rubin, 1993).

@ The ECM algorithm can be considered a more straightforward
version of the AECM algorithm; without the u.

@ A paper based on these 8 models is in preparation.
@ This family of models has great potential for growth...

@ The constraints imposed by Pourahmadi et al. (2007) are
currently being worked into this family of models.
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Example: Rats Data

The Data

@ Data on the body weights of rats on one of three different dietary
supplements.

@ Published by Crowder & Hand (1991).

@ 16 rats were put on one of three different diets;

o 8 rats were on Diet 1,
o 4 were put on Diet 2, and
e 4 on Diet 3.
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Example: Rats Data

Groups

@ The three groups can be see on the following graph;

600
I

Weight (g)
400
Il

0 10 20 30 40 50 60

Time (Days)

@ Group 2 has a heavy rat and Group 3 has a light rat.
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Example: Rats Data

Results

@ The clustering for the model with the highest BIC is;

500
I

Weight (g)

300
I

0 10 20 30 40 50 60

Time (Days)

@ The Rand index is 0.95 (0.88 adjusted Rand).
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Conclusions |

@ Data reduction techniques can improve clustering and
classification results.

o A family of 12 parsimonious Gaussian mixture models has been
introduced, which includes the MFA and MPPCA models as
special cases.

@ This family of models has been shown to perform favorably when
compared to well-established techniques.

@ Especially useful for high-dimensional problems; many such
problems arise in bioinformatics.
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Conclusions

Conclusions Il

Clustering of longitudinal data can also be achieved using
Gaussian mixture models.

A family of 8 mixture models has been introduced, with a
modified Cholesky decomposed covariance structure.

This family of models has been shown to give good results on
real data.

This family has great potential for further expansion.
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