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1. Review of notation and types of problems

• Repeated occurrences of some type of event

- recurrent infections or disease episodes
(e.g. bronchial infections, herpes simplex outbreaks)

- epileptic seizures, asthma attacks

- warranty claims for manufactured products

- failures in software systems

• In general, consider multiple units or individuals i = 1, 2, . . . and a
time scale t

Ni(t) = number of events up to time t for unit i (t ≥ 0)



• Objectives of analysis include

- understanding and characterizing event occurrence (patterns
over time, probabilities, dynamics)

- explaining unit-to-unit variability (covariates, comparisons,
treatments, excess variation)

- assessing relationships with time-varying covariates or other
processes

- prediction

• Covariates (explanatory variables) xi

- fixed or time-varying



• Ways of looking at recurrent events

- counts of cumulative numbers of events, or numbers in distinct
time intervals

- “gap” times between successive events

- event intensities (probability of new event, given past events)

• Here we focus on counts: fundamental characteristics are then the
means, variances and covariances, and distribution of counts for spec-
ified time intervals.

mean (cumulative) function or MCF: µi(t) = E {Ni(t)}

rate of occurrence function: ρi(t) = µ′i(t)



2. Some examples

• Mammary tumors in a carcinogenicity study (Gail et al. 1980)

- Treatment (n = 23) and control (n = 25) groups of female
rats, each exposed to a carcinogen

- Animals followed for 122 days and times of occurrence of new
tumors were recorded (see figure).

NT (122) = 2.65 N c(122) = 6.04

- Objective is to compare treatment groups with respect to the
frequency of tumor occurrence
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• RCT for treatment of Herpes Simplex Virus (HSV) infections

- 48 week multi-center crossover trial for persons with HSV
infections (Romanowski et al. 2003)

- Patients randomized to two treatment groups

A: suppressive treatment for weeks 1 - 24, then episodic
treatment for weeks 25 - 48

B: episodic treatment for weeks 1 - 24; suppressive for weeks
25 - 48

- Other explanatory variables include age, sex, race, virus type,
history re previous occurrences



• Automobile warranty claims

- data on warranty claims (under a 1-year, 12,000-mile
warranty) for 38,401 cars of one model type

- “time” scale could be age (days since sale of vehicle) or mileage

- variable lengths of followup, according to date of sale of vehicle
and date of analysis

- plot shows ages of claims for 15,775 cars which have 1 year of
followup

• Objectives include comparison of claims for vehicles manufactured in
different time periods or locations; predictive modeling; early
detection of problems
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3. Regression methodology for mean and rate functions

• Individuals i = 1, . . . ,m with covariate vectors xi or (if time-varying)
xi(t), t ≥ 0

• Denote times of events for individual i as ti1, ti2, . . .

• Conditional on covariates, let

µi(t) = E {Ni(t)} ρi(t) = µ′i(t)

• Common model:
ρi(t) = ρ0(t) exp

(

xi(t)
′β

)

(1)

µi(t) =
∫ t
0 ρi(u)du

• If xi(t) = xi then µi(t) = µ0(t) exp(x′iβ)



Approaches to Modelling and Analysis

• Process intensity functions: let Hi(t) be the history of events and
covariates up to time t. Then

λi(t) = lim
∆t→0

Pr {Ni(t + ∆t) − Ni(t) = 1|Hi(t)}

∆t

is called the intensity function.

• In continuous time, assume two events cannot occur simultaneously.

• If individual i is observed over a specified time interval (0, τi) then the
probability density for the outcome “ni events, at times ti1 < ti2 <

. . . tini
” (ni ≥ 0) is







ni
∏

j=1

λi(tij)







exp

{

−

∫ τi

0
λi(u)du

}

. (2)



• Approach 1: Specify a model for λi(t) and use (2) to get the likelihood
function and MLEs.

e.g. Poisson process: λi(t) = ρi(t) = rate function
e.g. Negative binomial process: “includes” Poisson process

λi(t) =

{

1 + φNi(t−)

1 + φµi(t−)

}

ρi(t)

• Approach 2: To reduce model misspecification problems, just model
the mean and rate functions e.g.

ρi(t) = ρ0(t) exp(x′iβ) (3)

without assuming the process is Poisson or any other specific process.

• Approach 2 is sometimes called “robust”



Robustness of Poisson process estimators

• If λi(t) = ρi(t; θ) then from (2) the log likelihood estimating equations
from m independent individuals i = 1, . . . ,m are

U(θ) =
∂ℓ(θ)

∂θ
=

m
∑

i=1







ni
∑

j=1

∂ log ρi(tij; θ)

∂θ
−

∫ τi

0

∂ρi(t; θ)

∂θ
dt







• Trick: re-write U(θ) as

U(θ) =

m
∑

i=1

∫ τi

0

∂ log ρ(t; θ)

∂θ
{dNi(t) − ρi(t; θ)dt} (4)

NOTE: E{U(θ)} = 0 even if process is not Poisson.



• Approach 2 is similar to generalized estimating equation (GEE)
methods where only means (and sometimes variances) are modelled.
(Reference: Lawless and Nadeau, Technometrics 1995)

• This methodology is available for models (1) and (3) in R,S-PLUS and
SAS, for the case where ρ0(t) is not specified parametrically.

- When the process is a Poisson process this is called the Andersen-
Gill (AG) model.

- It is similar to the Cox model in survival analysis, and software for
the Cox model (e.g. coxph, phreg) has been extended to cover both
the AG model and robust estimation for (1) and (3).



4. Illustrations

• Mammary tumors in rats
xi = 0 if animal in control group and = 1 if in treatment group.

ρi(t) = ρ0(t) exp(βxi) µi(t) = µ0(t) exp(βxi)

Note: exp(β) =
treatment ρ(t)
control ρ(t)

=
treatment µ(t)
control µ(t)

• Following slide shows S-PLUS/R data frame and code

β̂ = −0.82, Poisson s.e. = 0.15, robust s.e. = 0.21.

exp(β̂) = .44

• Model checking can be carried out



The data for the first three rats in the treated group

are displayed below in the so-called "counting process" format.

> rats[1:5, ]

id start stop status enum trt

1 1 0 122 1 1 1

2 2 0 122 0 1 1

3 3 0 3 1 1 1

4 3 3 88 1 2 1

5 3 88 122 0 3 1

Robust Semiparametric Analysis

coxph(Surv(start,stop,status) ~ trt + cluster(id),

data=rats, method="breslow")

n= 254

coef exp(coef) se(coef) robust se z p

trt -0.815774 0.442297 0.151836 0.19809 -4.11819 3.8186e-05

exp(coef) exp(-coef) lower .95 upper .95

trt 0.442297 2.26092 0.299985 0.652122

Likelihood ratio test= 31.69 on 1 df, p=1.81146e-08

Wald test = 16.96 on 1 df, p=3.8186e-05

Score (logrank) test = 30.54 on 1 df, p=3.26554e-08, Robust = 11.2

p=0.000816617

(Note: the likelihood ratio and score tests assume independence of

observations within a cluster, the Wald and robust score tests do not).



RCT for Treatment of Herpes Simplex Virus Infections

• 48-week crossover trial (Romanowski et al. 2003)

Group A: Suppressive then episodic therapy (24 weeks each)

Group B: Episodic then suppressive

Episodic therapy - 1000 gms/day of valcyclovir only during
an outbreak

Suppressive therapy - 500 gms/day every day; switch to 1000
gms/day during an outbreak

• Plot of estimated MCF’s for Groups A and B, ignoring covariates (fig-
ure)

• Regression analysis:

x1(t) = I (on suppressive regime)

x2(t) measures carryover effect of Suppressive Therapy in
period 2 for Group A subjects



Covariate β̂ Robust SE Z

Suppressive regime - 1.58 0.11 - 14.6

Suppressive carryover - 0.28 0.21 - 1.34

Age (years) 0.0007 0.0007 1.00

Sex (M = 1) - 0.14 0.12 - 1.13

Race 1 (Hisp. vs Wh.) - 1.13 0.71 - 1.60

Race 2 (Asian vs Wh.) - 1.33 1.19 - 1.11

Virus type 0.20 0.11 1.79

Occurrences in prev. year 0.071 0.025 2.84
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5. Extensions and Needed Development

• Robust estimation methods require the end-of-followup times τi to be
independent of the recurrent events.
Reason: robust method uses estimating equations (4),

U(θ) =

m
∑

i=1

∫ ∞

0
Yi(t)

∂ log ρi(t)

∂θ
{dNi(t) − ρi(t; θ)dt} = 0

where Yi(t) = I(t ≤ τi).

- If {Yi(t), t ≥ 0} is independent of {Ni(t), t ≥ 0} = 0 then

E{U(θ)} = 0 since E{dNi(t)} = ρi(t; θ)dt.

- Not true that E{U(θ)} = 0 more generally.



• New approach: Use “inverse probability of censoring” weights

πi(t) = Pr {Yi(t) = 1|Hi(t)}

Uiw(θ) =

∫ ∞

0

Yi(t)

πi(t)

∂ log ρi(t)

∂θ
{dNi(t) − ρi(t; θ)dt}

• Note E{Uiw(θ)} = 0 by taking EHi
EYi|Hi

Cook and Lawless (2007)

• Intermittent observation: individuals observed at discrete time points
so exact event times are not known.

- parametric models are OK, but semiparametric model considered
here is more difficult.



• Prediction of future events or costs

e.g. Warranty claims, medical costs, software testing and
debugging

- Robust methods can produce only “point” predictions and
estimates of rate or mean functions at future times

- To get prediction intervals we require a probability model,
which takes us beyond the present discussion



• Probability models

- Poisson models with unit-level random effects, e.g.

µi(t|ui, xi) = µ0(t)ui exp (β′xi)

coxph with frailty(unit) option
Quite robust; mimics robust analysis in many cases

- Event intensity models: condition on past event history Hi(t), e.g.

λi (t|xi, Hi(t)) = λ0(t) exp
(

β′xi + γNi(t−)
)



Final Remarks

• Robust methods discussed here are very useful when we wish to assess
baseline covariates or treatments in randomized experiments

• Also valuable in observational studies for describing effects of fixed or
external time-varying covariates

• More generally, intensity modelling is used to examine the dynamics of
a process (effect of past event history on subsequent event occurrence)

e.g. λi(t) = λ0(t) exp
(

x′iβ + γNi(t−)
)

Cook and Lawless (2007): wide range of methods


