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1.Introduction

Model M/M/1:

One server;

Arrivals are according to Poisson process with rate A;

Service times independent of arrivals are iid exponential with mean 1/p.

M/M/1 queue with the following state rate diagram:
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Notations:
Q(t): Queueing Process at time t

Py(t): P(Q(t) = k| Q(0) =)
Py(t): P(Q(t)=n)

Transient behaviour: P(t)
Steady-state behaviour: lim P,(t) as t tends to infinity
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Rate Matrix Q = 0 At )
H —(A+p) .



Classical method of solution for transient behaviour (Bailey(1954))

The Kolmogorov difference-differential equations are:
dP,(t)
dt
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Use PGF on n and LT on t and finally get
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is the modified Bessel function of the first kind.

Note: Steady state solution P; = (1 - p) o, p<l



Random walk approach (Champernowne (1956))

Assume there are aarrivals and b virtual service completions in time ¢. Then
each event is an arrival with probability A/(A+1) and a service completion with
probability w/(A+p). This defines a random walk with +1 and -1 steps, which is
not allowed to go below 0. Eventually, the solution involves counting certain
random walk paths. What Champernowne did was to tally his solution with the
classical one.

Champernowne’s random walk approach to combinatorial solution:
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Note we have used k=a+ j—b.

(Ref: Jain, Mohanty, Bohm (2006) “ A Course on Queueing Models™)



2. Preliminaries

Randomization Theorem.

Suppose a Markov process on a countable state space has transition rate matrix
Q with sup |g;| £ ¢< «. Then the transition probability function may be written
as
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where PI.J(.n) is the n-step transition probability in the associated Markov chain

which has the stochastic matrix
P=1o+1, (H#)
c

as its 1-step transition probability matrix, I being the identity matrix.
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Dual Process (Anderson (1991)).

For a Markov process X(t) with its transition rate matrix Q, its associated dual
process X*(t) with Q* is defined by
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for i, j=0,1,2,.. where we assume 915 = 0 for every k. It exists, provided Q*

is a rate matrix.



Duality Theorem (Anderson (1991)).

Suppose Pl] (¢) is the transition probability function of the Markov Process
X(t). Define

Pi= £ PP, 0)

for states i, j =0,1,2... with the convention that P__1 k(t) =0.Then P; (?)is the
unique transition probability function associated with Q¥ if and only if Pij (®)is

stochastically monotone.
Note: P..(t)1is stochastically monotone if Y P..(¢) is an increasing function
J J>k+1 y

of i for every fixed k and t. This says that the chance of ending up in the tail
region is higher as i becomes larger.

Moreover,

L 11 ¥k
Pij(t)zkéo[ (t) P+1k(t)} for1,j =0,1,2,... (**)

Algorithm:
Q=>Q* by (*)

Q* => P* by (##), associated Markov chain

*
Determine P, E.n) ----- This part is done by lattice path combinatorics

Pi(t) <= P'" by Randomization Th. (#
l.j(t) =F y Randomization Th. (#)

P(t) <= P(1) by (**)



3. M/M/1 Revisited

Without duality; Use Randomization Theorem and determine P;m .

State transition probability diagram of the Markov chain:
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Lattice path combinatorics

Represent a forward step by a horizontal (x) unit and a backward step by a
vertical (y) unit. Then a realization of the chain is represented by a lattice path.
A chain starting from i is a lattice path from the origin not crossing the line y =
x +1 and having diagonal steps on y =x+i.
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The above diagram is a lattice path representation of a queueing sequence
having i =1 unit initially, a =8 arrivals and b =6 virtual service completions.



Counting result 1 (Mohanty(1979))

# lattice paths from the origin to (a,b) not touching the liney = x +j is

a+b a+b
()62 )
—J
The first term is the total number of paths. The number of those which touch or

cross the line is obtained by the reflection principle and is given by the second
term.

Use this result and take into account of touching the line and diagonal steps.
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Notes:
1. This result can be obtained from (2) by setting a+b=n.

2. Complications in counting arise out of the fact that state 0 is not an absorbing
barrier.



Dual process approach

State transition probability diagram of the associated dual Markov chain:
‘ \ q q q
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Observe that state 0 is an absorbing barrier.

Represent the lattice path the same way. Let there be d vertical steps. This time
it is a path from the origin to (d-j+k, d) which does not touch the line y=x+;.

Here n = 2d-j+k, => d = (n-k+j)/2.

Use (3) to get the number of paths to be
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and hence
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for j=0,1,..., k= 1,2,...Thus

n
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For k=0, use the matrix form of Kolmogorov equation.

d = *
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where P; 1(t) is given in (5).

Finally we can get Pij (¢) through
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4. Batch Arrivals

Batch size=H
Rate flow diagram for H=3:
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State transition probability diagram of the associated dual Markov chain:




The structure is a random walk with forward steps of size 1 and backward steps
of size 3, having an absorbing barrier at 0.

Represent a forward step by a horizontal (x) unit and a backward step by a
vertical (y) unit. The sequence is then represented by a lattice path.

Horizontal unit < arrival of 1 unit

Vertical unit <> service completion of 3 units

Consider a sequence from i to j in n steps. Let d be the number of backward
steps.

= #yunits=d
#xunits=3d—1+]
n=4d—-i+j

A random walk sequence <> A path from (0,0) to (3d —i + j, d) without
3d-itj

touching the line 3y = x +i, each having the probability q P’
To count these paths.

For i=8, j=2 and d=5, see the diagram




#paths = # all paths — #paths that touch or cross the line 3y = x + i. Paths can
touch or cross only at the marked points.

# all paths = (40';“_]}

A general point which a path touches for the first time on the boundary when
coming from the end is (3s — 1, s), i/3 < s < d. From then on it can reach (0,0)
without any constraint.

Counting result 2 (Mohanty (1979))

# paths from the (0,0) to (a, b) without touching the line x = py except at the
beginning

_a—ub (a+b)

Using this, # paths from (3s —1i, s) to (3d —1 + j, d) without touching the
boundary

_ j 4d —4s+j
4d—4S+j d—s '

# paths from the origin to (3s — 1, s)
_ (4s—i
s
= # desired paths
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We change s to s’ by s’=d — s, and then set s’=s, which means the paths
are seen in reverse order. Then the above becomes
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For general H, j=0,1,..., and k=1,2,...
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Substitute (7) and (8) in (6) to give Pij @®.

Separate off terms independent of t and get
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" denotes the probability of starting at state j and eventually reaching

lim P, (1

In
[—>© , the last two terms vanish. Therefore,
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This expression either equals z , the steady state distribution of the batch arrival

process pictured in Figure 6 (if it exists), or is 0.

Combinatorial expressions for pj s are available, but 7, is messy.



H ) [ ]n—r+l g
o * A © n+ tHA *
1_( A )z . (n){ )ze A+ pn "3 (A+ ) e
Avu) k=1 E Avp ), g 1 (n—r+1)! fog bk
_ i o0 n
LG |3 [t(/1+;u)] ’)1*15") an
k=1ln=0 h: >

where the independent terms provide the steady state solution.
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5. Batch Services

Batch size = H. If there is less in the queue, the server serves all of them.

Rate flow diagram when H=3:

State transition probability diagram of the dual Markov chain:
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This is almost a reverse situation of the previous one.

Represent a forward step (of size 3) by a horizontal unit and a backward step (of
size 1) by a vertical unit.

Let u be the number of forward steps.

= #Xx units =u
# y units = 3ut+i —j
n=4u+i-j
A sequence <>a path from the origin to (u, 3u + i — j) without touching the line
y=3x+1.
To count paths from (0,0) to (u, 3u + i — j) without touching the line y = 3x+i.

For i=4, j=5 and u=4, see the diagram

u s=0i+4s\ s u—s

4 paths = (4u+i—j) E% i (i+4s) (4(u—s)—j)
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Compare (7) and (13). One is obtained from the other by interchanging j, k and
A, . Dual process is usually defined by interchanging input and service

distributions.
We also establish for j >0,
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It is knownthat 7 =(1- p)p’ for some p determined numerically by root

finding technique. We provide a combinatorial expression for p.

pj1 represents the probability of going from j and eventually reaching at 1 (i.e.,

not reaching earlier) which is to happen in n steps, n= 1,2,...We use the same
counting argument as before.
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It provides an alternative combinatorial expression for ;.

Concluding Remark:

We can deal with queues having batches of different sizes and with catastrophes
(i.e., there is a constant probability of reaching 0 from any state).
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