
“Bolker” — 1/9/2008 — 15:34 — page i

−1
0
1

Ecological Models and Data in R

“Bolker” — 1/9/2008 — 15:34 — page ii

−1
0
1

“Bolker” — 1/9/2008 — 15:34 — page iii

−1
0
1

Ecological Models and Data in R
Benjamin M. Bolker

P R I N C E T O N U N I V E R S I T Y P R E S S

PRINCETON AND OXFORD

“Bolker” — 1/9/2008 — 15:34 — page iv

−1
0
1

Copyright © 2008 by Princeton University Press
Published by Princeton University Press, 41 William Street, Princeton,
New Jersey 08540

In the United Kingdom: Princeton University Press,
3 Market Place, Woodstock, Oxfordshire OX20 1SY

All Rights Reserved

ISBN-13: 978-0-691-12522-0
ISBN-13 (pbk.): 978-0-691-12523-7

British Library Cataloging-in-Publication Data is available

This book has been composed in Sabon

Printed on acid-free paper. ∞

pup.princeton.edu

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

“Bolker” — 1/9/2008 — 15:34 — page v

−1
0
1

Contents

Acknowledgments ix

1 Introduction and Background 01

1.1 Introduction 01
1.2 What This Book Is Not About 03
1.3 Frameworks for Modeling 05
1.4 Frameworks for Statistical Inference 10
1.5 Frameworks for Computing 17
1.6 Outline of the Modeling Process 20
1.7 R Supplement 22

2 Exploratory Data Analysis and Graphics 29

2.1 Introduction 29
2.2 Getting Data into R 30
2.3 Data Types 34
2.4 Exploratory Data Analysis and Graphics 40
2.5 Conclusion 59
2.6 R supplement 59

3 Deterministic Functions for Ecological Modeling 72

3.1 Introduction 72
3.2 Finding Out about Functions Numerically 73
3.3 Finding Out about Functions Analytically 76
3.4 Bestiary of Functions 87
3.5 Conclusion 100
3.6 R supplement 100

4 Probability and Stochastic Distributions for Ecological Modeling 103

4.1 Introduction: Why Does Variability Matter? 103
4.2 Basic Probability Theory 104
4.3 Bayes’ Rule 107
4.4 Analyzing Probability Distributions 115
4.5 Bestiary of Distributions 120
4.6 Extending Simple Distributions: Compounding and Generalizing 137
4.7 R Supplement 141

“Bolker” — 1/9/2008 — 15:34 — page vi

−1
0
1

vi • C O N T E N T S

5 Stochastic Simulation and Power Analysis 147

5.1 Introduction 147
5.2 Stochastic Simulation 148
5.3 Power Analysis 156

6 Likelihood and All That 169

6.1 Introduction 169
6.2 Parameter Estimation: Single Distributions 169
6.3 Estimation for More Complex Functions 182
6.4 Likelihood Surfaces, Profiles, and Confidence Intervals 187
6.5 Confidence Intervals for Complex Models: Quadratic

Approximation 196
6.6 Comparing Models 201
6.7 Conclusion 220

7 Optimization and All That 222

7.1 Introduction 222
7.2 Fitting Methods 223
7.3 Markov Chain Monte Carlo 233
7.4 Fitting Challenges 241
7.5 Estimating Confidence Limits of Functions of Parameters 250
7.6 R Supplement 258

8 Likelihood Examples 263

8.1 Tadpole Predation Experiments 263
8.2 Goby Survival Analysis 276
8.3 Seed Removal 283

9 Standard Statistics Revisited 298

9.1 Introduction 298
9.2 General Linear Models 300
9.3 Nonlinearity: Nonlinear Least Squares 306
9.4 Nonnormal Errors: Generalized Linear Models 308
9.5 R Supplement 312

10 Modeling Variance 316

10.1 Introduction 316
10.2 Changing Variance within Blocks 318
10.3 Correlations: Time-Series and Spatial Data 320
10.4 Multilevel Models: Special Cases 324
10.5 General Multilevel Models 327
10.6 Challenges 333
10.7 Conclusion 334
10.8 R Supplement 335

“Bolker” — 1/9/2008 — 15:34 — page vii

−1
0
1

CONTENTS • vii

11 Dynamic Models 337

11.1 Introduction 337
11.2 Simulating Dynamic Models 338
11.3 Observation and Process Error 342
11.4 Process and Observation Error 344
11.5 SIMEX 346
11.6 State-Space Models 348
11.7 Conclusions 357
11.8 R supplement 360

12 Afterword 362

Appendix Algebra and Calculus Basics 363

A.1 Exponentials and Logarithms 363
A.2 Differential Calculus 364
A.3 Partial Differentiation 364
A.4 Integral Calculus 365
A.5 Factorials and the Gamma Function 365
A.6 Probability 365
A.7 The Delta Method 366
A.8 Linear Algebra Basics 366

Bibliography 369
Index 00

“Bolker” — 1/9/2008 — 15:34 — page viii

−1
0
1

“Bolker” — 1/9/2008 — 15:34 — page ix

−1
0
1

Acknowledgments

Lots of people have helped me start and finish this book. I would like to thank:

The R community, for building such a useful tool.

Various research institutions that have provided me room to work over the years:
the Department of Zoology at the University of Florida, the Mathematical Biosciences
Institute, and the NERC Centre for Population Biology at Silwood Park.

All the students and colleagues who have brought me such interesting and chal-
lenging problems over the years, especially those who took the time to find errors
or make suggestions: Jorge Ahumada, Chad Brassil, David Buck, Lin Cassidy, Lew
Coggins, Rick Condit, Mick Crawley, Ian Dworkin, Ian Fiske, Shane Geange, Gre-
gor Gorjanc, Tom Hobbs, Rico Holdo, Holly Kindsvater, Aaron MacNeil, Julien
Martin, Mike McCoy, Jeremy Mendoza, Jess Metcalf, Toshinori Okuyama, Alfredo
Rios, Stuart Sandin, Nat Seavy, Darren Shaw, Adrian Stier, Don Strong, Maria Uri-
arte, Denis Valle, Will Wilson, and several anonymous reviewers. I apologize if I
forgot your name, or if your suggestions slipped through the cracks or were just too
hard to implement.

Researchers who generously contributed their original data sets as examples:
James D. Thomson, Russ Schmitt and Sally Holbrook, Mike Dodd and Jonathan
Silvertown, James Vonesh, and Jackie Wilson.

My Ph.D. and postdoctoral advisers, Bryan Grenfell and Steve Pacala, for
introducing me to mathematical and statistical ecology.

My parents, Joan and Ethan Bolker, for thorough and thoughtful comments on
the manuscript and for establishing the expectation that writing books is just what
people do.

And last but not least Aidan and especially Tara for their love, patience, and
support.

Essentially, all models are wrong
but some are useful.

—George Box

“Bolker” — 1/9/2008 — 15:34 — page x

−1
0
1

“Bolker” — 1/9/2008 — 15:34 — page xi

−1
0
1

Ecological Models and Data in R

“Bolker” — 1/9/2008 — 15:34 — page xii

−1
0
1

“Bolker” — 1/9/2008 — 15:39 — page 1

−1
0
1

1 Introduction and Background

This chapter gives a broad overview of the philosophy and techniques of ecolog-
ical modeling. A small data set on seed removal illustrates the three most common
frameworks for statistical modeling in ecology: frequentist, likelihood-based, and
Bayesian. The chapter also reviews what you should know to get the most out of
the book, discusses the R language, and spells out a step-by-step process for building
models of ecological systems.

If you’re impatient with philosophical discussion, you can read Section 1.4 and
the R supplement at the end of the chapter and move on to Chapter 2.

1.1 Introduction

This book is about combining models with data to answer ecological questions.
Pursuing this worthwhile goal will lead to topics ranging from basic statistics, to the
cutting edge of modern statistics, to the nuts and bolts of computer programming,
to the philosophy of science. Remember as we go along not to miss the ecological
forest for the statistical trees; all of these complexities are in the service of answering
ecological questions, and the most important thing is to keep your common sense
about you and your focus on the biological questions you set out to answer. “Does
this make sense?” and “What does this answer really mean?” are the two questions
you should ask constantly. If you cannot answer them, back up to the last point you
understood.

If you want to combine models with data, you need to use statistical tools.
Ecological statistics has gotten much more complicated in the last few decades.
Research papers in ecology now routinely refer to likelihood, Markov chain Monte
Carlo, and other arcana. This new complexity arises from the explosion of cheap
computing power, which allows us to run complicated tests quickly and easily—
or at least more easily than before. But there is still a lot to know about how
these tests work, which is what this book is about. The good news is that we
can now develop statistical methods that directly answer our ecological ques-
tions, adapting statistics to the data rather than vice versa. Instead of asking
“What is the probability of observing at least this much variability among the

“Bolker” — 1/9/2008 — 15:39 — page 2

−1
0
1

2 • C H A P T E R 1

arcsine-square-root-transformed counts of seeds in different treatments?” we can
ask “Is the number of seeds removed consistent with standard foraging theory, and
what are the attack rates and handling times of predators? Do the attack rates or
handling times increase with mean seed size? With the time that the seeds have
been available? Is there evidence for variability among seeds?” By customizing
statistical tests we can squeeze more information, and more relevant informa-
tion, from expensive data. Building your own statistical tests is not easy, but it
is really no harder than using any of the other tools ecologists have picked up
in their ongoing effort to extract meaning from the natural world (stable isotope
techniques, radiotelemetry, microsatellite population genetics, geographic informa-
tion systems, otolith analysis, flow cytometry, mist netting . . . you can probably
identify several more from your own field). Custom statistical techniques are just
another set of tools in the modern ecologist’s toolbox; the information this book
presents should show you how to use them on your own data, to answer your own
questions.

For example, Sandin and Pacala (2005b) combined population counts through
time with remote underwater video monitoring to analyze how the density of reef
fishes in the Caribbean affected their risk of predation. The classic approach to this
problem would be to test for a significant correlation between density and mortal-
ity rate, or between density and predator activity. A positive correlation between
prey population density and the number of observed predator visits or attacks would
suggest that prey aggregations attract predators. If predator attacks on the prey
population are proportional to population density, then the predation rate per prey
individual will be independent of density; predator attacks would need to accelerate
with increasing population density in order for predators to regulate the prey popu-
lation. One could test for positive correlations between prey density and per capita
mortality to see whether this is so.

However, correlation analysis assumes the data are bivariate normally dis-
tributed, while linear regression assumes a linear relationship between a predictor
variable and a normally distributed response variable. Although one can sometimes
transform data to satisfy these assumptions, or simply ignore minor violations,
Sandin and Pacala took a more powerful approach: they built explicit models to
describe how the absolute and per capita predator visits or mortality depended on
prey population density. For example, the absolute mortality probability would be
r0 + r1n and the per capita mortality probability would be (r0 + r1n)/n if predator
visits are proportional to prey density. They also used realistic binomial and Poisson
probability distributions to describe the variation in the data, rather than assum-
ing normality (a particularly awkward assumption when there are lots of zeros in
the data). By doing so, they were able to choose among a variety of possible mod-
els and conclude that predators induce inverse density dependence in this system
(i.e., that smaller prey populations experience higher per capita mortality, because
predators are present at relatively constant numbers independent of prey density).
Because they fitted models rather than running classical statistical tests on trans-
formed data, they were also able to estimate meaningful parameter values, such as
the increase in predator visits per hour for every additional prey individual present.
These values are more useful than p (significance) values, or than regression slopes
from transformed data, because they express statistical information in ecological
terms.

“Bolker” — 1/9/2008 — 15:39 — page 3

−1
0
1

I N T R O D U C T I O N • 3

1.2 What This Book Is Not About

1.2.1 What You Should Already Know

To get the most out of the material presented here you should already have a good
grasp of basic statistics, be comfortable with computers (e.g., have used Microsoft
Excel to deal with data), and have some rusty calculus. But attitude and aptitude
are more important than previous classroom experience. Getting into this material
requires some hard work at the outset, but it will become easier as you brush up on
basic concepts.∗

STATISTICS

I assume that you’ve had the equivalent of a one-semester undergraduate statistics
course. The phrases hypothesis test, analysis of variance, linear regression, normal
distribution (maybe even Central Limit Theorem) should be familiar to you, even if
you don’t remember all of the details. The basics of experimental design—the mean-
ing of and need for randomization, control, independence, and replication in setting
up experiments, the idea of statistical power, and the concept of pseudoreplication
(Hurlbert, 1984; Hargrove and Pickering, 1992; Heffner et al., 1996; Oksanen,
2001)—are essential tools for any working ecologist, but you can learn them from a
good introductory statistics class or textbook such as Gotelli and Ellison (2004) or
Quinn and Keough (2002).†

Further reading: If you need to review statistics, try Crawley (2002), Dalgaard
(2003), or Gotelli and Ellison (2004). Gonick and Smith’s 1993 Cartoon Guide
to Statistics gives a gentle introduction to some basic concepts, but you will need
to go beyond what they cover. Sokal and Rohlf (1995), Zar (1999), and Crawley
(2005, 2007) cover a broader range of classical statistics. For experimental design,
try Underwood (1996), Scheiner and Gurevitch (2001), or Quinn and Keough (2002)
(the latter two discuss statistical analysis as well).

COMPUTERS

This book will teach you how to use computers to understand data. You will be
writing a few lines of R code at a time rather than full-blown computer programs,
but you will have to go beyond pointing and clicking. You need to be comfortable with
computers, and with using spreadsheets like Excel to manipulate data. Familiarity
with a mainstream statistics package like SPSS or SAS will be useful, although you

∗ After teaching with Hilborn and Mangel’s excellent book The Ecological Detective (1997) I wanted
to a write a book that included enough nitty-gritty detail for students to tackle their own problems. If this
book feels too hard for you, consider starting with The Ecological Detective—but consider reading ED
in any case.

† Ideally, you would think about how you will analyze your data before you go into the field to
collect it. This rarely happens. Fortunately, if your observations are adequately randomized, controlled,
independent, and replicated, you will be able to do something with your data. If they aren’t, no fancy
statistical techniques can help you.

“Bolker” — 1/9/2008 — 15:39 — page 4

−1
0
1

4 • C H A P T E R 1

should definitely use R to work through this book instead of falling back on a familiar
software package. (If you have used R already, you’ll have a big head start.) You
needn’t have done any programming.

MATH

Having “rusty” calculus means knowing what a derivative and an integral are. While
it would be handy to remember a few of the formulas for derivatives, a feeling for the
meanings of logarithms, exponentials, derivatives, and integrals is more important
than the formulas (you’ll find the formulas in the appendix). In working through this
book you will have to use algebra, as much as calculus, in a routine way to solve
equations and answer questions. Most of the people who have taken my classes were
very rusty when they started.

Further reading: Adler (2004) gives a very applied review of basic calculus, dif-
ferential equations, and probability, while Neuhauser (2003) covers calculus in a
more rigorous and traditional way, but still with a biological slant.

ECOLOGY

I have assumed you know some basic ecological concepts, since they are the foun-
dation of ecological data analysis. You should be familiar, for example, with ex-
ponential and logistic growth from population ecology; functional responses from
predator-prey ecology; and competitive exclusion from community ecology.

Further reading: For a short introduction to ecological theory, try Hastings
(1997) or Vandermeer and Goldberg (2004) (the latter is more general). Gotelli
(2001) is more detailed. Begon et al. (1996) gives an extremely thorough introduc-
tion to general ecology, including some basic ecological models. Case (1999) provides
an illustrated treatment of theory, while Roughgarden (1997) integrates ecological
theory with programming examples in MATLAB. Mangel (2006) and Otto and Day
(2007), two new books, both give basic introductions to the “theoretical biologist’s
toolbox.”

1.2.2 Other Kinds of Models

Ecologists sometimes want to “learn how to model” without knowing clearly what
questions they hope the models will answer, and without knowing what kind of
models might be useful. This is a bit like saying “I want to learn to do experiments”
or “I want to learn molecular biology”: Do you want to analyze microsatellites?
Use RNA inactivation to knock out gene function? Sequence genomes? What people
usually mean by “I want to learn how to model” is “I have heard that modeling is a
powerful tool and I think it could tell me something about my system, but I’m not
really sure what it can do.”

Ecological modeling has many facets. This book covers only one: statistical mod-
eling, with a bias toward mechanistic descriptions of ecological patterns. The next
section briefly reviews a much broader range of modeling frameworks and gives some

“Bolker” — 1/9/2008 — 15:39 — page 5

−1
0
1

I N T R O D U C T I O N • 5

starting points in the modeling literature in case you want to learn more about other
kinds of ecological models.

1.3 Frameworks for Modeling

This book is primarily about how to combine models with data and how to use them
to discover the answers to theoretical or applied questions. To help fit statistical mod-
els into the larger picture, Table 1.1 presents a broad range of dichotomies that cover
some of the kinds and uses of ecological models. The discussion of these dichotomies
starts to draw in some of the statistical, mathematical, and ecological concepts I
suggested you should know. However, if a few are unfamiliar, don’t worry—the next
few chapters will review the most important concepts. Part of the challenge of learn-
ing the material in this book is a chicken-and-egg problem: to know why certain
technical details are important, you need to know the big picture, but the big picture
itself involves knowing some of those technical details. Iterating, or cycling, is the
best way to handle this problem. Most of the material introduced in this chapter will
be covered in more detail in later chapters. If you don’t completely get it this time
around, hang on and see if it makes more sense the second time.

1.3.1 Scope and Approach

The first set of dichotomies in the table subdivides models into two categories, one
(theoretical/strategic) that aims for general insight into the workings of ecological
processes and one (applied/tactical) that aims to describe and predict how a partic-
ular system functions, often with the goal of forecasting or managing its behavior.
Theoretical models are often mathematically difficult and ecologically oversimpli-
fied, which is the price of generality. Paradoxically, although theoretical models are
defined in terms of precise numbers of individuals, because of their simplicity they are
usually used only for qualitative predictions. Applied models are often mathemati-
cally simpler (although they can require complex computer code) but tend to capture
more of the ecological complexity and quirkiness needed to make detailed predic-
tions about a particular place and time. Because of this complexity their predictions
are often less general.

The dichotomy of mathematical versus statistical modeling says more about the
culture of modeling and how different disciplines go about thinking about models
than about how we should actually model ecological systems. A mathematician is
more likely to produce a deterministic, dynamic process model without thinking
very much about noise and uncertainty (e.g., the ordinary differential equations that
make up the Lotka-Volterra predator-prey model). A statistician, on the other hand, is
more likely to produce a stochastic but static model that treats noise and uncertainty
carefully but focuses more on static patterns than on the dynamic processes that
produce them (e.g., linear regression).∗

∗ Of course, both mathematicians and statisticians are capable of more sophisticated models than
the simple examples given here.

“Bolker” — 1/9/2008 — 15:39 — page 6

−1
0
1

6 • C H A P T E R 1

TABLE 1.1
Modeling dichotomies

Scope and approach

abstract concrete

strategic tactical

general specific

theoretical applied

qualitative quantitative

descriptive predictive

mathematical statistical

mechanistic phenomenological

pattern process

Technical details

analytical computational

dynamic static

continuous discrete

population-based individual-based

eulerian lagrangian

deterministic stochastic

Sophistication

simple complex

crude sophisticated

Each column contrasts a different qual-
itative style of modeling. The loose asso-
ciation of descriptors in each column gets
looser as you work downward.

The important difference between phenomenological (pattern) and mechanistic
(process) models will be with us throughout the book. Phenomenological models
concentrate on observed patterns in the data, using functions and distributions that
are the right shape and/or sufficiently flexible to match them; mechanistic models
are more concerned with the underlying processes, using functions and distribu-
tions based on theoretical expectations. As usual, shades of gray abound; the same
function could be classified as either phenomenological or mechanistic depending
on why it was chosen. For example, you could use the function f (x) = ax/(b + x) (a
Holling type II functional response) as a mechanistic model in a predator-prey context

“Bolker” — 1/9/2008 — 15:39 — page 7

−1
0
1

I N T R O D U C T I O N • 7

because you expected predators to attack prey at a constant rate and be constrained
by handling time, or as a phenomenological model of population growth simply
because you wanted a function that started at zero, was initially linear, and leveled
off as it approached an asymptote (see Chapter 3). All other things being equal,
mechanistic models are more powerful since they tell you about the underlying pro-
cesses driving patterns. They are more likely to work correctly when extrapolating
beyond the observed conditions. Finally, by making more assumptions, they allow
you to extract more information from your data—with the risk of making the wrong
assumptions.∗

Examples of theoretical models include the Lotka-Volterra or Nicholson-Bailey
predator-prey equations (Hastings, 1997); classical metapopulation models for single
(Hanski, 1999) and multiple (Levins and Culver, 1971; Tilman, 1994) species; simple
food web models (May, 1973,Cohen et al. 1990); and theoretical ecosystem models
(Agren and Bosatta, 1996). Applied models include forestry and biogeochemical
cycling models (Blanco et al. 2005), fisheries stock-recruitment models (Quinn and
Deriso, 1999), and population viability analysis (Morris and Doak, 2002; Miller and
Lacy, 2005).

Further reading: Books on ecological modeling overlap with those on ecolog-
ical theory listed on p. 4. Other good sources include Nisbet and Gurney (1982;
a well-written but challenging classic), Gurney and Nisbet (1998; a lighter ver-
sion), Haefner (1996; broader, including physiological and ecosystem perspectives),
Renshaw (1991; good coverage of stochastic models), Wilson (2000; simulation
modeling in C), and Ellner and Guckenheimer (2006; dynamics of biological systems
in general).

1.3.2 Technical Details

Another set of dichotomies characterizes models according to the methods used to
analyze them or according to the decisions they embody about how to represent
individuals, time, and space.

An analytical model is made up of equations solved with algebra and calculus.
A computational model consists of a computer program which you run for a range
of parameter values to see how it behaves.

Most mathematical models and a few statistical models are dynamic; the response
variables at a particular time (the state of the system) feed back to affect the response
variables in the future. Integrating dynamical and statistical models is challenging (see
Chapter 11). Most statistical models are static; the relationship between predictor
and response variables is fixed.

One can specify how models represent the passage of time or the structure of
space (both can be continuous or discrete); whether they track continuous popula-
tion densities (or biomass or carbon densities) or discrete individuals; whether they
consider individuals within a species to be equivalent or divide them by age, size,
genotype, or past experience; and whether they track the properties of individuals

∗ For an alternative, classic approach to the tradeoffs between different kinds of models, see Levins’s
(1966) (criticized by Orzack and Sober (1993); Levins’s (1993) defense invokes the fluidity of model-
building in ecology).

“Bolker” — 1/9/2008 — 15:39 — page 8

−1
0
1

8 • C H A P T E R 1

(individual-based or Eulerian) or the number of individuals within different categories
(population-based or Lagrangian).

Deterministic models represent only the average, expected behavior of a system
in the absence of random variation, while stochastic models incorporate noise or
randomness in some way. A purely deterministic model allows only for qualitative
comparisons with real systems; since the model will never match the data exactly,
how can you tell if it matches closely enough? For example, a deterministic food web
model might predict that introducing pike to a lake would cause a trophic cascade,
decreasing the density of phytoplankton (because pike prey on sunfish, which eat zoo-
plankton, which in turn consume phytoplankton); it might even predict the expected
magnitude of the change. To test this prediction with real data, however, you would
need some kind of statistical model to estimate the magnitude of the average change
in several lakes (and the uncertainty), and to distinguish between observed changes
due to pike introduction and those due to other causes (measurement error, seasonal
variation, weather, nutrient dynamics, population cycles, etc.).

Most ecological models incorporate stochasticity crudely, by simply assuming
that there is some kind of (perhaps normally distributed) variation, arising from a
combination of unknown factors, and estimating the magnitude of that variation
from the variation observed in the field. We will go beyond this approach, specify-
ing different sources of variability and something about their expected distributions.
More sophisticated models of variability enjoy some of the advantages of mecha-
nistic models: models that make explicit assumptions about the underlying causes
of variability can both provide more information about the ecological processes at
work and get more out of your data.

There are essentially three kinds of random variability:

• Measurement error is the variability imposed by our imperfect observation of
the world; it is always present, except perhaps when we are counting a small
number of easily detected organisms. It is usually modeled by the standard
approach of adding normally distributed variability around a mean value.

• Demographic stochasticity is the innate variability in outcomes due to random
processes even among otherwise identical units. In experimental trials where
you flip a coin 20 times you might get 10 heads, or 9, or 11, even though
you’re flipping the same coin the same way each time. Likewise, the number
of tadpoles out of an initial cohort of 20 eaten by predators in a set amount of
time will vary between experiments. Even if we controlled everything about
the environment and genotype of the predators and prey, we would still see
different numbers dying in each run of the experiment.

• Environmental stochasticity is variability imposed from “outside” the ecolog-
ical system, such as climatic, seasonal, or topographic variation. We usually
reserve environmental stochasticity for unpredictable variability, as opposed
to predictable changes (such as seasonal or latitudinal changes in temperature)
which we can incorporate into our models in a deterministic way.

The latter two categories, demographic and environmental stochasticity, make up
process variability,∗ which, unlike measurement error, affects the future dynamics of
the ecological system. (Suppose we expect to find three individuals on an isolated

∗ Process variability is also called process noise or process error (Chapter 10).

“Bolker” — 1/9/2008 — 15:39 — page 9

−1
0
1

I N T R O D U C T I O N • 9

island. If we make a measurement error and measure zero instead of three, we may
go back at some time in the future and still find them. If an unexpected predator
eats all three individuals (process variability), and no immigrants arrive, any future
observations will find no individuals.) The conceptual distinction between process
and measurement error is most important in dynamic models, where the process
error has a chance to feed back on the dynamics.

The distinctions between stochastic and deterministic effects, and between demo-
graphic and environmental variability, are really a matter of definition. Until you get
down to the quantum level, any “random” variability can in principle be explained
and predicted. What determines whether a tossed coin will land heads-up? Its start-
ing orientation and the number of times it turns in the air, which depends on how
hard you toss it (Keller, 1986). What determines exactly which and how many
seedlings of a cohort die? The amount of energy with which their mother provi-
sions the seeds, their individual light and nutrient environments, and encounters
with pathogens and herbivores. Variation that drives mortality in seedlings—e.g.,
variation in available carbohydrates among individuals because of small-scale vari-
ation in light availability—might be treated as a random variable by a forester at
the same time that it is treated as a deterministic function of light availability by
a physiological ecologist measuring the same plants. Climatic variation is random
to an ecologist (at least on short time scales) but might be deterministic, although
chaotically unpredictable, to a meteorologist. Similarly, the distinction between
demographic variation, internal to the system, and environmental variation, exter-
nal to the system, varies according to the focus of a study. Is the variation in the
number of trees that die every year an internal property of the variability in the
population or does it depend on an external climatic variable that is modeled as
random noise?

1.3.3 Sophistication

I want to make one final distinction, between simple and complex models and
between crude and sophisticated ones. One could quantify simplicity versus com-
plexity by the length of the description of the analysis or by the number of lines
of computer script or code required to implement a model. Crudity and sophistica-
tion are harder to recognize; they represent the conceptual depth, or the amount of
hidden complexity, involved in a model or statistical approach. For example, a com-
puter model that picks random numbers to determine when individuals give birth
and die and keeps track of the total population size, for particular values of the
birth and death rates and starting population size, is simple and crude. Even sim-
pler, but far more sophisticated, is the mathematical theory of random walks (Okubo,
1980) which describes the same system but—at the cost of challenging mathematics—
predicts its behavior for any birth and death rates and any starting population sizes.
A statistical model that searches at random for the line that minimizes the sum of
squared deviations of the data is crude and simple; the theory of linear models, which
involves more mathematics, does the same thing in a more powerful and general way.
Computer programs, too, can be either crude or sophisticated. One can pick numbers
from a binomial distribution by virtually flipping the right number of coins and see-
ing how many come up heads, or by using numerical methods that arrive at the same

“Bolker” — 1/9/2008 — 15:39 — page 10

−1
0
1

10 • C H A P T E R 1

result far more efficiently. A simple R command like rbinom, which picks random
binomial deviates, hides a lot of complexity.

The value of sophistication is generality, simplicity, and power; its costs are opac-
ity and conceptual and mathematical difficulty. In this book, I will take advantage
of many of R’s sophisticated tools for optimization and random number generation
(since in this context it’s more important to have these tools available than to learn
the details of how they work), but I will avoid many of its sophisticated statistical
tools, so that you can learn from the ground up how statistical models really work
and make your models work the way you want them to rather than being constrained
by existing frameworks. Having reinvented the wheel, however, we’ll briefly revisit
some standard statistical frameworks like generalized linear models and see how they
can solve some problems more efficiently.

1.4 Frameworks for Statistical Inference

This section will explore three different ways of drawing statistical conclusions from
data—frequentist, Bayesian, and likelihood-based. While the differences among these
frameworks are sometimes controversial, most modern statisticians know them all
and use whatever tools they need to get the job done; this book will teach you the
details of those tools, and the distinctions among them.

To illustrate the ideas I’ll draw on a seed predation data set from Duncan and
Duncan (2000) that quantifies how many times seeds of two different species dis-
appeared (presumably taken by seed predators, although we can’t be sure) from
observation stations in Kibale National Park, Uganda. The two species (actually the
smallest- and largest-seeded species of a set of eight species) are Polyscias fulva (pol:
seed mass < 0.01 g) and Pseudospondias microcarpa (psd: seed mass ≈ 50 g).

1.4.1 Classical Frequentist

Classical statistics, which are part of the broader frequentist paradigm, are the
kind of statistics typically presented in introductory statistics classes. For a specific
experimental procedure (such as drawing cards or flipping coins), you calculate the
probability of a particular outcome, which is defined as the long-run average fre-
quency of that outcome in a sequence of repeated experiments. Next you calculate
a p-value, defined as the probability of that outcome or any more extreme outcome
given a specified null hypothesis. If this so-called tail probability is small, then you
reject the null hypothesis; otherwise, you fail to reject it. But you don’t accept the
null hypothesis if the tail probability is large; you just fail to reject it.

The frequentist approach to statistics (due to Fisher, Neyman, and Pearson) is
useful and very widely used, but it has some serious drawbacks—which are repeat-
edly pointed out by proponents of other statistical frameworks (Berger and Berry,
1988). It relies on the probability of a series of outcomes that didn’t happen (the
tail probabilities), and which depend on the way the experiment is defined; its defi-
nition of probability depends on a series of hypothetical repeated experiments that
are often impossible in any practical sense; and it tempts us to construct straw-man

“Bolker” — 1/9/2008 — 15:39 — page 11

−1
0
1

I N T R O D U C T I O N • 11

TABLE 1.2

pol psd

Any taken (t) 26 25

None taken 184 706

Total (N) 210 731

null hypotheses and make convoluted arguments about why we have failed to reject
them. Probably the most criticized aspect of frequentist statistics is their reliance
on p-values, which when misused (as frequently occurs) are poor tools for scientific
inference. To abuse p-values seems to be human nature; we act as though alternative
hypotheses (which are usually what we’re really interested in) are “true” if we can
reject the null hypothesis with p < 0.05 and “false” if we can’t. In fact, when the
null hypothesis is true we still find p ≤ 0.05 one time in twenty (we falsely reject the
null hypothesis 5% of the time, by definition). If p > 0.05, the null hypothesis could
still be false but we have insufficient data to reject it. We could also reject the null
hypothesis in cases where we have lots of data, even though the results are biologi-
cally insignificant—that is, if the estimated effect size is ecologically irrelevant (e.g.,
a 0.01% increase in plant growth rate with a 30◦C increase in temperature). More
fundamentally, if we use a so-called point null hypothesis (such as “the slope of the
relationship between plant productivity and temperature is zero”), common sense
tells us that the null hypothesis must be false, because it can’t be exactly zero—which
makes the p-value into a statement about whether we have enough data to detect a
nonzero slope, rather than about whether the slope is actually different from zero.
Working statisticians will tell you that it is better to focus on estimating the values
of biologically meaningful parameters and finding their confidence limits rather than
worrying too much about whether p is greater or less than 0.05 (Yoccoz, 1991; John-
son, 1999; Osenberg et al. 2002)—although Stephens et al. (2005) remind us that
hypothesis testing can still be useful.

Looking at the seed data, we have a 2 × 2 table (Table 1.2). If ti is the number
of times that species i seeds disappear and Ni is the total number of observations of
species i, then the observed proportions of the time that seeds disappeared for each
species are (pol) t1/N1 = 0.124 and (psd) t2/N2 = 0.034. The overall proportion
taken (which is not the average of the two proportions since the total numbers of
observations for each species differ) is (t1 + t2)/(N1 + N2) = 0.054. The ratio of the
predation probabilities (proportion for pol/proportion for psd) is 0.124/0.034 =
3.62. The ecological question we want to answer is “Is there differential predation
on the seeds on these two species?” (Given the sample sizes and the size of the
observed difference, what do you think? Do you think the answer is likely to be
statistically significant? How about biologically significant? What assumptions or
preconceptions does your answer depend on?)

A frequentist would translate this biological question into statistics as “What
is the probability that I would observe a result this extreme, or more extreme,
given the sampling procedure?” More specifically, “What proportion of possi-
ble outcomes would result in observed ratios of proportions greater than 3.62 or
smaller than 1/3.62 = 0.276?” (Figure 1.1). Fisher’s exact test (fisher.test in R)

“Bolker” — 1/9/2008 — 15:39 — page 12

−1
0
1

12 • C H A P T E R 1

Number of pol stations with any seeds taken

P
ro

ba
bi

lit
y

0 10 20 30 40

0 2 4 6 8 10

Probability ratio

10

10

10

observed
=26

p=3.56 × 10

p=1.7 × 10

obs=3.62

Figure 1.1 Classical frequentist analysis. Fisher’s exact test calculates the probability of a given
number of pol stations having seeds taken under the null hypothesis that both species have the
same predation probability. The total probability that as many or more pol stations had seeds
taken, or that the difference was more extreme in the other direction, is the two-tailed frequen-
tist p-value (3.56 × 10−6 + 1.70 × 10−6 = 5.26 × 10−6). The top axis shows the equivalent
in seed predation probability ratios. (Note: I put the y-axis on a log scale because the tails of
the curve are otherwise too small to see, even though this change means that the area under
the curve no longer represents the total probability.)

calculates this probability, as a one-tailed test (proportion of outcomes with ratios
greater than 3.62) or a two-tailed test (proportion with ratios greater than 3.62 or
less than its reciprocal, 0.276); the two-tailed answer in this case is 5.26 × 10−6.
According to Fisher’s original interpretation, this number represents the strength
of evidence against the null hypothesis, or (loosely speaking) for the alternative
hypothesis—that there is a difference in seed predation rates. According to the
Neyman-Pearson decision rule, if we had set our acceptance cutoff at α = 0.05,
we could conclude that there was a statistically significant difference in predation
rates.

We needn’t fixate on p-values: the R command for Fisher’s test, fisher.test,
also tells us the 95% confidence limits for the difference between rates.∗ In terms
of probability ratios, this example gives (2.073, 6.057), which as expected does not
include 1. Do you think a range of a 107% to a 506% increase in seed predation
probability† is significant?

∗ R expresses the difference in predation rates in terms of the odds ratio—if there are t1 seeds taken
and N1 − t1 seeds not taken for species 1, then the odds of a seed being taken are t1/(N1 − t1) and the
odds ratio between the species is (t1/(N1 − t1))/(t2/(N2 − t2)). The odds ratio and its logarithm (the logit
or log-odds ratio) have nice statistical properties.

† These values are the confidence limits on the probability ratios, minus 1, converted into percentages:
for example, a probability ratio of 1.1 would represent a 10% increase in predation.

“Bolker” — 1/9/2008 — 15:39 — page 13

−1
0
1

I N T R O D U C T I O N • 13

1.4.2 Likelihood

Most of the book will focus on frequentist statistics, but not the standard version
that you may be used to. Most modern statistics uses an approach called maximum
likelihood estimation, or approximations to it. For a particular statistical model,
maximum likelihood finds the set of parameters (e.g., seed removal rates) that makes
the observed data (e.g., the particular outcomes of predation trials) most likely to
have occurred. Based on a model for both the deterministic and stochastic aspects of
the data, we can compute the likelihood (the probability of the observed outcome)
given a particular choice of parameters. We then find the set of parameters that makes
the likelihood as large as possible, and take the resulting maximum likelihood esti-
mates (MLEs) as our best guess at the parameters. So far we haven’t assumed any
particular definition of probability of the parameters. We could decide on confidence
limits by choosing a likelihood-based cutoff, for example, by saying that any parame-
ters that make the probability of the observed outcomes at least one-tenth as likely as
the maximum likelihood are “reasonable.” For mathematical convenience, we often
work with the logarithm of the likelihood (the log-likelihood) instead of the likeli-
hood; the parameters that give the maximum log-likelihood also give the maximum
likelihood. On the log scale, statisticians have suggested a cutoff of 2 log-likelihood
units (Edwards, 1992), meaning that we consider any parameter reasonable that is
at least e−2 ≈ 1/7.4 = 14% as likely as the maximum likelihood.

However, most modelers add a frequentist interpretation to likelihoods, using a
mathematical proof that says that, across the hypothetical repeated trials of the fre-
quentist approach, the distribution of the negative logarithm of the likelihood itself
follows a χ2 (chi-squared) distribution.∗ This fact means that we can set a cutoff
for differences in log-likelihoods based on the 95th percentile of the χ2 distribution,
which corresponds to 1.92 log-likelihood units, or parameters that lower the like-
lihood by a factor of e1.92 = 6.82. The theory says that the estimated value of the
parameter will fall farther away than that from the true value only 5% of the time
in a long series of repeated experiments. This rule is called the Likelihood Ratio Test
(LRT).† We will see that it lets us both estimate confidence limits for parameters and
choose between competing models.

Bayesians (discussed below) also use the likelihood—it is part of the recipe for
computing the posterior distribution—but they take it as a measure of the information
we can gain from the data, without saying anything about what the distribution of
the likelihood would be in repeated trials.

How would one apply maximum likelihood estimation to the seed predation
example? Lumping all the data from both species together at first, and assuming
that (1) all observations are independent of each other and (2) the probability of
at least one seed being taken is the same for all observations, it follows that the
number of times at least one seed is removed is binomially distributed (we’ll get to
the formulas in Chapter 4). Now we want to know how the probability of observing
the data (the likelihood L) depends on the probability ps that at least one seed was

∗ This result holds in the asymptotic case where we have lots of data, which happens less than we
would like—but we often gloss over the fact of limited data and use it anyway.

† The difference between log-likelihoods is equivalent to the ratio of likelihoods.

“Bolker” — 1/9/2008 — 15:39 — page 14

−1
0
1

14 • C H A P T E R 1

Li
ke

lih
oo

d

0.00

0.03

0.06
a

P(seeds taken), ps

0
b

0.05 0.10 0.15 0.20

Figure 1.2 Likelihood and log-likelihood curves for predation probability p. Both curves have
their maxima at the same point (p = 0.054). Log-likelihoods are based on natural (loge or ln)
logarithms.

taken from a particular station by a predator,∗ and what value of ps maximizes the
likelihood. The likelihood L is the probability that seeds were taken in 51 out of the
total of 941 observations. This probability varies as a function of ps (Figure 1.2): for
ps = 0.05, L = 0.048, while for p = 0.04, L is only 6.16 × 10−3. As it turns out, the
MLE for the probability that seeds were taken in any one trial (ps) is exactly what
we’d expect—51/941, or 0.054—and the likelihood is L = 0.057. (This likelihood is
small, but it just means that the probability of any particular outcome—seeds being
taken in 51 trials rather than 50 or 52—is small.)

To answer the questions that really concern us about the different predation
probabilities for different species, we need to allow different probabilities for each
species, and see how much better we can do (how much higher the likelihood is)
with this more complex model. Now we take the separate values for each species
(26 out of 210 and 25 out of 731) and, with a different per-observation probability
for each species, compute the likelihoods of each species’ data and multiply them (see
Chapter 4 for basic probability calculations) or add the log-likelihoods. If we define
the model in terms of the probability for psd and the ratio of the probabilities, we
can plot a likelihood profile for the maximum likelihood we can get for a given value
of the ratio (Figure 1.3).

The conclusions from this frequentist, maximum-likelihood analysis are essen-
tially identical to those of the classical frequentist (Fisher’s exact test) analyses.
The maximum-likelihood estimate equals the observed ratio of the probabilities,

∗ One of the most confusing things about maximum likelihood estimation is that there are so many
different probabilities floating around. The likelihood L is the probability of observing the complete data
set (i.e., Prob(seeds were taken 51 times out of 941 observations)); ps is the probability that seeds were
taken in any given trial; and the frequentist p-value is the probability, given a particular value of ps, that
seeds were taken 51 or more times out of 941 observations.

“Bolker” — 1/9/2008 — 15:39 — page 15

−1
0
1

I N T R O D U C T I O N • 15

2 3 4 5 6 7
Ratio of (pol prob)/(psd prob)

MLE upperlower

Figure 1.3 Likelihood curve for the ratio of the predation probabilities, showing the maximum
likelihood estimate and 95% confidence limits. The null hypothesis value (ratio equal to 1) is
just below the lower limit of the graph.

3.62; the confidence limits are (2.13, 6.16), which do not include 1; and the LRT-
based p-value for rejecting the null hypothesis that the probabilities are the same is
3.83 × 10−6.

Likelihood and classical frequentist analysis share the same philosophical under-
pinnings. Likelihood analysis is really a particular flavor of frequentist analysis, one
that focuses on writing down a likelihood model and then testing for significant dif-
ferences in the likelihood ratio rather than applying frequentist statistics directly to
the observed outcomes. Classical analyses are usually easier because they are built
into common statistics packages, and they may make fewer assumptions than like-
lihood analyses (e.g., Fisher’s test is exact while the LRT is valid only for large data
sets), but likelihood analyses are often better matched with ecological questions.

1.4.3 Bayesian

Frequentist statistics assumes that there is a “true” state of the world (e.g., the ratio
of the species’ predation probabilities) which gives rise to a distribution of possible
experimental outcomes. The Bayesian framework says instead that the experimental
outcome—what we actually saw happen—is the truth, while the parameter values
or hypotheses have probability distributions. The Bayesian framework solves many
of the conceptual problems of frequentist statistics: answers depend on what we
actually saw and not on a range of hypothetical outcomes, and we can legitimately
make statements about the probability of different hypotheses or parameter values.

The major fly in the ointment of Bayesian statistics is that in order to make it work
we have to specify our prior beliefs about the probability of different hypotheses,
and these prior beliefs actually affect our answers! One hard-core frequentist ecol-
ogist says “Bayesianism means never having to say you’re wrong” (Dennis, 1996).
It is indeed possible to cheat in Bayesian statistics by setting unreasonably strong
priors.∗ The standard solution to the problem of subjectivity is to assume you are

∗ But if you really want to cheat with statistics you can do it in any framework!

“Bolker” — 1/9/2008 — 15:39 — page 16

−1
0
1

16 • C H A P T E R 1

completely ignorant before the experiment (setting a flat prior, or “letting the data
speak for themselves”), although for technical reasons this isn’t always possible. For
better or worse, Bayesian statistics operates in the same way as we typically do sci-
ence: we downweight observations that are too inconsistent with our current beliefs,
while using those in line with our current beliefs to strengthen and sharpen those
beliefs (statisticians are divided on whether this is good or bad).

The big advantages of Bayesian statistics, besides ease of interpretation, come
(1) when we actually have data from prior observations we want to incorporate; (2)
in complex models with missing data and several layers of variability; (3) when we
are trying to make management decisions based on our data (the Bayesian frame-
work makes it easier to incorporate the effect of unlikely but catastrophic scenarios
in decision- making). The only big disadvantage (besides the problem of priors)
is that problems of small to medium complexity are actually harder with Bayesian
approaches than with frequentist approaches—at least in part because most statistical
software is geared toward classical statistics.

How would Bayesians answer our question about predation rates? First of all,
they would say (without looking at the data) that the answer is “yes”—the true
difference between predation rates is certainly not zero. (This discrepancy reflects
the difference in perspective between frequentists, who believe that the true value is a
fixed number and uncertainty lies in what you observe [or might have observed], and
Bayesians, who believe that observations are fixed numbers and the true values are
uncertain.) Then they might define a parameter, the ratio of the two proportions, and
ask questions about the posterior distribution of that parameter—our best estimate
of the probability distribution given the observed data and some prior knowledge
of its distribution (see Chapter 4). What is the mode (most probable value) of that
distribution? What is its expected value, or mean? What is the credible interval, which
is the interval with equal probability cutoffs below and above the mean within which
95% of the probability falls?

The Bayesian answers, in a nutshell: when using a flat prior distribution, the
mode is 3.48 (near the observed proportion of 3.62). The mean is 3.87, slightly
larger than the mode since the posterior probability density is slightly asymmetric—
the density is skewed to the right (Figure 1.4).∗ The 95% credible interval, from 2.01
to 6.01, doesn’t include 1, so Bayesians would say that there was good evidence
against the hypothesis: even more strongly, they could say that the probability that
the predation ratio is greater than 1 is 0.998 (the probability that it is less than 1 is
0.002).

If the details of Bayesian statistics aren’t perfectly clear at this point, don’t worry.
We’ll explore Bayes’ Rule and revisit Bayesian statistics in future chapters.

In this example all three statistical frameworks gave very similar answers, but
they don’t always. Ecological statisticians are still hotly debating which framework
is best, or whether there is a single best framework. While it is important to be clear
on the differences among the approaches, knowing what question each is trying to
answer, statisticians commonly move back and forth among them. My own approach
is eclectic, agreeing with the advice of Crome (1997) and Stephens et al. (2005) to

∗ While Figure 1.1 showed the probability of each possible discrete outcome (number of seeds taken),
Figure 1.4 shows a posterior probability density of a continuous parameter, i.e. the relative probability
that the parameter lies in a particular range. Chapter 4 will explain this distinction more carefully.

“Bolker” — 1/9/2008 — 15:39 — page 17

−1
0
1

I N T R O D U C T I O N • 17

2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

Ratio of (pol prob)/(psd prob)

P
ro

ba
bi

lit
y

de
ns

ity

mode mean

credible interval

Figure 1.4 Bayesian analysis of seed predation. We calculate the probability density of the
ratio of proportions of seeds taken being equal to some particular value, based on our prior
(flat, assuming perfect ignorance—and in this case improper because it doesn’t integrate to 1
[Chapter 4]) and on the data. The most probable value is the mode; the expected value is the
mean. The shaded areas contain 5% of the area under the curve and cut off at the same height
(probability density); the range between them is therefore the 95% credible interval.

try to understand the strengths and weaknesses of several different approaches and
use each one as appropriate.

We will revisit these frameworks in more detail later. Chapter 4 will cover Bayes’
Rule, which underpins Bayesian statistics; Chapters 6 and 7 will return to a much
more detailed look at the practical details of maximum likelihood and Bayesian
analysis. (Textbooks like Dalgaard (2003) cover classical frequentist approaches very
well.)

1.5 Frameworks for Computing

To construct your own models, you will need to learn some of the basics of statistical
computing. There are many computer languages and modeling tools with built-in
statistical libraries (MATLAB, Mathematica) and several statistics packages with
serious programming capabilities (SAS, IDL). We will use a system called R, that is
both a statistics package and a computing language.

1.5.1 What Is R?

R’s developers call it a “language and environment for statistical computing and
graphics.” This awkward phrase gets at the idea that R is more than just a statistics
package. R is closest in spirit to other higher-level modeling languages like MATLAB
or MathCAD. It is a dialect of the S computing language, which was written at
Bell Labs in the 1980s as a research tool in statistical computing. MathSoft, Inc.
(now Insightful Corporation), bought the rights to S and developed it into S-PLUS,
a commercial package with a graphical front- end. In the 1990s two New Zealand

“Bolker” — 1/9/2008 — 15:39 — page 18

−1
0
1

18 • C H A P T E R 1

statisticians, Ross Ihaka and Robert Gentleman, rewrote S from scratch, again as
a research project. The rewritten (and free) version became immensely popular and
is now maintained by an international “core team” of about a dozen well-respected
statisticians and computer scientists.

1.5.2 Why Use R?

R is an extremely powerful tool. It is a full-fledged modern computer language with
sophisticated data structures; it supports a wide range of computations and statistical
procedures; it can produce graphics ranging from exploratory plots to customized
publication-quality graphics.

R is free in the sense that you can download it from the Internet, make as many
copies as you want, and give them away.∗While I don’t begrudge spending money on
software for research, it is certainly convenient not to have to pay—or to deal with
licensing paperwork. This cheapness is vital, rather than convenient, for teachers,
independent researchers, people in less-developed countries, and students who are
frustrated with limited student versions (or pirated versions) of commercial software.

More important, R is also free in the sense that you can inspect any of the code
and change it in any way that you want.† This form of freedom is probably abstract
to you at this point—you probably won’t need to modify R in the course of your
modeling career—but it is a part of the same basic philosophy of the free exchange
of information that underlies scientific and academic research in general.

R is the choice of many academic and industrial statisticians, who work to
improve it and to write extension packages. If a statistical method has made it into
print, the odds are good that there’s an R package somewhere that implements it.

R runs well on many computer platforms, including the “big three” (Microsoft
Windows, Mac OS X, and Linux). There are only tiny, mostly cosmetic differences
in the way that R runs on different machines. You can nearly always move data files
and code between operating systems and get the same answers.

R is rapidly gaining popularity. The odds are good that someone in your orga-
nization is using R, and there are many resources on the Internet including a very
active mailing list. A growing number of introductory books use R (Dalgaard, 2003;
Verzani, 2005; Crawley, 2005). There are also books of examples (Maindonald
and Braun, 2003; Heiberger and Holland, 2004; Everitt and Hothorn, 2006),
more advanced and encyclopedic books covering a range of statistical approaches
(Venables and Ripley, 2002; Crawley, 2002), and books on specific topics such as
regression analysis (Fox, 2002; Faraway, 2004), mixed-effect models (Pinheiro and
Bates, 2000), phylogenetics (Paradis, 2006), and generalized additive models (Wood,
2006) that are geared toward R and S-PLUS users.

1.5.3 Why Not Use R?

R is more difficult than mainstream statistics packages like SYSTAT or SPSS, because
it does much more. It would be hard to squeeze all of R’s capabilities into a

∗ In programming circles, this freedom is called “gratis” or “free as in beer.”
† “Libre” or “free as in speech.”

“Bolker” — 1/9/2008 — 15:39 — page 19

−1
0
1

I N T R O D U C T I O N • 19

simple graphical user interface (GUI) with menus to guide you through the pro-
cess of analyzing your data. R’s creators haven’t even tried very hard to write a
GUI, because they have a do-it-yourself philosophy that emphasizes knowing pro-
cedures rather than letting the program try to tell you what to do next. John
Fox has written a simple GUI for R (called Rcmdr), and the commercial version
of R, S-PLUS, does have a graphical user interface—if you can afford it. How-
ever, for most of what we will be doing in this book a GUI would not be very
useful.

While R comes with a lot of documentation, it’s mostly good for reminding you
of the syntax of a command rather than for finding out how to do something. Unlike
SAS, for which you can buy voluminous manuals that tell you the details of various
statistical procedures and how to run them in SAS, R typically assumes that you have
a general knowledge of the procedure you want to use and can figure out how to
make it work in R by reading the online documentation or a separately published
book (including this one).

R is slower than so-called lower-level languages like C and FORTRAN because
it is an interpreted language that processes strings of commands typed in at the
command line or stored in a text file, rather than a compiled language that first
translates commands into machine code. However, computers are so fast these days
that there’s speed to burn. For most problems you will encounter the limiting factor
will be how fast and easily you can write (and debug) the code, not how long the
computer takes to process it. Interpreted languages make writing and debugging
faster.

R is memory-hungry. Unlike SAS, which was developed with a metaphor of
punch cards being processed one at a time, R tries to operate on the whole data
set at once. If you are lucky enough to have a gigantic data set, with hundreds of
thousands of observations or more, you will need to find ways (such as using R’s
capability to connect directly to database software) to do your analysis in chunks
rather than loading it all into memory at once.

Unlike some other software such as Maple or Mathematica, R can’t do symbolic
calculation. For example, it can’t tell you that the integral of x2 is x3/3 + C, although
it can compute some simple derivatives (using the deriv or D function).

No commercial organization supports R—which may not matter as much as
you think. The largest software company in the world supports Microsoft Excel, but
Excel’s statistical procedures are notoriously unreliable (McCullough and Wilson,
2005). On the other hand, the community of researchers who build and use R are
among the best in the world, and R compares well with commercial software (Keeling
and Pavur, 2007). While every piece of software has bugs, the core components of R
have been used so extensively by so many people that the chances of your finding a
bug in R are about the same as the chances of finding a bug in a commercial software
package like SAS or SPSS—and if you do find one and report it, it will probably be
fixed within a few days.

It is certainly possible to do the kinds of modeling presented in this book with
other computing platforms—particularly MATLAB (with appropriate toolboxes),
Mathematica, SAS (using the macro language), Excel in combination with Visual
Basic, and lower-level languages such as Delphi, Java, C, or FORTRAN. However, I
have found R’s combination of flexibility, power, and cost make it the best—although
not the only—option for statistical modeling in ecology.

“Bolker” — 1/9/2008 — 15:39 — page 20

−1
0
1

20 • C H A P T E R 1

model
selection

answer questions

estimate parameters

collect
data

model
"noise"

model
"signal"

hypothesis testing/
selection

stochastic deterministic
model(s) model(s)

)(

ask

questions
ecological

estimate confidence
regions

Figure 1.5 Flow of the modeling process.

1.6 Outline of the Modeling Process

After all these caveats and admonitions and before jumping into the nitty-gritty details
of modeling particular data, we need an outline or road map of the modeling process
(Figure 1.5).

1. Identify the ecological question. You have to know what you want to find out
before you can start trying to model. You should know what your question
is both at a general, conceptual level (“Does disease select against cannibal-
ism in tiger salamander populations?”) and at a specific level (“What is the
percentage difference in probability of becoming a cannibal for tiger sala-
mander individuals taken from populations A and B?”). Practice switching
back and forth between these two levels. Being either too vague (“I want
to explore the population genetics of cannibalism”) or too specific (“What
is the difference in the intercepts of these two linear regressions?”) can
impede your progress. Ultimately, knowing how to ask good questions is
one of the fundamental skills for any ecologist, or indeed any scientist, and
(unfortunately) no recipe can tell you how to do it. Even though I can’t
teach you to ask good questions, I included it in the list because it is the

“Bolker” — 1/9/2008 — 15:39 — page 21

−1
0
1

I N T R O D U C T I O N • 21

first and most important step of any analysis and motivates all the other
steps.∗

2. Choose deterministic model(s). Next, you need to choose a particular mathe-
matical description of the pattern you are trying to describe. The deterministic
part is the average, or expected pattern in the absence of any kind of
randomness or measurement error. It’s tempting to call this an “ecological”
model, since traditional ecological models are described in deterministic terms,
but ecological models can be either deterministic or stochastic.

The deterministic model can be phenomenological (as simple as “predator
density is a linear function of prey density, or P = a + bV”); mechanistic (e.g.,
a type II functional response for predation rate); or even a complex individual-
based simulation model. Chapter 3 will remind you of, or introduce you to,
a broad range of mathematical models that are useful building blocks for a
deterministic model, and provide general tools for getting acquainted with the
mathematical properties of deterministic models.

3. Choose stochastic model(s). To estimate the parameters of a model, you need
to know not just the expected pattern but also something about the vari-
ation around the expected pattern. Typically, you describe the stochastic
model by specifying a reasonable probability distribution for the variation.
For example, we often assume that variation that comes from measurement
error is normally distributed, while variation in the number of plants found
in a quadrat of a specific size is Poisson distributed. Ecologists tend to be
less familiar with stochastic building blocks (e.g., the negative binomial or
Gamma distributions) than with deterministic building blocks (e.g., linear
or Michaelis-Menten functions). The former are frequently covered in the
first week of introductory statistics courses and then forgotten as you learn
standard statistical methods. Chapter 4 will (re)introduce some basics of prob-
ability as well as a wide range of probability distributions useful in building
stochastic models.

4. Fit parameters. Once you have defined your model, you can estimate both the
deterministic parameters (slope, attack rate, handling time, etc.) and stochas-
tic parameters (e.g., the variance or parameters controlling the variance). This
step is a purely technical exercise in figuring out how to get the computer to
fit the model to the data. Unlike the previous steps, it provides no particular
insight into the basic ecological questions. The fitting step does require eco-
logical insight both as input (for most fitting procedures, you must start with
some order-of-magnitude idea of reasonable parameter values) and output
(the fitted parameters are essentially the answers to your ecological question).
Chapters 6 and 7 will go into great detail about the practical aspects of fitting:
the basic methods, how to make them work in R, and troubleshooting tips.

5. Estimate confidence intervals/test hypotheses/select models. You need to know
more than just the best-fit parameters of the model (the point estimates, in
statistical jargon). Without some measurement of uncertainty, such estimates

∗ In an ideal world, you would identify ecological questions before you designed your experiments
and gathered data (!), but in this book I will assume you’ve already got data (either your own or someone
else’s) to work with and think about.

“Bolker” — 1/9/2008 — 15:39 — page 22

−1
0
1

22 • C H A P T E R 1

are meaningless. By quantifying the uncertainty in the fit of a model, you
can estimate confidence limits for the parameters. You can also test ecological
hypotheses, from both an ecological and a statistical point of view (e.g., can
we tell the difference statistically between the handling times on two different
prey types? are these differences large enough to make any practical difference
in the population dynamics?). You also need to quantify uncertainty in order
to choose the best out of a set of competing models, or to decide how to
weight the predictions of different models. All of these procedures—estimating
confidence limits, testing the differences between parameters in two models
or between a parameter and a null-hypothesis value such as zero, and testing
whether one model is significantly better than another—are closely related
aspects of the modeling process that we will discuss in Chapter 6.

6. Put the results together to answer questions/ return to step #1. Modeling is an
iterative process. You may have answered your questions with a single pass
through steps 1–5, but it is far more likely that estimating parameters and
confidence limits will force you to redefine your models (changing their form
or complexity or the ecological covariates they take into account) or even
to redefine your original ecological questions. You may need to ask different
questions, or collect another set of data, to further understand how your
system works. Like the first step, this final step is a bit more free-form and
general, but there are tools (likelihood ratio testing, model selection) that will
help (Chapter 6).

I use this approach for modeling ecological systems every day. It answers ecolog-
ical questions and, more important, it shapes the way I think about data and about
those ecological questions. A growing number of studies in ecology use simple but
realistic statistical models that do not fit easily into classical statistical frameworks
(Butler and Burns, 1993; Ribbens et al., 1994; Pascual and Kareiva, 1996; Ferrari
and Sugita, 1996; Damgaard, 1999; Strong et al., 1999; Ricketts, 2001; Lytle, 2002;
Dalling et al., 2002; Ovaskainen, 2004; Tracey et al., 2005; Fujiwara et al., 2005;
Sandin and Pacala, 2005; Agrawal and Fishbein, 2006; Canham and Uriarte, 2006;
Horne and Garton, 2006; Ness et al., 2006; Sack et al., 2006; Wintle and Bardos,
2006). Like any tool, these tools also bias my thinking (“if you have a hammer,
everything looks like a nail”) and the kinds of questions I like to think about. They
are most useful for ecological systems where you want to test among a well-defined
set of plausible mechanisms, and where you have measured a few potentially impor-
tant predictor and response variables. They work less well for generalized “fishing
expeditions” where you have measured lots of variables and want to try to sort
them out.

1.7 R Supplement

Each chapter ends with a set of notes on R, providing more details of the commands
and ideas introduced in the chapter or examples worked in more detail. For this
largely conceptual chapter, the notes are about how to get R and how to get it
working on your computer.

“Bolker” — 1/9/2008 — 15:39 — page 23

−1
0
1

I N T R O D U C T I O N • 23

1.7.1 Installing R; Prebasics

• Download R. If R is already installed on your computer, skip this step. If
not, here’s how to get it from the Web.∗ Go to the R project home page
(http://www.r-project.org) or to CRAN, the repository for R materials
(http://cran.r-project.org), and navigate to the binary (precompiled) dis-
tributions. Find the latest version for your operating system, download it, and
follow the instructions to install it. The installation file is moderately large (the
Windows installer for R version 2.5.0 was 28.5 megabytes) but should down-
load easily over a fast connection. It should be fine to accept all the defaults
in the installation process.

R should work well on any reasonably modern computer. Version 2.5.0
requires MacOS 10.2 (or higher) or Windows 98 (or higher), or just about any
version of Linux; it can also be compiled on other versions of Unix. MacOS
version 10.4.4 or higher and Windows XP or higher are recommended. I devel-
oped and ran all the code in the book with R 2.5.0 on a dual-core PC laptop
running at 1.66 GHz under Ubuntu Linux 7.04.

After you have played with R a bit, you may want to take a moment to
install extra packages (see below).

• Start R. If you are using Windows or MacOS there is probably an R icon on
your desktop—click on it. Or use the menus your operating system provides
to find R. If you are on a Unix system, you can probably just type R on the
command line.

• Play with R a little bit. When you start R, you will see a command prompt—a
> that waits for you to type something and hit ENTER. When you type in an
expression, R evaluates it and prints the answer:

[1] 16

[1] 5

(The number [1] before the answer says that the answer is the first element in
a vector; don’t worry about this now.)

If you use an equals sign to assign a value to a variable, then R will
silently do what you asked. To see the value of the variable, type its name at
the command prompt:

> x = sqrt(36)
> x

[1] 6

A variable name can be any sequence of alphanumeric characters, as well
as “_” or “.” (but no spaces), that starts with a letter. Variable names are
case-sensitive, so x and X are different variables.

For more information, read the Introduction to R that comes with your
copy of R (look in the documentation section of the menus), get one of the
introductory documents from the R Web site, dip into an introductory book

∗ These instructions are accurate at press time—but all software, and stuff from the Web in particular,
is subject to change. So details may vary.

“Bolker” — 1/9/2008 — 15:39 — page 24

−1
0
1

24 • C H A P T E R 1

(Dalgaard, 2003; Crawley, 2005), or get Lab 1 from http://www.zoo.ufl.
edu/bolker/emdbook.

• Stopping R. To stop R, type q() (with the empty parentheses) at the command
prompt, or choose “Quit” from the appropriate menu. You can say “no” when
R asks if you want to save the workspace.

To stop a long computation without stopping R, type ESCAPE or click on
the stop sign on the toolbar (in the Windows or console in MacOS) or type
Control-C (in Unix or MacOS if using the command-line version).

• The help system. If you type help.start(), R will open a Web browser
with help information. If you type ?cmd, R will open a help page with
information on a particular command (e.g., ?sqrt to get information on the
square-root command). example(cmd)will run any examples that are included
in the help page for command cmd. If you type help.search("topic")
(with quotes), R will list information related to topic available in the base
system or in any extra installed packages; use ?topic to see the informa-
tion, perhaps using library(pkg) to load the appropriate package first.
help(package="pkg") will list all the help pages for a loaded package.
If you type RSiteSearch("topic"), R will search an online database for
information on topic. Try out one or more of these aspects of the help
system.

• Install extra packages. R has many extra packages. You may be able to install
new packages from a menu within R. You can always type

> install.packages("plotrix")

(this installs the plotrix package). You can install more than one package at
a time:

> install.packages(c("ellipse", "plotrix"))

(c stands for “combine” and is the command for combining multiple things
into a single object.) If the machine on which you use R is not connected to
the Internet, you can download the packages to some other medium (such as
a flash drive or CD) and install them later, using the menu or

> install.packages("plotrix", repos = NULL)

Installing packages may fail if you do not have permission to write to the folder
(directory) where R is installed on your computer—which may happen if you
are working on a public computer. In this case, R will ask you if it’s Ok to
install the packages in a different location. Say yes, and ignore any warnings
about R being unable to update the help index.
If you can convince the machine’s administrator to install the packages, then
they will be available to anyone who uses the machine. Otherwise, pick a folder
where you do have appropriate permissions and install your R packages there.
For example, if I had created an Rpkgs folder on my desktop:

> mypkgdir = "c:/Documents and Settings/Bolker/
+ Desktop/Rpkgs"
> install.packages("plotrix", destdir = mypkgdir,
+ lib = mypkgdir)

“Bolker” — 1/9/2008 — 15:39 — page 25

−1
0
1

I N T R O D U C T I O N • 25

When you load the packages, you then have to tell R where to look for them:

> library(plotrix, lib = mypkgdir)

Here are all the packages used in this book that are not included with R by
default:

adapt bbmle chron coda ellipse emdbook
gplots gtools gdata MCMCpack odesolve plotrix
R2WinBUGS reshape rgl scatterplot3d

If you install and load the emdbook package first (install.packages
("emdbook"); library (emdbook) and then run the command get.emdbook.
packages() (you do need the empty parentheses), it will install these packages
for you automatically.

(R2WinBUGS is an exception to R’s normally seamless cross-platform oper-
ation: it depends on a Windows program called WinBUGS. WinBUGS will
also run on Linux, and MacOS on Intel hardware, with the help of a program
called WINE: see Chapter 6.)

Installing these packages now you will save time.

1.7.2 R Interfaces

While R works perfectly well out of the box, some interfaces can make your R
experience easier. Editors such as Tinn-R (Windows), Kate (Linux), or Emacs/ESS
will color R commands and quoted material, allow you to submit lines or blocks of R
code to an R session, and give hints about function arguments; the standard MacOS
interface has all of these features built in. Graphical interfaces such as JGR (cross-
platform) or SciViews (Windows) include similar editors and have extra functions
such as a workspace browser for looking at all the variables you have defined. (All
of these interfaces, which are designed to facilitate R programming, are in a different
category from Rcmdr, which tries to simplify basic statistics in R.) If you are using
Windows or Linux I strongly recommend that, once you have tried R a little bit,
you download at least an R-aware editor and possibly a GUI to make your life
easier. Links to all of these systems can be found at http://www.r-project.org/
GUI/.

1.7.3 Sample Session

Start R. Then:
Start the Web interface to the help system:

> help.start()

Seed the pseudo-random-number generator, using an arbitrary integer, to make
results match if you start a new session (it’s fine to skip this step, but the particular
values you get from the random-number commands will be different every time—you
won’t get exactly the results shown below):

> set.seed(101)

“Bolker” — 1/9/2008 — 15:39 — page 26

−1
0
1

26 • C H A P T E R 1

Create the variable frogs (representing the density of adult frogs in each of
20 populations) from scratch by entering 20 numbers with the c command. Create
a second variable tadpoles (the density of tadpoles in each population) by gener-
ating 20 normally distributed random numbers, each with twice the mean of the
corresponding frogs population and a standard deviation of 0.5:

> frogs = c(1.1, 1.3, 1.7, 1.8, 1.9, 2.1, 2.3, 2.4,
+ 2.5, 2.8, 3.1, 3.3, 3.6, 3.7, 3.9, 4.1, 4.5,
+ 4.8, 5.1, 5.3)
> tadpoles = rnorm(n = 20, mean = 2 * frogs, sd = 0.5)

The + at the beginning of the second line is a continuation character. If you hit ENTER
and R recognizes that your command is unfinished, it will print a + to tell you that
you can continue on the next line. Sometimes the continuation character means that
you forgot to close parentheses or quotes. To discard what you’ve done so far and
start again, type ESCAPE (on Windows or MacOS) or Control-C (on Linux) or click
on the stop sign on the menu.

You can name the arguments (n, mean, sd above) in an R function, but R can
also recognize the order: tadpoles = rnorm(20,2*frogs,0.5) will give the same
answer. In general, however, it’s clearer and safer to name arguments.

Notice that R doesn’t tell you what’s in these variables unless you ask it. Entering
a variable name by itself tells R to print the value of the variable:

> tadpoles

[1] 2.036982 2.876231 3.062528 3.707180 3.955385 4.786983
[7] 4.909395 4.743633 5.458514 5.488370 6.463224 6.202578
[13] 7.913878 6.666590 7.681658 8.103331 8.575123 9.629233
[19] 9.791165 9.574846

(The numbers at the beginning of the line are indices.) This rule of printing a
variable that is entered on a line by itself also explains why typing q rather
than q() prints out R code rather than quitting R. R interprets q() as “run
the function q without any arguments”; it interprets q as “print the contents of
variable q.”

Plot tadpoles against frogs (frogs on the x axis, tadpoles on the y axis) and
add a straight line with intercept 0 and slope 2 to the plot (the result should appear
in a new window, looking like Figure 1.6):

> plot(frogs, tadpoles)
> abline(a = 0, b = 2)

Try calculating the (natural) logarithm of tadpoles and plot it instead:

> log_tadpoles = log(tadpoles)
> plot(frogs, log_tadpoles)

“Bolker” — 1/9/2008 — 15:39 — page 27

−1
0
1

I N T R O D U C T I O N • 27

1 2 3 4 5
frogs

ta
dp

ol
es

10

8

6

4

2

Figure 1.6 Plotting example.

You can get the same plot by typing plot(frogs,log(tadpoles)) or a similar plot
that adjusts the axes rather than the values with plot(frogs,tadpoles,log="y").
Use log10(tadpoles) to get the logarithm base 10.

Set up a variable n with integers ranging from 1 to 20 (the length of the frogs
variable) and plot frogs against it:

> n = 1:length(frogs)
> plot(n, frogs)

(You’d get almost the same plot typing plot(frogs).)
R’s default plotting character is an open circle. Open symbols are generally bet-

ter than closed symbols for plotting because it is easier to see where they overlap,
but you could include pch=16 in the plot command if you wanted filled circles
instead. Figure 1.7 shows several more ways to adjust the appearance of lines and
points in R.

Calculate the mean, standard deviation, and a set of summary statistics for
tadpoles:

> mean(tadpoles)

[1] 6.081341

> sd(tadpoles)

[1] 2.370449

“Bolker” — 1/9/2008 — 15:39 — page 28

−1
0
1

28 • C H A P T E R 1

pch: point type

col: point color

cex: point size

a b c d e A B C D E 0 1 2 3 4 5 6 7 8 9 text

lty: line type

lwd: line width

Figure 1.7 Some of R’s graphics parameters. Color specification, col, also applies in many
other contexts: all colors are set to gray scales here. See ?par for (many more) details on
graphics parameters, and one or more of ?rgb, ?palette, or apropos("color") for more on
colors.

> summary(tadpoles)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.037 4.547 5.845 6.081 7.961 9.791

“1st Qu.” and “3rd Qu.” represent the first and third quartiles of the data. The sum-
mary statistics are displayed to only three significant digits, which can occasionally
cause confusion.

Calculate the correlation between frogs and tadpoles:

> cor(frogs, tadpoles)

[1] 0.9870993

Test the statistical significance of the correlation:

> cor.test(frogs, tadpoles)

Pearson’s product-moment correlation

data: frogs and tadpoles
t = 26.1566, df = 18, p-value = 8.882e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.9669568 0.9949946
sample estimates:

cor
0.9870993

The p-value here is extraordinarily low because we made up the data with very little
noise: you should consider reporting it simply as p < 0.001. cor.test does a Pearson
correlation test by default, but you can choose other tests; see ?cor.test.

Look for more information on correlations:

> help.search("correlation")

Now move on to Chapter 2 to see how to deal with real data.

“Bolker” — 1/9/2008 — 15:39 — page 29

−1
0
1

2 Exploratory Data Analysis and Graphics

This chapter covers both the practical details and the broader philosophy of (1)
reading data into R and (2) doing exploratory data analysis, in particular, graph-
ical analysis. To get the most out of the chapter you should already have some
basic knowledge of R’s syntax and commands (see the R supplement of the previous
chapter).

2.1 Introduction

One of the basic tensions in all data analysis and modeling is how much you have
all your questions framed before you begin to look at your data. In the classical
statistical framework, you’re supposed to lay out all your hypotheses before you
start, run your experiments, come back to your office and test those (and only
those) hypotheses. Allowing your data to suggest new statistical tests raises the risk
of “fishing expeditions” or “data-dredging”—indiscriminately scanning your data
for patterns.∗ Data-dredging is a serious problem. Humans are notoriously good at
detecting apparent patterns even when they don’t exist. Strictly speaking, interesting
patterns that you find in your data after the fact should not be treated statistically, only
used as input for the next round of observations and experiments.† Most statisticians
are leery of procedures like stepwise regression that search for the best predictors
or combinations of predictors from among a large range of options, even though
some have elaborate safeguards to avoid overestimating the significance of observed
patterns (Whittingham et al., 2006). The worst aspect of such techniques is that in
order to use them you must be conservative and discard real patterns, patterns that
you originally had in mind, because you are screening your data indiscriminately
(Nakagawa, 2004).

∗ “Bible codes,” where people find hidden messages in the Bible, illustrate an extreme form of data-
dredging. Critics have pointed out that similar procedures will also detect hidden messages in War and
Peace or Moby Dick (McKay et al., 1999).

† Or you should apply a post hoc procedure [see ?TukeyHSD and the multcomp package in R] that
corrects for the fact that you are testing a pattern that was not suggested in advance—however, even these
procedures apply corrections only for a specific set of possible comparisons, not for all possible patterns
that you could have found in your data.

“Bolker” — 1/9/2008 — 15:39 — page 30

−1
0
1

30 • C H A P T E R 2

But these injunctions may be too strict for ecologists. Unexpected patterns in
the data can inspire you to ask new questions, and it is foolish not to explore your
hard-earned data. Exploratory data analysis (EDA; Tukey, 1977; Cleveland, 1993;
Hoaglin et al., 2000, 2006) is a set of graphical techniques for finding interesting
patterns in data. EDA was developed in the late 1970s when computer graphics first
became widely available. It emphasizes robust and nonparametric methods, which
make fewer assumptions about the shapes of curves and the distributions of the
data and hence are less sensitive to nonlinearity and outliers. Most of the rest of
this book will focus on models that, in contrast to EDA, are parametric (i.e., they
specify particular distributions and curve shapes) and mechanistic. These methods
are more powerful and give more ecologically meaningful answers, but they are also
susceptible to being misled by unusual patterns in the data.

The big advantages of EDA are that it gets you looking at and thinking about
your data (whereas stepwise approaches are often substitutes for thought), and that
it may reveal patterns that standard statistical tests would overlook because of their
emphasis on specific models. However, EDA isn’t a magic formula for interpreting
your data without the risk of data dredging. Only common sense and caution can
keep you in the zone between ignoring interesting patterns and overinterpreting them.
It’s useful to write down a list of the ecological patterns you’re looking for and how
they relate your ecological questions before you start to explore your data, so that you
can distinguish among (1) patterns you were initially looking for, (2) unanticipated
patterns that answer the same questions in different ways, and (3) interesting (but
possibly spurious) patterns that suggest new questions.

The rest of this chapter describes how to get your data into R and how to make
some basic graphs in order to search for expected and unexpected patterns. The text
covers both philosophy and some nitty-gritty details. The supplement at the end of
the chapter gives a sample session and more technical details.

2.2 Getting Data into R

2.2.1 Preliminaries

ELECTRONIC FORMAT

Before you can analyze your data you have to get them into R. Data come in a variety
of formats—in ecology, most are either plaintext files (space- or comma-delimited)
or Excel files.∗ R prefers plaintext files with “white space” (arbitrary numbers of
tabs or spaces) or commas between columns. Text files are less structured and may
take up more disk space than more specialized formats, but they are the lowest
common denominator of file formats and so can be read by almost anything (and,
if necessary, examined and adjusted in any text editor). Since a wide variety of text
editors can read plaintext formats, they are unlikely to be made obsolete by changes

∗ Your computer may be set up to open comma-delimited (.csv) files in Excel, but underneath they
are just text files.

“Bolker” — 1/9/2008 — 15:39 — page 31

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 31

in technology (you could say they’re already obsolete), and less likely to be made
unusable by corruption of a few bits of the file; only hard copy is better.∗

R is platform-agnostic. While text files do have very slightly different formats
on Unix, Microsoft Windows, and Macintosh operating systems, R handles these
differences. If you later save data sets or functions in R’s own format (using save
to save and load to load them), you will be able to exchange them freely across
platforms.

Many ecologists keep their data in Excel spreadsheets. The read.xls function
in the gdata package allows R to read Excel files directly, but the best thing to do
with an Excel file (if you have access to a copy of Excel, or if you can open it in
an alternative spreadsheet program) is to save the worksheet you want as a .csv
(comma-separated values) file. Saving as a .csv file will also force you to go into the
worksheet and clean up any random cells that are outside of the main data table—R
won’t like these. If your data are in some more exotic form (e.g., within a GIS or
database system), you’ll have to figure out how to extract them from that particular
system into a text file. There are ways of connecting R directly with databases or GIS
systems, but they’re beyond the scope of this book. If you have trouble exporting data
or you expect to have large quantities of data (e.g., more than tens of thousands of
observations) in one of these exotic forms, read the R Data Import/Export Manual,
which is accessible through Help in the R menus.

METADATA

Metadata is the information that describes the properties of a data set: the names
of the variables, the units they were measured in, when and where the data were
collected, etc. R does not have a structured system for maintaining metadata, but it
does allow you to include a good deal of this metadata within your data file, and it
is good practice to keep as much of this information as possible associated with the
data file. Some tips on metadata in R:

• Column names are the first row of the data set. Choose names that
compromise between convenience (you will be typing these names a lot)
and clarity; larval_density or larvdens is better than either x or
larval_density_per_m3_in_ponds. Use underscores or dots to separate
words in variable names, not spaces. Begin names with a letter, not a number.

• R will ignore any information on a line following a #. I usually use this
comment character to include general metadata at the beginning of my data
file, such as the data source, units, and so forth—anything that can’t eas-
ily be encoded in the variable names. I also use comments before, or at the
ends of, particular lines in the data set that might need annotation, such as
the circumstances surrounding questionable data points. You can’t use # to
make a comment in the middle of a line: use a comment like # pH calibra-
tion failed at the end of the line to indicate that a particular field in that
line is suspect.

∗ Unless your data are truly voluminous, you should also save a hard-copy, archival version of your
data (Gotelli and Ellison, 2004).

“Bolker” — 1/9/2008 — 15:39 — page 32

−1
0
1

32 • C H A P T E R 2

• If you have other metadata that can’t easily be represented in plaintext format
(such as a map), you’ll have to keep it separately. You can reference the file in
your comments, keep a separate file that lists the location of data and metadata,
or use a system like Morpho (from ecoinformatics.org) to organize it.

Whatever you do, make sure that you have some workable system for maintaining
your metadata. Eventually, your R scripts—which document how you read in your
data, transformed it, and drew conclusions from it—will also become a part of your
metadata. As mentioned in Chapter 1, this is one of the advantages of R over (say)
Excel: after you’ve done your analysis, if you were careful to document your work
sufficiently as you went along, you will be left with a set of scripts that will allow
you to verify what you did; make minor modifications and rerun the analysis; and
apply the same or similar analyses to future data sets.

SHAPE

Just as important as electronic or paper format is the organization or shape of your
data. Most of the time, R prefers that your data have a single record (typically a line
of data values) for each individual observation. This basically means that your data
should usually be in “long” (or “indexed”) format. For example, the first few lines
of the seed removal data set look like this, with a line giving the number of seeds
present for each station/date combination:

station date dist species seeds
1 1 1999-03-23 25 psd 5
2 1 1999-03-27 25 psd 5
3 1 1999-04-03 25 psd 5
4 2 1999-03-23 25 uva 5
5 2 1999-03-27 25 uva 5
6 2 1999-04-03 25 uva 5

Because each station has seeds of only one species and can be at only a single distance
from the forest, these values are repeated for every date. During the first two weeks
of the experiment no seeds of psd or uva were taken by predators, so the number of
seeds remained at the initial value of 5.

Alternatively, you will often come across data sets in “wide” format, like this:

station species dist seeds.1999-03-23 seeds.1999-03-27
1 1 psd 25 5 5
2 2 uva 25 5 5
3 3 pol 25 5 4
4 4 dio 25 5 5
5 5 cor 25 5 4
6 6 abz 25 5 5

(I kept only the first two date columns in order to make this example narrow enough
to fit on the page.)

Long format takes up more room, especially if you have data (such as dist
above, the distance of the station from the edge of the forest) that apply to each

“Bolker” — 1/9/2008 — 15:39 — page 33

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 33

station independent of sample date or species (which therefore have to be repeated
many times in the data set). However, you’ll find that this format is typically what
statistical packages request for analysis.

You can read data into R in wide format and then convert it to long format. R has
several different functions—reshape and stack/unstack in the base package, and
melt/cast/recast in the reshape package∗—that will let you switch data back and
forth between wide and long formats. Because there are so many different ways to
structure data, and so many different ways you might want to aggregate or rearrange
them, software tools designed to reshape arbitrary data are necessarily complicated
(Excel’s pivot tables, which are also designed to restructure data, are as complicated
as reshape).

• stack and unstack are simple but basic functions—stack converts from wide
to long format and unstack from long to wide; they aren’t very flexible.

• reshape is very flexible and preserves more information than stack/unstack,
but its syntax is tricky: if long and wide are variables holding the data in the
examples above, then

> reshape(wide, direction = "long", timevar = "date",
+ varying = 4:5)
> reshape(long, direction = "wide", timevar = "date",
+ idvar = c("station", "dist", "species"))

convert back and forth between them. In the first case (wide to long) we specify
that the time variable in the new long-format data set should be date and that
columns 4–5 are the variables to collapse. In the second case (long to wide)
we specify that date is the variable to expand and that station, dist, and
species should be kept fixed as the identifiers for an observation.

• The reshape package contains the melt, cast, and recast functions, which
are similar to reshape but sometimes easier to use, e.g.,

> library(reshape)
> recast(wide, formula = ... ˜ ., id.var = c("station",
+ "dist", "species"))
> recast(long, formula = station + dist + species ˜
+ ..., id.var = c("station", "dist", "species",
+ "date"))

in the formulas above, ... denotes “all other variables” and . denotes “noth-
ing,” so the formula ...˜. means “separate out by all variables” (long format)
and station+dist+species˜... means “separate out by station, distance,
and species, put the values for each date on one line.”

In general you will have to look carefully at the examples in the documentation and
play around with subsets of your data until you get it reshaped exactly the way you
want. Alternatively, you can manipulate your data in Excel, either with pivot tables
or by brute force (cutting and pasting). In the long run, learning to reshape data will
pay off, but for a single project it may be quicker to use brute force.

∗ If you don’t know what a package is, go back and read about them in the R supplement for
Chapter 1.

“Bolker” — 1/9/2008 — 15:39 — page 34

−1
0
1

34 • C H A P T E R 2

2.2.2 Reading in Data

BASIC R COMMANDS

The basic R commands for reading in a data set, once you have it in a long-format text
file, are read.table for space-separated data and read.csv for comma-separated
data. If there are no complications in your data, you should be simply be able to
say (e.g.)

> data = read.table("mydata.dat", header = TRUE)

(if your file is actually called mydata.dat and includes a first row with the column
names) to read your data in (as a data frame; see p. 35) and assign it to the variable
data.

Reading in files presents several potential complications, which are more fully
covered in the R supplement: (1) telling R where to look for data files on your
computer system; (2) checking that every line in the file has the same number of
variables, or fields—R won’t read it otherwise; and (3) making sure that R reads all
your variables as the right data types (discussed in the next section).

2.3 Data Types

When you read data into a computer, the computer stores those data as some par-
ticular data type. This is partly for efficiency—it’s more efficient to store numbers as
strings of bits rather than as human-readable character strings—but its main purpose
is to maintain a sort of metadata about variables, so the computer knows what to
do with them. Some operations make sense only with particular types—what should
you get when you try to compute 2+"A"? "2A"? If you try to do something like this in
Excel, you get an error code—#VALUE!; if you do it in R, you get the message Error
non-numeric argument to binary operator.∗

Computer packages vary in how they deal with data. Some lower-level lan-
guages like C are strongly typed; they insist that you specify exactly what type
every variable should be and require you to convert variables between types (say
integer and real, or floating-point) explicitly. Languages or packages like R or
Excel are looser; they try to guess what you have in mind and convert variables
between types (coerce) automatically as appropriate. For example, if you enter 3/25
into Excel, it automatically converts the value to a date—March 25 of the current
year.

R makes similar guesses as it reads in your data. By default, if every entry in
a column is a valid number (e.g., 234, -127.45, 1.238e3 [computerese for 1.238
×103]), then R guesses the variable is numeric. Otherwise, it makes it a factor—an
indexed list of values used to represent categorical variables, which I will describe
in more detail shortly. Thus, any error in a numeric variable (extra decimal point,
included letter, etc.) will lead R to classify that variable as a factor rather than a
number. R also has a detailed set of rules for dealing with missing values (internally

∗ The + symbol is called a “binary operator” because it is used to combine two values.

“Bolker” — 1/9/2008 — 15:39 — page 35

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 35

represented as NA, for Not Available). If you use missing-value codes (such as * or
-9999) in your data set, you have to tell R about it or it will read them naively as
strings or numbers.

While R’s standard rules for guessing about input data are pretty simple and
allow you only two options (numeric or factor), there are a variety of ways for
specifying more detail either as R reads in your data or after it has read them in;
these are covered in more detail in the accompanying material.

2.3.1 Basic Data Types

R’s basic (or atomic) data types are integer, numeric (real numbers), logical (TRUE
or FALSE), and character (alphanumeric strings). (There are a few more, such as
complex numbers, that you probably won’t need.) At the most basic level, R organizes
data into vectors of one of these types, which are just ordered sets of data. Here are
a couple of simple (numeric and character) vectors:

> 1:5

[1] 1 2 3 4 5

> c("yes", "no", "maybe")

[1] "yes" "no" "maybe"

More complicated data types include dates (Date) and factors (factor). Factors are
R’s way of dealing with categorical variables. A factor’s underlying structure is a set
of (integer) levels along with a set of the labels associated with each level.

One advantage of using these more complex types, rather than converting your
categorical variables to numeric codes, is that it’s much easier to remember the mean-
ing of the levels as you analyze your data, for example, north and south rather than
0 and 1. Also, R can often do the right things with your data automatically if it
knows what types they are (this is an example of crude-versus-sophisticated where
a little more sophistication may be useful). Much of R’s built-in statistical modeling
software depends on these types to do the right analyses. For example, the command
lm(y˜x) (meaning “fit a linear model of y as a function of x,” analogous to SAS’s
PROC GLM) will do an ANOVA if x is categorical (i.e., stored as a factor) or a linear
regression if x is numeric. If you want to analyze variation in population density
among sites designated with integer codes (e.g., 101, 227, 359) and haven’t specified
that R should interpret the codes as categorical rather than numeric values, R will
try to fit a linear regression rather than doing an ANOVA. Many of R’s plotting
functions will also do different things depending on what type of data you give them.
For example, R can automatically plot date axes with appropriate labels. To repeat,
data types are a form of metadata; the more information about the meaning of your
data that you can retain in your analysis, the better.

2.3.2 Data Frames and Matrices

R can organize data at a higher level than simple vectors. A data frame is a table of
data that combines vectors (columns) of different types (e.g., character, factor, and

“Bolker” — 1/9/2008 — 15:39 — page 36

−1
0
1

36 • C H A P T E R 2

numeric data). Data frames are a hybrid of two simpler data structures: lists, which
can mix arbitrary types of data but have no other structure, and matrices, which are
structured by rows and columns but usually contain only one data type (typically
numeric). When treating the data frame as a list, you can extract columns of data
from the data frame in a variety of different ways:

> SeedPred[[2]]
> SeedPred[["species"]]
> SeedPred{$}species

all extract the second column (a factor containing species abbreviations) from the
data frame SeedPred. You can also treat the data frame as a matrix and use square
brackets [] to extract the second column:

> SeedPred[, 2]
> SeedPred[, "species"]

or rows 1 through 10

> SeedPred[1:10,]

(SeedPred[i,j] extracts the matrix element in row(s) i and column(s) j; leaving the
columns or rows specification blank, as in SeedPred[i,] or SeedPred[,j], takes
row i (all columns) or column j (all rows) respectively.) A few operations, such as
transposing or calculating a variance-covariance matrix, work only with matrices
(not with data frames); R will usually convert (coerce) data frames to matrices auto-
matically when it makes sense to, but you may sometimes have to use as.matrix to
manually convert a data frame to a matrix.∗

2.3.3 Checking Data

Now suppose you’ve decided on appropriate types for all your data and told R about
it. Are the data you’ve read in actually correct, or are there still typographical or other
errors?

SUMMARY

First check the results of summary. For a numeric variable summary will list the min-
imum, first quartile, median, mean, third quartile, and maximum. For a factor it
will list the numbers of observations with each of the first six factor levels, then the
number of remaining observations. (Use table on a factor to see the numbers of
observations at all levels.) It will list the number of NAs for all types.

∗ Matrices and data frames can appear identical but behave differently. If x is a data frame, either
colnames(x) or names(x) will tell you the column names. If x has a column called a, either x$a or
x[["a"]] or x[,"a"] will retrieve it. If x is a matrix, you must use colnames(x) to get the column names
and x[,"a"] to retrieve a column (the other commands will give errors). Use is.data.frame or class
to tell matrices and data frames apart.

“Bolker” — 1/9/2008 — 15:39 — page 37

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 37

For example:

> summary(SeedPred[, 1:4])

station dist species date
1 : 74 10:5883 abz :1480 Min. :1999-03-23
2 : 74 25:5920 cd :1480 1st Qu. :1999-05-23
3 : 74 cor :1480 Median :1999-07-24
4 : 74 dio :1480 Mean :1999-07-25
5 : 74 pol :1480 3rd Qu. :1999-09-28
6 : 74 psd :1480 Max. :1999-11-28
(Other):11359 (Other) :2923

(To keep the output short, I’m looking at the first four columns of the data frame
only: summary(SeedPred) would summarize the whole thing.)

Check the following points:

• Is the total number of observations right? For factors, is the right number of
observations in each level?

• Do the summaries of the numeric variables—mean, median, etc.—look
reasonable? Are the minimum and maximum values about what you
expected?

• Are the numbers of NAs in each column reasonable? If not (especially if you
have extra mostly NA columns), you may want to go back a few steps and use
count.fields to identify rows with extra fields.

STR

The str command tells you about the structure of an R variable: it is slightly less
useful than summary for dealing with data, but it may come in handy later for figuring
out more complicated R variables. Applied to a data frame, it tells you the total
number of observations (rows) and variables (columns) and prints out the names
and classes of each variable along with the first few observations in each variable.

> str(SeedPred)

‘data.frame’: 11803 obs. of 9 variables:
$ station : Factor w/ 160 levels "1","2","3","4",..: 1 1 1 1 1 1 1

1 1 1 ...
$ dist : Factor w/ 2 levels "10","25": 1 1 1 1 1 1 1 1 1 1 ...
$ species : Factor w/ 8 levels "abz","cd","cor",..: 7 7 7 7 7 7 7

7 7 7 ...
$ date : Class ‘Date’ num [1:11803] 10675 10678 10685 10692

10699 ...
$ seeds : int 5 5 5 5 0 0 0 0 0 0 ...
$ tcum : num 0 3 10 17 24 31 39 46 53 60 ...
$ tint : num NA 3 7 7 7 7 8 7 7 7 ...
$ taken : int NA 0 0 0 5 0 0 0 0 0 ...
$ available: int NA 5 5 5 5 0 0 0 0 0 ...

“Bolker” — 1/9/2008 — 15:39 — page 38

−1
0
1

38 • C H A P T E R 2

CLASS

The class command prints out the class (numeric, factor, Date, logical, etc.) of a
variable. class(SeedPred) gives "data.frame"; sapply(SeedPred,class) applies
class to each column of the data individually.

> class(SeedPred)

[1] "data.frame"

> sapply(SeedPred, class)

station dist species date seeds tcum
"factor" "factor" "factor" "Date" "integer" "numeric"
tint taken available
"numeric" "integer" "integer"

HEAD

The head command just prints out the beginning of a data frame; by default it prints
the first six rows, but head(data,10) (e.g.) will print out the first 10 rows.

> head(SeedPred)

station dist species date seeds tcum tint taken available
1 1 10 psd 1999-03-25 5 0 NA NA NA
2 1 10 psd 1999-03-28 5 3 3 0 5
3 1 10 psd 1999-04-04 5 10 7 0 5
4 1 10 psd 1999-04-11 5 17 7 0 5
5 1 10 psd 1999-04-18 0 24 7 5 5
6 1 10 psd 1999-04-25 0 31 7 0 0

The tail command prints out the end of a data frame.

TABLE

table is R’s command for cross-tabulation; you can use it to check that you have
appropriate numbers of observations in different factor combinations.

> table(SeedPred$station, SeedPred$species)

abz cd cor dio mmu pol psd uva
1 0 0 0 0 0 0 74 0
2 0 0 0 0 0 0 0 74
3 0 0 0 0 0 74 0 0
4 0 0 0 74 0 0 0 0
5 0 0 74 0 0 0 0 0
6 74 0 0 0 0 0 0 0

(just the first six lines are shown): apparently, each station has seeds of only a single
species. The $ extracts variables from the data frame SeedPred, and table says we

“Bolker” — 1/9/2008 — 15:39 — page 39

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 39

want to count the number of instances of each combination of station and species;
we could also do this with a single factor or with more than two.

DEALING WITH NAS

Missing values are a nuisance, but a fact of life. Throwing out or ignoring missing
values is tempting, but it can be dangerous. Ignoring missing values can bias your
analyses, especially if the pattern of missing values is not completely random. R
is conservative by default and assumes that, for example, 2+NA equals NA—if you
don’t know what the missing value is, then the sum of it and any other number
is also unknown. Almost any calculation you make in R will be contaminated by
NAs, which is logical but annoying. Perhaps most difficult is that you can’t just do
what comes naturally and say (e.g.) x=x[x!=NA] to remove values that are NA from
a variable, because even comparisons to NA result in NA!

• You can use the special function is.na to count the number of NA values
(sum(is.na(x))) or to throw out the NA values in a vector (x=x[!is.na(x)]).

• Functions such as mean, var, sd, sum (and some others) have an optional
na.rm argument: na.rm=TRUE drops NA values before doing the calculation.
Otherwise if x contains any NAs, mean(x) will result in NA and sd(x) will give
an error about missing observations.

• To convert NA values to a particular value, use x[is.na(x)]=value; e.g.,
to set NAs to zero x[is.na(x)]=0, or to set NAs to the mean value
x[is.na(x)]=mean(x,na.rm=TRUE). Don’t do this unless you have a very
good, and defensible, reason.

• na.omit will drop NAs from a vector (na.omit(x)), but it is also smart enough
to do the right thing if x is a data frame instead, and throw out all the cases
(rows) where any variable is NA; however, this may be too stringent if you
are analyzing a subset of the variables. For example, you might have a really
unreliable soil moisture meter that produces lots of NAs, but you don’t need
to throw away all of these data points while you’re analyzing the relationship
between light and growth. (complete.cases returns a logical vector that says
which rows have no NAs; if x is a data frame, na.omit(x) is equivalent to
x[complete.cases(x),].)

• Calculations of covariance and correlation (cov and cor) have more compli-
cated options: use="all.obs", use="complete.obs", or use="pairwise.
complete.obs". all.obs uses all of the data (but the answer will contain
NAs every time either variable contains one); complete.obs uses only the
observations for which none of the variables are NA (but may thus leave out
a lot of data); and pairwise.complete.obs computes the pairwise covari-
ance/correlations using the observations where both of each particular pair of
variables are non-NA (but may lead in some cases to incorrect estimates).

As you discover errors in your data, you may have to go back to your original
data set to correct errors and then reenter them into R (using the commands you
have saved, of course). Or you can change a few values in R, e.g.,

> SeedPred[24, "species"] = "mmu"

“Bolker” — 1/9/2008 — 15:39 — page 40

−1
0
1

40 • C H A P T E R 2

to change the species in the 24th observation from psd to mmu. Whatever you do,
document this process as you go along, and always maintain your original data set
in its original, archival, form, even including data you think are errors (this is easier
to remember if your original data set is in the form of field notebooks). Keep a log
of what you modify so conflicting versions of your data don’t confuse you.

2.4 Exploratory Data Analysis and Graphics

The next step in checking your data is to graph them, which leads on naturally to
exploring patterns. Graphing is the best way to understand not only data, but also
the models that you fit to data; as you develop models you should graph the results
frequently to make sure you understand how the model is working.

R gives you complete control of all aspects of graphics (Figure 1.7) and lets you
save graphics in a wide range of formats. The only major nuisance of doing graphics
in R is that R constructs graphics as though it were drawing on a static page, not by
adding objects to a dynamic scene. You generally specify the positions of all graphics
on the command line, not with the mouse (although the locator and identify
functions can be useful). Once you tell R to draw a point, line, or piece of text there
is no way to erase or move it. The advantage of this procedure, like logging your data
manipulations, is that you have a complete record of what you did and can easily
recreate the picture with new data.

R actually has two different coexisting graphics systems. The base graphics sys-
tem is cruder and simpler, while the lattice graphics system (in the lattice package)
is more sophisticated and complex. Both can create scatterplots, box-and-whisker
plots, histograms, and other standard graphical displays. Lattice graphics do more
automatic processing of your data and produce prettier graphs, but the commands
are harder to understand and customize. In the realm of 3D graphics, there are several
more options, at different stages of development. Base graphics and lattice graphics
both have some 3D capabilities (persp in base, wireframe and cloud in lattice); the
scatterplot3d package builds on base to draw 3D point clouds; the rgl package
(still under development) allows you to rotate and zoom the 3D coordinate system
with the mouse; and the ggobi package is an interface to a system for visualizing
multidimensional point data.

2.4.1 Seed Removal Data: Discrete Numeric Predictors,
Discrete Numeric Responses

As described in Chapter 1, the seed removal data set from Duncan and Duncan
(2000) gives information on the rate at which seeds were removed from experi-
mental stations set up in a Ugandan grassland. Seeds of eight species were set out
at stations along two transects different distances from the forest and monitored
every few days for more than eight months. We have already seen a subset of these
data in a brief example, but we haven’t really examined the details of the data set.
There are a total of 11,803 observations, each containing information on the sta-
tion number (station), distance in meters from the forest edge (dist), the species

“Bolker” — 1/9/2008 — 15:39 — page 41

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 41

M
ea

n
se

ed
s

re
m

ai
ni

ng

0.05

0.50

5.00

10 m 25 m

abz

cd

cor
dio
mmu

pol

psd
uva

Date

May Jul Sep Nov Jan

Figure 2.1 Seed removal data: mean seeds remaining by species over time. Functions: (main
plot) matplot, matlines; (annotation) axis, axis.Date, legend, text, points.

code (species),∗ the date sampled (date), and the number of seeds present (seeds).
The remaining columns in the data set are derived from the first five: the cumulative
elapsed time (in days) since the seeds were put out (tcum); the time interval (in days)
since the previous observation (tint); the number of seeds removed since the previ-
ous observation (taken); and the number of seeds present at the previous observation
(available).

2.4.1.1 DECREASE IN NUMBERS OVER TIME

The first thing to look at is the mean number of seeds remaining over time (Figure 2.1).
I plotted the mean on a logarithmic scale; if seeds were removed at a constant per
capita rate (a reasonable null hypothesis), the means should decrease exponentially
over time and the lines should be straight on a log scale. (It’s much easier to see
differences from linearity than to tell whether a curve is decreasing faster or slower
than exponentially.) They are not: the seeds that remain after July appear to be taken
at a much slower rate. (See the R supplement, p. 63, for the code to create the
figure.)

Figure 2.1 also reveals differences among species larger than the differences
between the two distances from the forest. However, it also seems that some species
may have a larger difference between distances from the forests; C. durandii (cd, �)
disappears 10 times faster near than far from the forest. Like all good graphics, the
figure raises many questions (only some of which can be answered from the data
at hand): Is the change in disappearance rate indicated by the flattening out of the

∗ abz=Albizia grandibracteata, cd=Celtis durandii, cor=Cordia abyssinica, dio=Diospyros abys-
sinica, mmu=Mimusops bagshawei, pol=Polyscias fulva, psd=Pseudospondias microcarpa, uva=Uvariopsis
congensis.

“Bolker” — 1/9/2008 — 15:39 — page 42

−1
0
1

42 • C H A P T E R 2

curves driven by the elapsed time since the seeds were set out, the season, or the
declining density of seeds? Or is there variation within species, such that predators
take all the tasty seeds at a station and leave the nontasty ones? Is the change in
rate a gradual decrease or an abrupt change? Does it differ among species? Are the
overall differences in removal rate among species, between distances from the forest,
and their interaction (i.e., the fact that cd appears to be more sensitive to differences
in distance) real or just random fluctuations? Are they related to seed mass or some
other known characteristic of the species?

2.4.1.2 NUMBER TAKEN OUT OF NUMBER AVAILABLE

Plotting the mean number remaining over time shows several facets of the data
(elapsed time, species, distance from edge) and asks and answers important eco-
logical questions, but it ignores another facet—the variability or distribution of the
number of seeds taken. To explore this facet, I’ll now look at the patterns of the
number of seeds taken as a function of the number available.

The simplest starting point is to plot the number taken between each pair of
samples (on the y axis) as a function of the number available (on the x axis).
If x and y are numeric variables, plot(x,y) draws a scatterplot. Here we use
plot(SeedPred$available,SeedPred$taken). The lattice package equivalent
would be xyplot(taken˜available,data=SeedPred). The scatterplot turns out
not to be very informative in this case (try it and see!); all the repeated points in the
data overlap, so that all we see in the plot is that any number of seeds up to the
number available can be taken.

One quick-and-dirty way to get around this problem is to use the jitter com-
mand, which adds a bit of random variation so that the data points don’t all land
in exactly the same place: Figure 2.2a shows the results, which are ugly but do give
some idea of the patterns.

sizeplot, from the plotrix package, deals with repeated data points by mak-
ing the area of plotting symbols proportional to the number of observations falling
at a particular point (Figure 2.2b; in this case I’ve used the text command to add
text to the circles with the actual numbers from cross-tabulating the data by number
available and number taken (t1=table(SeedPred$available,SeedPred$taken)).
More generally, bubble plots superimpose a third variable on an x-y scatterplot by
changing symbol sizes: in R, you can either use the symbols command or just set
cex to a vector in a plot command (e.g., plot(x,y,cex=z) plots y vs. x with sym-
bol sizes proportional to z). sizeplot is a special-case bubble plot; it counts the
number of points with identical x and y values and makes the area of the circle
proportional to that number. If (as in this case) these x and y values come from a cross-
tabulation, two other ways to plot the data are a mosaic plot (e.g., mosaicplot(t1)
or monospace mosaicplot(available+taken,data=SeedPred)) or a balloon plot
(balloonplot in the gplots package: balloonplot(t1).(SeedPred$taken)). You
could also try dotchart(t1); dot charts are an invention of W. Cleveland that
perform approximately the same function as bar charts. (Try these and see for
yourself.)

R is object-oriented, which in this context means that it will try to “do the
right thing” when you ask it to do something with a variable. For example, if you

“Bolker” — 1/9/2008 — 15:39 — page 43

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 43

a b

499 422 518 808 1759

31 8 16 23 65

21 9 11 32

22 6 14

19 22

101

0 1 2 3 4 5
Seeds available Seeds available

1 2 3 4 5

0

1

2

3

4

5

S
ee

ds
 ta

ke
n

Figure 2.2 (a) Jittered scatterplot of number of seeds taken as a function of number of seeds
available: all species and dates combined. (b) Bubble plot of combined seed removal data
(sizeplot: (0,0) category dropped for clarity).

simply say plot(t1), R knows that t1 is a two-way table, and it will plot something
reasonably sensible—in this case the mosaic plot mentioned above.

Bar plots are another way to visualize the distribution of number of seeds taken
(Figure 2.3). The barplot command can plot either a vector (as single bars) or a
matrix (as stacked bars, or as grouped sets of bars). Here we want to plot groups
of stacked bars, one group for each number of available seeds. The only remaining
trick here is that barplot plots each column of the matrix as a group, whereas we
want our bar plot grouped by number available, which are the rows of our table. We
could go back and recalculate table(taken,available), which would switch the
order of rows and columns. However, it’s easier to use the transpose command t to
exchange rows and columns of the table.

I also decided to put the plot on a logarithmic scale, since the data span a wide
range of numbers of counts. Since the data contain zeros, taking logarithms of the
raw data may cause problems; since they are count data, it is reasonable to add 1
as an offset. I decided to use logarithms base 10 (log10) rather than natural log-
arithms (log) since I find them easier to interpret. (Many of R’s plot commands,
including barplot, have an argument log that can be used to specify that the x, y,
or both axes are logarithmic (log="x", log="y", log="xy")—this has the advan-
tage of plotting an axis with the original, more interpretable values labeled but
unevenly spaced. In this particular case the figure is slightly prettier the way I’ve
done it.)

The main conclusions from Figures 2.2 and 2.3 and the table, which have really
shown essentially the same thing in four different ways, are that (1) the number of
seeds taken increases as the number of seeds available increases (this is not surprising);

“Bolker” — 1/9/2008 — 15:39 — page 44

−1
0
1

44 • C H A P T E R 2

1 2 3 4 5

lo
g1

0(
1+

ob

se
rv

at
io

ns
)

Number of seeds available

0

1

2

3

543210

Number taken

Figure 2.3 Bar plot of observations of number of seeds taken, subdivided by number available:
barplot(t(log10(t1+1)), beside=FALSE).

(2) the distribution of number of seeds taken is bimodal (has two peaks) with modes
at zero and at the total number of seeds available—all or nothing; (3) the distribution
of the number of seeds taken looks roughly constant as the number of seeds available
increases. Observation 2 in particular starts to suggest some ecological questions: it
makes sense for there to be a mode at zero (when seed predators don’t find the seeds
at all) and one away from zero (when they do), but why would seed predators take
either few or many but not an intermediate number? Perhaps this pattern, which
appears at the level of the whole data set, emerges from variability among low- and
high-vulnerability sites or species, or perhaps it has something to do with the behavior
of the seed predators.

Yet another graphical approach would be to try to visualize these data in three
dimensions, as a 3D bar plot or “lollipop plot” (adding stems to a 3D scatterplot to
make it easier to locate the points in space; Figure 2.4). 3D graphics do represent a
wide new range of opportunities for graphing data, but they are often misused and
sometimes actually convey less information than a carefully designed 2D plot; it’s
hard to design a really good 3D plot. To present 3D graphics in print you also have
to pick a single viewpoint, although this is not an issue for exploratory graphics.
Finally, R’s 3D capabilities are less well developed than those of MATLAB or Mathe-
matica (although the rgl package, which is used in Figure 2.4 and has been partially
integrated with the Rcmdr and vegan packages, is under rapid development). A pack-
age called ggobi allows you to explore scatterplots of high-dimensional/multivariate
data sets.

“Bolker” — 1/9/2008 — 15:39 — page 45

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 45

0
1

2

Frequency

3
Taken

4

4

3

2

6 5

0

1

4
Available 3 2 1 5

Figure 2.4 3D graphics: lollipop plot produced in rgl (plot3d(...,type="s") to plot
spheres, followed by plot3d(...,type="h") to plot stems).

2.4.1.3 FRACTION OF SEEDS TAKEN

It may make more sense to work with the fraction of seeds taken, and to see how
this varies with number available: Is it constant? Or does the fraction of seeds
taken increase with the density of seeds (predator attraction) or decrease (predator
saturation) or vary among species?

> frac.taken = SeedPred$taken/SeedPred$available

Plotting the fraction taken directly (e.g., as a function of number available:
plot(SeedPred$available,frac.taken)) turns out to be uninformative, since
all of the possible values (e.g. 0/3, 1/3, 2/3, 1) appear in the data set and so there
is lots of overlap; we could use sizeplot or jitter again, or we could com-
pute the mean fraction taken as a function of species, date, and number of seeds
available.

Suppose we want to calculate the mean fraction taken for each number of seeds
available. The command

> mean.frac.by.avail = tapply(frac.taken, available,
+ mean, na.rm = TRUE)

computes the mean fraction taken (frac.taken) for each different number of seeds
available (available: R temporarily converts available into a factor for this
purpose). (The tapply command is discussed in more detail in the R supplement.)

“Bolker” — 1/9/2008 — 15:39 — page 46

−1
0
1

46 • C H A P T E R 2

1 5432

F
ra

ct
io

n
ta

ke
n

0.00

0.02

0.04

0.06

0.08

Number of seeds available

Figure 2.5 Bar plot with error bars: mean fraction taken as a function of number available:
barplot2 (mean.frac.by.avail, plot.CI=TRUE, . . .).

We can also use tapply to calculate the standard errors, σ/
√

n:

> n.by.avail = table(available)
> sd.by.avail = tapply(frac.taken, available, sd,
+ na.rm = TRUE)
> se.by.avail = sd.by.avail/sqrt(n.by.avail)

I’ll use a variant of barplot, barplot2 (from the gplots package), to plot
these values with standard errors. R does not supply error-bar plotting as a built-in
function, but you can use the barplot2 (gplots package) or plotCI (gplots or
plotrix package) function to add error bars to a plot (see the R supplement).

While a slightly larger fraction of available seeds is removed when 5 seeds are
available, there is not much variation overall (Figure 2.5). We can use tapply to
cross-tabulate by species as well; the following commands would show a bar plot of
the fraction taken for each combination of number available and species:

> mean.frac.by.avail.sp = tapply(frac.taken, list(available,
+ species), mean, na.rm = TRUE)
> mean.frac.by.avail.sp = na.omit(mean.frac.by.avail.sp)
> barplot(mean.frac.by.avail.sp, beside = TRUE)

It’s often better to use a box plot (or box-and-whisker plot) to compare contin-
uous data in different groups. Box plots show more information than bar plots, and
they show it in a robust form (see p. 21 for an example). However, in this case the
box plot is dominated by zeros and so is not very informative.

One more general plotting strategy is to use small multiples (Tufte, 2001), break-
ing the plot into an array of similar plots comparing patterns at different levels
(by species, in this case). To make small multiples in base graphics, I would use
par(mfrow=(c(row,col)) to divide the plot region into a grid with row rows and

“Bolker” — 1/9/2008 — 15:39 — page 47

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 47

col columns and then draw a plot for each level separately. The lattice package
handles small multiples automatically, and elegantly. In this case, I used the command

> nz = subset(SeedPred, taken > 0)

to separate out the cases where at least 1 seed was removed, and then

> barchart(table(nz$available, nz$species, nz$taken),
+ stack = FALSE)

to plot bar charts showing the distribution of the number of seeds taken for
each number available, subdivided by species. (barchart(...,stack=FALSE) is the
lattice equivalent of barplot(...,beside=TRUE).) In other contexts, the lat-
tice package uses a vertical bar | to denote a small-multiple plot. For example,
bwplot(frac.taken˜available|species) would draw an array of box plots, one
for each species, of the fraction of seeds taken as a function of the number available
(see p. 21 for an example).

Figure 2.6 shows that the all-or-nothing distribution seen in Figure 2.3 is not just
an artifact of lumping all the species together, but holds up at the individual species
level. The patterns are slightly different, since in Figure 2.3 we chose to handle the
large number of zero cases by log-transforming the number of counts (to compress
the range of number of counts), while here we have just dropped the zero cases.
Nevertheless, it is still more likely that a small or large fraction of the available seeds
will disappear, rather than an intermediate fraction.

We could ask many more questions about these data.

• Is the length of time available for removal important? Although most sta-
tions were checked every 7 days, the interval ranged from 3 to 10 days
(table(tint)). Would separating the data by tint, or standardizing to a
removal rate (tint/taken), show any new patterns?

• Do the data contain more information about the effects of distance from the
forest? Would any of Figures 2.2–2.6 show different patterns if we separated
the data by distance?

• Do the seed removal patterns vary along the transects (remember that the
stations are spaced every 5 m along two transects)? Are neighboring stations
more likely to be visited by predators? Are there gradients in removal rate
from one end of the transect to the other?

However, you may be getting tired of seeds by now. The remaining examples in
this chapter show more kinds of graphs and more techniques for rearranging data.

2.4.2 Tadpole Predation Data

The next example data set describes the survival of tadpoles of an African treefrog,
Hyperolius spinigularis, in field predation trials conducted in large tanks. Vonesh and
Bolker (2005) Present the full details of the experiment; the goal was to understand
the trade-offs that H. spinigularis face between avoiding predation in the egg stage
(eggs are attached to tree leaves above ponds, and are exposed to predation by other
frog species and by parasitoid flies) and in the larval stage (tadpoles drop into the
water and are exposed to predation by many aquatic organisms including larval

“Bolker” — 1/9/2008 — 15:39 — page 48

−1
0
1

48 • C H A P T E R 2

Frequency

1

2

3

4

5

1050 15

abz cd

1050 15

cor

1

2

3

4

5

dio mmu pol

1

2

3

4

5

psd

1050 15

uva

Figure 2.6 Small multiples: bar plots of number of seeds taken by number available and species
(barchart(frac.taken|species)).

dragonflies). In particular, juveniles may face a trade-off between hatching earlier
(and hence smaller) to avoid egg predators and surviving as tadpoles, since smaller
tadpoles are at higher risk from aquatic predators.∗ Here, we’re just going to look at
the data as an example of dealing with continuous predictor variables (i.e., exploring
how predation risk varies with tadpole size and density).

Since reading in these data is straightforward, we’ll take a shortcut and use the
data command to pull the data into R from the emdbook package. Three data sets
correspond to three different experiments:

• ReedfrogPred: Results of a factorial experiment that quantified the num-
ber of tadpoles surviving for 16 weeks (surv: survprop gives the proportion

∗ In fact, the study found that smaller, earlier-hatched tadpoles manage to compensate for this risk
by growing faster through the size range in which they are vulnerable to aquatic predators.

“Bolker” — 1/9/2008 — 15:39 — page 49

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 49

surviving) with and without predators (pred), with three different tadpole
densities (density), at two different initial tadpole sizes (size).

• ReedfrogSizepred: Data from a more detailed experiment on the effects of
size (TBL, for tadpole body length) on survival over 3 days (Kill, number
killed out of 10).

• ReedfrogFuncresp: Data from a more detailed experiment on the effects of
initial tadpole density (Initial) on the number killed over 14 days (Killed).

2.4.2.1 FACTORIAL PREDATION EXPERIMENT (REEDFROGPRED)

What are the overall effects of predation, size, density, and their interactions on
survival? Figure 7 uses boxplot(propsurv˜size*density*pred) to display the
experimental results (bwplot is the lattice equivalent of boxplot). Box plots show
more information than bar plots. In general, you should prefer box plots to bar
plots unless you are particularly interested in comparing values to zero (bar plots are
anchored at zero, which emphasizes this comparison).

Specifically, the line in the middle of each box represents the median; the ends
of the boxes (“hinges”) are the first and third quartiles (approximately; see ?box-
plot.stats for gory details); the “whiskers” extend to the most extreme data point
in either direction that is within a factor of 1.5 of the hinge; any points beyond the
whiskers (there happen to be none in Figure 2.7) are considered outliers and are
plotted individually. It’s clear from the picture that predators significantly lower sur-
vival (not surprising). Density and tadpole size also have effects, and may interact
(the effect of tadpole size in the predation treatment appears larger at high densi-
ties).∗ The order of the factors in the box plot formula doesn’t really change the
answers, but it does change the order in which the bars are presented, which empha-
sizes different comparisons. In general, you should organize bar plots and other
graphics to focus attention on the most important or most interesting question: in
this case, the effect of predation is so big and obvious that it’s good to separate pre-
dation from no-predation first so we can see the effects of size and density. I chose
size*density*pred to emphasize the effects of size by putting the big- and small-
tadpole bars within a density treatment next to each other; density*size*pred
would emphasize the effects of density instead.

Box plots are also implemented in the lattice package:

> bwplot(propsurv ˜ density | pred * size,
+ data = ReedfrogPred, horizontal = FALSE)

gives a box plot. Substituting dotplot for bwplot would produce a dotplot instead,
which shows the precise value for each experimental unit—good for relatively small
data sets like this one, although in this particular example several points fall on top
of each other in the treatments where there was high survival.

∗ An analysis of variance on the arcsine-square root transformed proportion surviving (Table 1 in
Vonesh and Bolker (2005)) identifies significant effects of density, predator, density × predator and size ×
predator interactions (i.e., density and size matter only when predators are present), but not a significant
density × size × predator interaction. Either the apparent increase in size effect at high densities in the
presence of a predator is by chance alone, or the statistical test was not powerful enough to distinguish it
from chance.

“Bolker” — 1/9/2008 — 15:39 — page 50

−1
0
1

50 • C H A P T E R 2

P
ro

po
rt

io
n

su
rv

iv
in

g

0.2

0.4

0.6

0.8

1.0

small.10
big.10

small.25
big.25

small.35
big.35

small.10
big.10

small.25
big.25

small.35
big.35

no pred

pred

10 25 35

density

Figure 2.7 Results of factorial experiment on H. spinigularis predation: boxplot(propsurv˜
size*density*pred,data=ReedfrogPred).

Initial density

N
um

be
r

ki
lle

d

0

5

10

15

20

25

30

35

0 40 80 120

a

lowess
spline
means

0 10 20 30 40

0

1

2

3

4

5

Tadpole Size
(total body length in mm)

N
um

be
r

ki
lle

d

b

Figure 2.8 H. spinigularis tadpole predation by dragonfly larvae as a function of (a) initial
density of tadpoles (b) initial size of tadpoles.

2.4.2.2 EFFECTS OF DENSITY AND TADPOLE SIZE

Once the factorial experiment had established the qualitative effects of density and
tadpole size on predation, Vonesh ran more detailed experiments to explore the
ecological mechanisms at work: how, precisely, do density and size affect predation
rate, and what can we infer from these effects about tadpole life history choices?

Figure 2.8 shows the relationship between (a) initial density and (b) tadpole size
and the number of tadpoles killed by aquatic predators. The first relationship shows
the predator functional response—how the total number of prey eaten increases,
but saturates, as prey density increases. The second relationship demonstrates a size

“Bolker” — 1/9/2008 — 15:39 — page 51

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 51

refuge—small tadpoles are protected because they are hidden or ignored by predators,
while large tadpoles are too big to be eaten or big enough to escape predators.

Questions about the functional relationship between two continuous variables,
asking how one ecological variable affects another, are very common in ecology.
Chapter 3 will present a wide variety of plausible mathematical functions to describe
such relationships. When we do exploratory data analysis, on the other hand, we
want ways of “connecting the dots” that are plausible but that don’t make too many
assumptions. Typically we’re interested in smooth, continuous functions. For exam-
ple, we think that a small change in initial density should not lead to an abrupt change
in the number of tadpoles eaten.

The pioneers of exploratory data analysis invented several recipes to describe
such smooth relationships.

• R incorporates two slightly different implementations of robust locally weigh-
ted regression (lowess and loess). This algorithm runs linear or quadratic
regressions on successive chunks of the data to produce a smooth curve.
lowess has an adjustable smoothness parameter (in this case the proportion
of points included in the “neighborhood” of each point when smoothing) that
lets you choose curves ranging from smooth lines that ignore a lot of the vari-
ation in the data to wiggly lines that pass through every point; in Figure 2.8a,
I used the default value (lines(lowess(Initial,Killed))).

• Figure 2.8a also shows a spline fit to the data which uses a series of cubic
curves to fit the data. Splines also have a smoothing parameter, the degrees of
freedom or number of different piecewise curves fitted to the data; in this case
I set the degrees of freedom to 5 (the default here would be 2) to get a slightly
more wiggly curve (smooth.spline(Initial, Killed,df=5)).

• Simpler possibilities include just drawing a straight line between the mean val-
ues for each initial density (using tapply(Killed,Initial,mean) to calculate
the means and unique(Initial) to get the nonrepeated values of the initial
density), or plotting the results of a linear or quadratic regression of the data
(not shown; see the R supplement). I plotted straight lines between the means
in Figure 2.8b because local robust regression and splines worked poorly.

To me, these data present fewer intriguing possibilities than the seed removal
data—primarily because they represent the results of a carefully targeted experiment,
designed to answer a very specific question, rather than a more general set of field
observations. The trade-off is that there are fewer loose ends; in the end we were
actually able to use the detailed information about the shapes of the curves to explain
why small tadpoles experienced higher survival, despite starting out at an apparent
disadvantage.

2.4.3 Damselfish Data

The next example comes from Schmitt et al.’s (1999) work on a small reef fish, the
three-spotted damselfish (Dascyllus trimaculatus), in French Polynesia. Like many
reef fish, Dascyllus’s local population dynamics are open. Pelagic larval fish immi-
grate from outside the area, settling when they arrive on sea anemones. Schmitt
et al. were interested in understanding how the combination of larval supply (settler

“Bolker” — 1/9/2008 — 15:39 — page 52

−1
0
1

52 • C H A P T E R 2

density), density-independent mortality, and density-dependent mortality determines
local population densities.

The data are observations of the numbers of settlers found on previously cleared
anemones after settlement pulses and observations of the number of subadults recruit-
ing (surviving after 6 months) in an experiment where densities were artificially
manipulated.

The settlement data set, DamselSettlement, includes 600 observations at
10 sites, across 6 different settlement pulses in 2 years. Each observation records the
site at which settlement was observed (site), the month (pulse), and the number
(obs) and density per 0.1 m2 (density) of settling larvae. The first recruitment data
set, DamselRecruitment, gives the anemone area in 0.1 m2 (area), the initial number
of settlers introduced (init), and the number of recruits (subadults surviving after
6 months: surv). The second recruitment data set, DamselRecruitment_sum, gives
information on the recruitment according to target densities (the densities the exper-
imenters were trying to achieve), rather than the actual experimental densities, and
summarizes the data by category. It includes the target settler density (settler.den),
the mean recruit density in that category after 6 months (surv.den), and the standard
error of recruit density (SE).

2.4.3.1 DENSITY-RECRUITMENT EXPERIMENT

The relationship between settler density and recruit density (Figure 2.9) is ecologically
interesting but does not teach us many new graphical or data analysis tricks. I did
plot the x axis on a log scale, which shows the low-density data more clearly but
makes it harder to see whether the curve fits any of the standard ecological models
(e.g., purely density-independent survival would produce a straight line on a regular
(linear) scale). Nevertheless, we can see that the number recruiting at high densities
levels off (evidence of density-dependent survival) and there is even a suggestion of
overcompensation—a decreasing density of recruits at extreme densities.

Settlement Data

The reef fish data also provide us with information about the variability in settlement
density across space and time. Schmitt et al. lumped all of these data together, to
find out how the distribution of settlement density affects the relative importance of
density-independent and density-dependent factors (Figure 2.10).

Figure 2.10 shows a histogram of the settlement densities. Histograms (hist in
basic graphics or histogram in lattice graphics) resemble bar plots but are designed
for continuous rather than discrete distributions. They break the data up into evenly
spaced categories and plot the number or proportion of data points that fall into
each bin. You can use histograms for discrete data, if you’re careful to set the
breaks between integer values (e.g., at seq(0,100,by=0.5)), but plot(table(x))
and barplot(table(x)) are generally better. Although histograms are familiar to
most ecologists, kernel density estimators (density: Venables and Ripley, 2002),
which produce a smooth estimate of the probability density rather than breaking
the counts into discrete categories, are often better than histograms—especially for

“Bolker” — 1/9/2008 — 15:39 — page 53

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 53

Initial density (0.1m2)

R
ec

ru
it

de
ns

ity
 (

6
m

on
th

s)

0

5

10

0.5 5.0 50.0 500.0

actual

target

lowess

Figure 2.9 Recruit (subadult) D. trimaculatus density after 6 months, as a function of experi-
mentally manipulated settler density. Black points show actual densities and survivorship; gray
points with error bars show the recruit density, ± 1 SE, by the target density category; line is
a lowess fit.

P
ro

ba
bi

lit
y

de
ns

ity

0 50 100 150 200

0.00

0.05

0.10

0.15

Settler density (0.1m2)
Figure 2.10 Overall distribution of settlement density of D.trimaculatus across space and time
(only values < 200/(0.1 m2); 8 values excluded): hist and lines(density(. . .)).

“Bolker” — 1/9/2008 — 15:39 — page 54

−1
0
1

54 • C H A P T E R 2

large data sets. While any form of binning (including kernel density estimation)
requires some choice about how finely versus coarsely to subdivide or smooth the
data, density estimators have a better theoretical basis for understanding this trade-
off. It is also simpler to superimpose densities graphically to compare distributions.
The only case where I prefer histograms to densities is when I am interested in
the distribution near a boundary such as zero, when density estimation can pro-
duce artifacts. Estimating the density and adding it to Figure 2.10 was as simple as
lines(density(setdens)).

The zero-settlement events are shown as a separate category by using
breaks=c(0,seq(1,200,by=4)). Rather than plot the number of counts in each
category, the probability density is shown using prob=TRUE, so that the area in each
bar is proportional to the number of counts. Perhaps the most striking feature of the
histogram is the large number of zeros, but this aspect is downplayed by the original
histogram in Schmitt et al. (1999), which plots the zero counts separately but failed to
increase the height of the bar to compensate for its narrower width. The zero counts
seem to fall into a separate category; ecologically, one might wonder why there are
so many zeros, and whether there are any covariates that would predict where and
when there were no settlers. Depending on your ecological interests, you also might
want to replot the histogram without the zeros to focus attention on the shape of the
rest of the distribution.

The histogram also shows that the distribution is very wide (one might try
plotting a histogram of log (1 + x) to compress the distribution). In fact, I actu-
ally excluded the eight largest values from the histogram. (R’s histogram function
does not have a convenient way to lump “all larger values” into the last bar, as in
Schmitt et al.’s original figure.) The first part of the distribution falls off smoothly
(once we ignore the zeros), but there are enough extremely large values to make
us ask both what is driving these extreme events and what effects they may be
having.

Schmitt et al. did not explore the distribution of settlement across time and space.
We could use

> bwplot(log10(1 + density) ˜ pulse | site,
+ data = DamselSettlement, horizontal = FALSE)

to plot box-and-whisker plots of settlement divided by pulse, with small multi-
ples for each site, for the damselfish settlement data. We can also use a pairs plot
(pairs) or scatterplot matrix (splom in the lattice package) to explore the struc-
ture of multivariate data (many predictor variables, many response variables, or both;
Figure 2.11). The pairs plot shows a table of x-y plots, one for each pair of variables
in the data set. In this case, I’ve used it to show the correlations between settlement
to a few of the different sites in Schmitt et al.’s data set (each site contains multi-
ple reefs where settlement is counted). Because the DamselSettlement data set is in
long form, we first have to reshape it so that we have a separate variable for each
site:

> library(reshape)
> x2 = melt(DamselSettlement, measure.var = "density")
> x3 = cast(x2, pulse + obs ˜ ...)

“Bolker” — 1/9/2008 — 15:39 — page 55

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 55

Cdina_density1.0

1.5

1.0 1.5

0.0

0.5

0.0 0.5

111 1
11
11

11

22
22
2

222
2 2

3333

33
3

3
3

3

4

4
444

4
44 4

4

5 5
555 5

5 5 55

666 6 6

6
66

6
6

1111
11
11

11

22
22
2

222
2 2

3333

33
3

3
3

3

4

4
444

4
444

4

5 5
5 5 55

5 5 55

6 666 6

6
66

6
6

111

1 11 11

1
1

22 22 2

222

2
2

3333
33 3

3 3 3

4
4

444

4 44
4

4

5

5
555
5 5

5

55

666

6
6

6 6
6

6
6

Hin_density
1.0

1.5
1.0 1.5

0.0

0.5

0.0 0.5 111

11111

1
1

22222

222

2
2

3333
33 3

33 3

4
4

444

444
4

4

5

5
5 5 5

55
5

55

6 66

6
6

6 6
6

6
6

1111 11 11

11

22 22 2

222
2
2

3333

33
3

3 3
3

4 4
444 4 4

44 4

5

5 5

5
55 5

5
55

6

666

6
6

66
6

6

111 11111

11

22222

222
2

2

3333

33
3

33
3

4 4
444 44

4 4 4

5

55

5
5 55

5
55

6

66 6

6
6
66 6

6

Hout_density1.0

1.5

2.0

1.0 1.5 2.

0.0

0.5

1.0

0.0 0.5 1.0

Figure 2.11 Scatterplot matrix of settlement to three selected reefs (logarithm(1 + x) scale),
with points numbered according to pulse: splom(log10(1+x3[,3:5]),groups=x3$pulse,
pch=as.character(1:6)).

The first few rows and columns of the reshaped data set look like this:
pulse obs Cdina_density Hin_density Hout_density ...

1 1 1 2.7 0.0 0 ...
2 1 2 2.7 0.0 0 ...
3 1 3 2.7 0.0 0 ...
4 1 4 2.7 3.6 0 ...

and we can now use pairs(log10(1+x3[,3:5])) (or splom(log10(1+x3[,3:5]))
to use lattice graphics) to produce the scatterplot matrix (Figure 2.11).

“Bolker” — 1/9/2008 — 15:39 — page 56

−1
0
1

56 • C H A P T E R 2

2.4.4 Goby Data

We can explore the effect of density on survival in more detail with another data
set on reef fish survivorship, this one on the marine gobies Elacatinus prochilos and
E. evelynae in St. Croix (Wilson, 2004). Like damselfish, larval marine gobies also
immigrate to a local site, although these species settle on coral heads rather than
on anemones. Wilson experimentally manipulated density in a series of experiments
across several years; she replaced fish as they died in order to maintain the local
density experienced by focal individuals.∗

Previous experiments and observations suggested that patch reefs with higher
natural settlement rate have lower mortality rates, once one accounts for the effects of
density. Thus reefs with high natural settlement rates were deemed to be of putatively
high “quality,” and Wilson took the natural settlement rate as an index of quality in
subsequent experiments in which she manipulated density.

Reading from a comma-separated file, specifying that the first four columns are
factors and the last four are numeric:

> gobydat = read.csv("GobySurvival.csv", colClasses = c(rep
+ ("factor", 4), rep("numeric", 4)))

Left to its own devices, R would have guessed that the first two columns (exper-
iment number and year) were numeric rather than factors. I could then have
converted them back to factors via gobydat$exper=factor(gobydat$exper) and
gobydat$year=factor(gobydat$year).

R has an attach command that gives direct access to the columns in a data
frame: if we say

> attach(gobydat)

we can then refer to year, exper, d1 rather than gobydat$year, gobydat$exper,
gobydat$d1, and so forth. attach can make your code easier to read, but it can also
be confusing; see p. 35 for some warnings.

For each individual monitored, the data give the experiment number (exper:
five separate experiments were run between 2000 and 2002) and information about
the year and location of the experiment (year, site); information about the location
(coral head: head) of each individual and the corresponding density (density) and
quality (qual) of the coral head; and the fate of the individual—the last day it was
observed (d1) and the first day it was not seen (d2, set to 70 if the fish was present on
the last sampling day of the experiment). (In survival analysis literature, individuals
that are still alive when the study ends are called right-censored). Since juvenile
gobies of these species rarely disperse, we will assume that a fish that disappears
has died.

Survival data are challenging to explore graphically, because each individual pro-
vides only a single discrete piece of information (its time of death or disappearance).

∗ Unlike the rest of the data sets in the book, I did not include this one in the emdbook package, since
all the analyses have not yet been published. I will include them as soon as they become available; please
feel free to contact me (BMB) in the meanwhile if you would like access to them.

“Bolker” — 1/9/2008 — 15:39 — page 57

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 57

In this case we will approximate time of death as halfway between the last time an
individual was observed and the first time it was not observed):

> meansurv = (d1 + d2)/2

For visualization purposes, it will be useful to define low- and high-density and
low- and high-quality categories. We will use the ifelse(val,a,b) command to
assign value a if val is TRUE or b if val is FALSE, and the factor command to make
sure that level low is listed before high even though it is alphabetically after it.

> dens.cat = ifelse(density > median(density), "high",
+ "low")
> dens.cat = factor(dens.cat, levels = c("low", "high"))
> qual.cat = ifelse(qual > median(qual), "high", "low")
> qual.cat = factor(qual.cat, levels = c("low", "high"))

Figure 2.12 shows an xyplot of the mean survival value, jittered and divided into
low- and high-quality categories, with linear-regression lines added to each subplot.
There is some mild evidence that mean survival declines with density at low-quality
sites, but much of the pattern is driven by the fish with meansurv of > 40 (which
are all fish that survived to the end of the experiment) and by the large cluster of
short-lived fish at low quality and high densities (> 10).

Let’s try calculating and plotting the mortality rate over time, and the proportion
surviving over time (the survival curve), instead.

Starting by taking all the data together, we would calculate these values by first
tabulating the number of individuals disappearing in each time interval:

> survtab = table(meansurv)
> survtab

meansurv
1.5 2.5 3.5 5 6 7 9 9.5 10 11 40.5 41
137 113 17 8 14 3 5 13 4 3 26 26

To calculate the number of individuals that disappeared on or after a given time,
reverse the table (rev) and take its cumulative sum (cumsum):

> csurvtab = cumsum(rev(survtab))
> csurvtab

41 40.5 11 10 9.5 9 7 6 5 3.5 2.5 1.5
26 52 55 59 72 77 80 94 102 119 232 369

Reversing the vector again sorts it into order of increasing time:

> csurvtab = rev(csurvtab)

To calculate the proportional mortality at each time step, divide the number
disappearing by the total number still present (I have rounded to two digits):

> survtab/csurvtab

“Bolker” — 1/9/2008 — 15:39 — page 58

−1
0
1

58 • C H A P T E R 2

Density

M
ea

n
su

rv
iv

al
 ti

m
e

0

10

20

30

40

2 10864

low

102 4 6 8

high

Figure 2.12 Mean survival time as a function of density, divided by quality (background
settlement) category: xyplot.

meansurv
1.5 2.5 3.5 5 6 7 9 9.5 10 11 40.5 41
0.37 0.49 0.14 0.08 0.15 0.04 0.06 0.18 0.07 0.05 0.50 1.00

Figure 2.13 plots the proportion dying and survival curves by quality/density
category. The plot of proportion dying is very noisy but does suggest that the disap-
pearance rate starts relatively high (≈ 50% per observation period) and then decreases
(the end of the experiment gets very noisy, and was left off the plot). The survival
curve is clearer. Since it is plotted on a logarithmic scale, the leveling off of the curves
is an additional indication that the mortality rate decreases with time (constant mor-
tality would lead to exponential decline, which would appear as a straight line on a
logarithmic graph). As expected, the low-quality, high-density treatment has the low-
est proportion surviving, with the other three treatments fairly closely clustered and
not in the expected order (we would expect the high-quality, low-density treatment
to have the highest survivorship).

“Bolker” — 1/9/2008 — 15:39 — page 59

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 59

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

po
rt

io
na

l m
or

ta
lit

y

Time (days)

a

082 4 6 1010 3020 40

0.1

0.2

0.5

1.0

F
ra

ct
io

n
su

rv
iv

in
g

Time (days)

b

high qual/high density

low qual/low density

high qual/low density

low qual/high density

Figure 2.13 Goby survival data: proportional mortality and fraction surviving over time, for
different quality/density categories

2.5 Conclusion

This chapter has given an overview and examples of how to get data into R and
start plotting it in various ways to ask ecological questions. I overlooked a variety
of special kinds of data (e.g., circular data such as directional data or daily event
times; highly multivariate data; spatial data and maps; compositional data, where
the sum of proportions in different categories adds to 1.0); Table 2.1 gives some
ideas for handling these data types, but you may also have to search elsewhere,
for example, using RSiteSearch("circular") to look for information on circular
statistics.

2.6 R supplement

All of the R code in this supplement is available from http://www.zoo.ufl.edu/
bolker/emdbook in an electronic format that will be easier to cut and paste from, in
case you want to try it out for yourself (you should).

“Bolker” — 1/9/2008 — 15:39 — page 60

−1
0
1

60 • C H A P T E R 2

TABLE 2.1
Summary of Graphical Procedures.

Predictors Response Plot Choices

Single categorical Single categorical table, barplot , dotchart, barchart [L],
dotplot [L]

Multiple categorical Single categorical as above, plus mosaicplot, small multi-
ples (par(mfrow)/par(mfcol) or lattice
plots), sizeplot [plotrix] or 3D histogram
[scatterplot3d, rgl]

Circular Categorical rose.diag [CircStats]

Circular Continuous polar.plot [plotrix]

None Compositional barplot(...,beside=FALSE),
barchart(...,stack=TRUE) [L],
ternaryplot [vcd], triax.plot [plotrix]

Single categorical Multiple continuous stars

None or single
categorical

Single continuous boxplot, bwplot [L], violin plots
(bwplot(...,panel=panel.violin)
[L], vioplot [vioplot], stripplot [L],
barplot2 [gplot] for error bars

Continuous
+ categorical

Single continuous scatterplot (plot , xyplot [L]) with cate-
gories indicated by plotting symbols (pch),
color (col), size (cex) or (in lattice) groups
argument

Single continuous Single continuous plot , xyplot [L]; lowess, supsmu, smooth.
spline for curves; plotCI [gplots or
plotrix] for error bars

Multiple continuous Multiple continuous conditioning plots (coplot or lattice plots),
3D scatter- or lollipop plots (cloud [L],
scatterplot3d [scatterplot3d] or plot3d
[rgl]

Continuous (time or
1D space)

Continuous plot/xyplot with type="l" or type="b"

Continuous
(2D space)

Continuous image, contour, persp, kde2d [MASS],
wireframe [L], surface3d [rgl], maps pack-
age, maptools package, sp package

Square brackets denote functions in packages; [L] denotes functions in the lattice package.

2.6.1 Clean, Reshape, and Read In Data

To let R know where your data files are located, you have a few choices:

• Spell out the path, or file location, explicitly. (Use a single forward slash to
separate folders (e.g., "c:/Users/bolker/My Documents/R/script.R"); this
works on all platforms.)

“Bolker” — 1/9/2008 — 15:39 — page 61

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 61

• Use filename=file.choose(), which will bring up a dialog box to let you
choose the file and set filename. This works on all platforms but is useful
only on Windows and MacOS.

• Use menu commands to change your working directory to wherever the files are
located: File/Change dir (Windows) or Misc/Change Working Directory
(Mac).

• Change your working directory to wherever the files are located using the
setwd (set working directory) function, e.g., setwd("c:/temp").

Changing your working directory is more efficient in the long run. You should save
all the script and data files for a particular project in the same directory and switch
to that directory when you start work.

The seed removal data were originally stored in two separate Excel files, one for
the 10-m transect and one for the 25-m transect. After a couple of preliminary errors
I decided to include na.strings=" " (to turn blank cells into NAs) and comment=""
(to deal with a # character in the column names—although I could also have edited
the Excel file to remove it):

> dat_10 = read.csv("duncan_10m.csv", na.strings = "?",
+ comment = "")
> dat_25 = read.csv("duncan_25m.csv", na.strings = "?",
+ comment = "")

str and summary originally showed that I had some extra columns and rows:
row 160 of dat_10 and columns 40–44 of dat_25 were junk. I could have gotten rid
of them this way:

> dat_10 = dat_10[1:159,]
> dat_25 = dat_25[, 1:39]

(I could also have used negative indices to drop specific rows/columns: dat_10[-
160,] and dat_25[-(40:44),] would have the same effect).

Now we reshape the data, specifying id.var=1:2 to preserve the first two
columns, station and species, as identifier variables:

> library(reshape)
> dat_10_melt = melt(dat_10, id.var = 1:2)

Convert the third column to a date, using paste to append 1999 to each date
(sep="." separates the two pasted strings with a period):

> date_10 = paste(dat_10_melt[, 3], "1999", sep = ".")

Then use as.Date to convert the string to a date (%d means day, %b% means three-
letter month abbreviation, and %Y% means four-digit year; check ?strptime for more
date format details). Because the column names in the Excel file began with numbers
(e.g., 25-Mar), R automatically added an X to the beginning as well as converting
dashes to periods (X25.Mar),—include this in the format string:

> dat_10_melt[, 3] = as.Date(date_10, format = "X%d.%b.%Y")

“Bolker” — 1/9/2008 — 15:39 — page 62

−1
0
1

62 • C H A P T E R 2

Finally, rename the columns.:

> names(dat_10_melt) = c("station", "species", "date",
+ "seeds")

Do the same for the 25-m transect data:

> dat_25_melt = melt(dat_25, id.var = 1:2)
> date_25 = paste(dat_25_melt[, 3], "1999", sep = ".")
> dat_25_melt[, 3] = as.Date(date_25, format = "X%d.%b.%Y")
> names(dat_25_melt) = c("station", "species", "date",
+ "seeds")

We’ve finished cleaning up and reformatting the data. Now we would like to cal-
culate some derived quantities: specifically, tcum (elapsed time from the first sample),
tint (time since previous sample), taken (number removed since previous sample),
and available (number available at previous sample). We’ll split the data frame up
into a separate chunk for each station:

> split_10 = split(dat_10_melt, dat_10_melt$station)

for loops are a general way of executing similar commands many times. A for loop
runs for every value in a vector.

for (var in vec) {
commands

}

runs the R commands inside the curly brackets once for each element of vec, each
time setting the variable var to the corresponding element of vec. The most frequent
use of for loops is to run a set of commands n times by making vec equal 1:n.

For each data chunk (corresponding to the data from one station), we want to
calculate (1) the cumulative time elapsed by subtracting the first date from all the
dates; (2) the time interval since the previous observation by taking the difference of
successive dates (with diff) and putting an NA at the beginning; (3) the number
of seeds lost since the previous observation by taking the negative of the difference
of successive numbers of seeds and prepending an NA; and (4) the number of seeds
available at the previous observation by prepending NA and dropping the last element.
We then put the new derived variables together with the original data and reassign
them.

The for loop below does all these calculations for each chunk by executing each
statement inside the curly brackets {}, setting i to each value between 1 and the
number of stations:

> for (i in 1:length(split_10)) {
+ x = split_10[[i]]
+ tcum = as.numeric(x$date - x$date[1]) #(1) cumulative
+ time
+ tint = as.numeric(c(NA, diff(x$date))) #(2) time
+ interval
+ taken = c(NA, -diff(x$seeds)) #(3) seeds taken,
+ available = c(NA, x$seeds[-nrow(x)]) #(4) seeds

“Bolker” — 1/9/2008 — 15:39 — page 63

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 63

+ available
+ split_10[[i]] = data.frame(x, tcum, tint, taken,
+ available)
+ }

Now we want to stick all of the chunks of the data frame back together. rbind
(for row bind) combines columns, but normally we would say rbind(x,y,z) to
combine three matrices or data frames with the same number of columns. If, as
in this case, we have a list of matrices that we want to combine, we have to use
do.call("rbind",list) to apply rbind to the list:

> dat_10 = do.call("rbind", split_10)

The approach shown here is also useful when you have individuals or stations
that have data recorded only for the first observation of the individual. In some cases
you can also do these manipulations by working with the data in wide format.

Do the same for the 25-m data (not shown).
Create new data frames with an extra column that gives the distance from the

forest (rep is the R command to repeat values); then stick them together.

> dat_10 = data.frame(dat_10, dist = rep(10, nrow(dat_10)))
> dat_25 = data.frame(dat_25, dist = rep(25, nrow(dat_25)))
> SeedPred = rbind(dat_10, dat_25)

Convert station and distance from numeric to factors:

> SeedPred$station = factor(SeedPred$station)
> SeedPred$dist = factor(SeedPred$dist)

Reorder columns:

> SeedPred = SeedPred[, c("station", "dist", "species",
+ "date", "seeds", "tcum", "tint", "taken", "available")]

2.6.2 Plots: Seed Data

2.6.2.1 MEAN NUMBER REMAINING WITH TIME

Attach the seed removal (predation) data:

> attach(SeedPred)

Using attach can make your code easier to read, since you don’t have to put
SeedPred$ in front of the column names, but it’s important to realize that attaching
a data frame makes a local copy of the variables. Changes that you make to these
variables are not saved in the original data frame, which can be very confusing.
Therefore, it’s best to use attach only after you’ve finished modifying your data.
attach can also be confusing if you have columns with the same name in two different
attached data frames: use search to see where R is looking for variables. It’s best to
attach just one data frame at a time—and make sure to detach it when you finish.

“Bolker” — 1/9/2008 — 15:39 — page 64

−1
0
1

64 • C H A P T E R 2

Separate out the 10-m and 25-m transect data from the full seed removal data set:

> SeedPred_10 = subset(SeedPred, dist == 10)
> SeedPred_25 = subset(SeedPred, dist == 25)

The tapply (for table apply, pronounced “t apply”) function splits a vector into
groups according to the list of factors provided, then applies a function (e.g., mean
or sd) to each group. To split the data on numbers of seeds present by date and
species and take the mean (na.rm=TRUE says to drop NA values):

> s10_means = tapply(SeedPred_10$seeds,
+ list(SeedPred_10$date, SeedPred_10$species),
+ mean, na.rm = TRUE)
> s25_means = tapply(SeedPred_25$seeds,
+ list(SeedPred_25$date, SeedPred_25$species),
+ mean, na.rm = TRUE)

matplot (“matrix plot”) plots all the columns of a matrix against a single x
variable. Use it to plot the 10-m data on a log scale (log="y") with both lines and
points (type="b"), in black (col=1), with plotting characters (pch) 1 through 8,
with solid lines (lty=1). Use matlines (“matrix lines”) to add the 25-m data in gray.
(lines and points are the base graphics commands to add lines and points to an
existing graph.)

> matplot(s10_means, log = "y", type = "b", col = 1,
+ pch = 1:8, lty = 1)
> matlines(s25_means, type = "b", col = "gray", pch = 1:8,
+ lty = 1)

2.6.2.2 SEED DATA: DISTRIBUTION OF NUMBER TAKEN VERSUS
AVAILABLE

Jittered plot:

> plot(jitter(SeedPred$available), jitter(SeedPred$taken))

Bubble plot

> library(plotrix)
> sizeplot(SeedPred$available, SeedPred$taken, scale = 0.5,
+ pow = 0.5, xlim = c(-2, 6), ylim = c(-2, 5))

This plot differs from Figure 2.2 because I don’t exclude cases where there are
no seeds available. (I use xlim and ylim to extend the axes slightly.) scale and pow
can be tweaked to change the size and scaling of the symbols.

To plot the numbers in each category, I use text, row to get row numbers, and
col to get column numbers; I subtract 1 from the row and column numbers to plot
values starting at zero.

> t1 = table(SeedPred$available, SeedPred$taken)
> text(row(t1) - 1, col(t1) - 1, t1)

“Bolker” — 1/9/2008 — 15:39 — page 65

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 65

Or you can use balloonplot from the gplots package:

> library(gplots)
> balloonplot(t1)

Finally, you can use the default mosaic plot, either using the default plot
command on the existing tabulation

> plot(t1)

or using mosaicplot with a formula based on the columns of SeedPred:

> mosaicplot(˜available + taken, data = SeedPred)

Bar plot:

> barplot(t(log10(t1 + 1)), beside = TRUE,
+ xlab = "Available", ylab = "log10(1+# observations)")

or

> barplot(t(t1 + 1), log = "y", beside = TRUE,
+ xlab = "Available", ylab = "1+# observations")

Bar plot of mean fraction taken:

> mean.frac.by.avail = tapply(frac.taken, available,
+ mean, na.rm = TRUE)
> n.by.avail = table(available)
> se.by.avail = tapply(frac.taken, available, sd,
+ na.rm = TRUE)/sqrt(n.by.avail)
> barplot2(mean.frac.by.avail, plot.ci = TRUE,
+ ci.l = mean.frac.by.avail - se.by.avail,
+ ci.u = mean.frac.by.avail + se.by.avail,
+ xlab = "Number available", ylab = "Fraction taken")

Bar plot of mean fraction taken by species—in this case we use barplot, saving
the x locations of the bars in a variable b, and then add the confidence intervals
with plotCI:

> library(plotrix)
> frac.taken = SeedPred$taken/SeedPred$available
> mean.frac.by.avail.by.species = tapply(frac.taken,
+ list(available, species), mean, na.rm = TRUE)
> n.by.avail.by.species = table(available, species)
> se.by.avail.by.species = tapply(frac.taken, list(available,
+ species), sd, na.rm = TRUE)/sqrt(n.by.avail.by.species)
> b = barplot(mean.frac.by.avail.by.species, beside = TRUE)
> plotCI(b, mean.frac.by.avail.by.species, se.by.avail.by.
+ species, add = TRUE, pch = ".", gap = FALSE)

“Bolker” — 1/9/2008 — 15:39 — page 66

−1
0
1

66 • C H A P T E R 2

3D Plots

Using t1 from above, define the x, y, and z variables for the plot:

> avail = row(t1)[t1 > 0]
> taken = col(t1)[t1 > 0] - 1
> freq = log10(t1[t1 > 0])

The scatterplot3d library is simpler to use, but less interactive—once the plot
is drawn you can’t change the viewpoint. Plot -avail and -taken to reverse the
order of the axes and use type="h" (originally named for a “high-density” plot in
R’s 2D graphics) to draw lollipops:

> library(scatterplot3d)
> scatterplot3d(-avail, -taken, freq, type = "h", angle = 50,
+ pch = 16)

With the rgl library, first plot spheres (type="s") hanging in space:

> library(rgl)
> plot3d(avail, taken, freq, lit = TRUE, col.pt = "gray",
+ type = "s", size = 0.5, zlim = c(0, 4))

Then add stems and grids to the plot:

> plot3d(avail, taken, freq, add = TRUE, type = "h",
+ size = 4, col = gray(0.2))
> grid3d(c("x+", "y-", "z"))

Use the mouse to move the viewpoint until you like the result.

2.6.2.3 HISTOGRAM/SMALL MULTIPLES

Using lattice graphics, as in the text:

> histogram(˜frac.taken | species, xlab = "Fraction taken")

or with base graphics:

> op = par(mfrow = c(3, 3))
> for (i in 1:length(levels(species))) {
+ hist(frac.taken[species == levels(species)[i]],
+ xlab = "Fraction taken", main = "", col = "gray")
+ }
> par(op)

op stands for “old parameters” (you can name this variable anything you want).
Saving the old parameters in this way and using par(op) at the end of the plot
restores the original graphical parameters.

Clean up:

> detach(SeedPred)

“Bolker” — 1/9/2008 — 15:39 — page 67

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 67

2.6.3 Tadpole Data

As mentioned in the text, reading in the data was fairly easy in this case:
read.table(...,header=TRUE) and read.csv worked without any tricks. I take
a shortcut, therefore, to load these data sets from the emdbook library:

> data(ReedfrogPred)
> data(ReedfrogFuncresp)
> data(ReedfrogSizepred)

2.6.3.1 BOX PLOT OF FACTORIAL EXPERIMENT

The box plot is fairly easy:

> graycols = rep(rep(gray(c(0.4, 0.7, 0.9)), each = 2), 2)
> boxplot(propsurv ˜ size * density * pred,
+ data = ReedfrogPred, col = graycols)

Play around with the order of the factors to what the different plots tell you.
graycols specifies the colors of the bars to mark the different density

treatments. gray(c(0.4,0.7,0.9)) produces a vector of three colors; rep(gray(c
(0.4,0.7,0.9)),each=2) repeats each color twice (for the big and small treatments
within each density treatment; and rep(rep(gray(c(0.4,0.7,0.9)), each=2),2)
repeats the whole sequence twice (for the no-predator and predator treatments).

2.6.3.2 FUNCTIONAL RESPONSE VALUES

First attach the functional response data:

> attach(ReedfrogFuncresp)

A simple x-y plot, with an extended x axis and some axis labels:

> plot(Initial, Killed, xlim = c(0, 100), ylab = "Number
+ killed", xlab = "Initial density")

Adding the lowess fit (lines is the general command for adding lines to a plot:
points is handy too):

> lines(lowess(Initial, Killed))

Calculate mean values and corresponding initial densities, add to the plot with
a different line type:

> meanvals = tapply(Killed, Initial, mean)
> densvals = unique(Initial)
> lines(densvals, meanvals, lty = 3)

Fit a spline to the data using the smooth.spline command:

> lms = smooth.spline(Initial, Killed, df = 5)

“Bolker” — 1/9/2008 — 15:39 — page 68

−1
0
1

68 • C H A P T E R 2

To add the spline curve to the plot, I have to use predict to calculate the predicted
values for a range of initial densities, then add the results to the plot:

> ps = predict(lms, x = 0:100)
> lines(ps, lty = 2)

Equivalently, I could use the lm function with ns (natural spline), which is a bit
more complicated in this case but has more general uses:

> library(splines)
> lm1 = lm(Killed ˜ ns(Initial, df = 5),
+ data = ReedfrogSizepred)
> p1 = predict(lm1, newdata = data.frame(Initial = 1:100))
> lines(p1, lty = 2)

Finally, I could do linear or quadratic regression (I need to use I(Initialˆ2) to
tell R I really want to fit the square of the initial density); adding the lines to the plot
would follow the procedure above.

> lm2 = lm(Killed ˜ Initial, data = ReedfrogSizepred)
> lmq = lm(Killed ˜ Initial + I(Initialˆ2),
+ data = ReedfrogSizepred)

Clean up:

> detach(ReedfrogFuncresp)

The (tadpole size) vs. (number killed) plot follows similar lines, although I did
use sizeplot because there were overlapping points.

2.6.4 Damselfish data

2.6.4.1 SURVIVORS AS A FUNCTION OF DENSITY

Load and attach data:

> data(DamselRecruitment)
> data(DamselRecruitment_sum)
> attach(DamselRecruitment)
> attach(DamselRecruitment_sum)

Plot surviving vs. initial density; use plotCI to add the summary data by target
density; and add a lowess-smoothed curve to the plot:

> plot(init.dens, surv.dens, log = "x")
> plotCI(settler.den, surv.den, SE, add = TRUE, pch = 16,
+ col = "darkgray", gap = 0)
> lines(lowess(init.dens, surv.dens))

Clean up:

> detach(DamselRecruitment)
> detach(DamselRecruitment_sum)

“Bolker” — 1/9/2008 — 15:39 — page 69

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 69

2.6.4.2 DISTRIBUTION OF SETTLEMENT DENSITY

Plot the histogram (normally one would specify freq=FALSE to plot probabil-
ities rather than counts, but the uneven breaks argument makes this happen
automatically).

> attach(DamselSettlement)
> hist(density[density < 200], breaks = c(0, seq(1,
+ 201, by = 4)), col = "gray", xlab = "",
+ ylab = "Prob. density")
> lines(density(density[density < 200], from = 0))

The last command is potentially confusing because density is both a data vector
(settlement density) and a built-in R command (kernel density estimator), but R can
tell the difference.

Some alternatives to try:

> hist(log(1 + density))
> hist(density[density > 0], breaks = 50)

(you can use breaks either to specify particular breakpoints or to give the total
number of bins to use).

If you really want to lump all the large values together:

> h1 = hist(density, breaks = c(0, seq(1, 201, by = 4),
+ 500), plot = FALSE)
> b = barplot(h1$counts, space = 0)
> axis(side = 1, at = b, labels = h1$mids)

These commands (1) use hist to calculate the number of counts in each bin without
plotting anything; (2) use barplot to plot the values (ignoring the uneven width of
the bins!), with space=0 to squeeze them together; and (3) add a custom x axis.

Box-and-whisker plots:

> bwplot(log10(1 + density) ˜ pulse | site,
+ data = DamselSettlement, horizontal = FALSE)

Other variations to try:

> densityplot(˜density, groups = site,
+ data = DamselSettlement, xlim = c(0, 100))
> bwplot(density ˜ site, horizontal = FALSE,
+ data = DamselSettlement)
> bwplot(density ˜ site | pulse, horizontal = FALSE,
+ data = DamselSettlement)
> bwplot(log10(1 + density) ˜ site | pulse,
+ data = DamselSettlement,
+ panel = panel.violin, horizontal = FALSE)
> boxplot(density ˜ site * pulse)

“Bolker” — 1/9/2008 — 15:39 — page 70

−1
0
1

70 • C H A P T E R 2

Scatterplot matrices: first reshape the data.

> library(reshape)
> x2 = melt(DamselSettlement, measure.var = "density")
> x3 = cast(x2, pulse + obs ˜ ...)

Scatterplot matrix of columns 3 to 5 (sites Cdina, Hin, and Hout)—using base
graphics:

> pairs(log10(1 + x3[, 3:5]))

Using lattice graphics:

> splom(log10(1 + x3[, 3:5]), groups = x3$pulse,
+ pch = as.character(1:6), col = 1)

> detach(DamselSettlement)

2.6.5 Goby Data

Plotting mean survival by density subdivided by quality category:

> attach(gobydat)
> xyplot(jitter(meansurv, factor = 2) ˜ jitter(density, 2)
+ | qual.cat, xlab = "Density", ylab = "Mean
+ survival time")

The default amount of jittering is too small, so factor=2 doubles it; see ?jitter for
details.

2.6.5.1 LATTICE PLOTS WITH SUPERIMPOSED LINES AND CURVES

To add “extras” like extra points, linear regression lines, or loess fits to lattice
graphics, you have to write a new panel function, combining a a default lattice panel
function (usually called panel.xxx, e.g., panel.xyplot, panel.densityplot) with
components from ?panel.functions. For example, here is a panel function that
plots an x-y plot and adds a linear regression line:

> panel1 = function(x, y) {
+ panel.xyplot(x, y)
+ panel.lmline(x, y)
+ }

Then call the original lattice function with the new panel function:

> xyplot(jitter(meansurv, factor = 2) ˜ jitter(density, 2)
+ | qual.cat, xlab = "Density", ylab = "Mean
+ survival time", panel = panel1)
> detach(gobydat)

“Bolker” — 1/9/2008 — 15:39 — page 71

−1
0
1

E X P L O R A T O R Y D A T A A N A L Y S I S • 71

2.6.5.2 PLOTTING SURVIVAL CURVES

First set up categories for different combinations of quality and density by using
interaction, and count the number of observations in each combination.

> intcat = interaction(qual.cat, dens.cat)
> cattab = table(intcat)

Tabulate the number disappearing at each time in each category:

> survtab = table(meansurv, intcat)

Reverse order and calculate the cumulative sum by column (margin 2):

> survtab = survtab[nrow(survtab):1,]
> csurvtab = apply(survtab, 2, cumsum)

Divide each column (survival curve per category) by the total number for that
category:

> cnsurvtab = sweep(csurvtab, 2, cattab, "/")

Calculate the fraction disappearing at each time:

> fracmort = survtab/csurvtab

Extract the time coordinate:

> days = as.numeric(rownames(csurvtab))

Plot survival curves by category:

> matplot(days, cnsurvtab, type = "s", xlab = "Time (days)",
+ ylab = "Proportion of cohort surviving", log = "y")

“Bolker” — 1/9/2008 — 15:39 — page 72

−1
0
1

3 Deterministic Functions for
Ecological Modeling

This chapter first covers the mathematical tools and R functions that you need in
order to figure out the shape and properties of a mathematical function from its
formula. It then presents a broad range of frequently used functions and explains
their general properties and ecological uses.

3.1 Introduction

You’ve now learned how to start exploring the patterns in your data. The methods
introduced in Chapter 2 provide only qualitative descriptions of patterns: when you
first explore your data, you don’t want to commit yourself to any particular descrip-
tion of those patterns. To tie the patterns to ecological theory, however, we often
want to use particular mathematical functions to describe the deterministic patterns
in the data. Sometimes phenomenological descriptions, intended to describe the pat-
tern as simply and accurately as possible, are sufficient. Whenever possible, however,
it’s better to use mechanistic descriptions with meaningful parameters, derived from
a theoretical model that you or someone else has invented to describe the underlying
processes driving the pattern. (Remember from Chapter 1 that the same function can
be either phenomenological or mechanistic depending on context.) In any case, you
need to know something about a wide range of possible functions, and need even
more to learn (or remember) how to discover the properties of a new mathematical
function. This chapter first presents a variety of analytical and computational meth-
ods for finding out about functions, and then goes through a “bestiary” of useful
functions for ecological modeling. The chapter uses differential calculus heavily. If
you’re rusty, it would be a good idea to look at the appendix for some reminders.

For example, look again at the data introduced in Chapter 2 on predation rate
of tadpoles as a function of tadpole size (Figure 3.1). We need to know what kinds
of functions might be suitable for describing these data. The data are humped in the
middle and slightly skewed to the right, probably reflecting the balance between small
tadpoles’ ability to hide from (or be ignored by) predators and large tadpoles’ ability
to escape them or be too big to swallow. What functions could fit this pattern? What

“Bolker” — 1/9/2008 — 15:39 — page 73

−1
0
1

D E T E R M I N I S T I C F U N C T I O N S • 73

0 10 20 30 40

0

1

2

3

4

5

Tadpole Size
(total body length in mm)

N
um

be
r

ki
lle

d

Ricker

modified logistic

Figure 3.1 Tadpole predation as a function of size, with some possible functions fitted to the
data.

do their parameters mean in terms of the shapes of the curves? In terms of ecology?
How do we “eyeball” the data to obtain approximate parameter values, which we
will need as a starting point for more precise estimation and as a check on our results?

The Ricker function, y = axe−bx, is a standard choice for hump-shaped ecologi-
cal patterns that are skewed to the right, but Figure 3.1 shows that it doesn’t fit well.
Two other choices, the power-Ricker (Persson et al., 1998) and a modified logis-
tic equation (Vonesh and Bolker, 2005), fit pretty well; later in the chapter we will
explore some strategies for modifying standard functions to make them more flexible.

3.2 Finding Out about Functions Numerically

3.2.1 Calculating and Plotting Curves

You can use R to experiment numerically with different functions. It’s better to
experiment numerically after you’ve got some idea of the mathematical and ecological
meanings of the parameters; otherwise you may end up using the computer as an
expensive guessing tool. Having some idea what the parameters of a function mean
will allow you to eyeball your data to get a rough idea of the appropriate values, and
to tweak the parameters intelligently when necessary. Nevertheless, I’ll show you first
some of the ways that you can use R to compute and draw pictures of functions so
that you can sharpen your intuition as we go along.

“Bolker” — 1/9/2008 — 15:39 — page 74

−1
0
1

74 • C H A P T E R 3

0.0

0 1 2 3 4 5 6 7

0.5

1.0

1.5

2.0
y = 2e−x 2

y = xe−x 2

y = 2xe−x 2

y = 2e−x

Figure 3.2 Negative exponential (y = ae−bx) and Ricker (y = axe−bx) functions: curve.

As examples, I’ll use the (negative) exponential function, ae−bx (R uses exp(x)
for the exponential function ex) and the Ricker function, axe−bx. Both are very
common in ecological modeling.

As a first step, you can simply use R as a calculator to plug values into functions,
e.g., 2.3*exp(1.7*2.4). Since most functions in R operate on vectors (or “are vec-
torized,” ugly as the expression is), you can calculate values for a range of inputs or
parameters with a single command.

Next simplest, you can use the curve function to have R compute and plot values
for a range of inputs: use add=TRUE to add curves to an existing plot (Figure 3.2).
(Remember the differences between mathematical and R notation: the exponential
is ae−bx or a exp (− bx) in math notation, but it’s a*exp(-b*x) in R. Using math
notation in a computer context will give you an error. Using computer notation in a
math context is just ugly.)

If you want to keep the values of the function and do other things with them,
you may want to define your own vector of x values (with seq: call it something like
xvec) and then use R to compute the values (e.g., xvec = seq(0,7,length=100);
y = a ∗ exp (− b ∗ ×xvec)).

If the function you want to compute does not work on a whole vector at once,
then you can’t use either of the above recipes. The easiest shortcut in this case, and a
worthwhile thing to do for other reasons, is to write your own small R function that
computes the value of the function for a given input value, then use sapply to run the
function on all of the values in your x vector. When you write such an R function, you
would typically make the input value (x) be the first argument, followed by all of the

“Bolker” — 1/9/2008 — 15:39 — page 75

−1
0
1

D E T E R M I N I S T I C F U N C T I O N S • 75

other parameters. Often typing and assigning default values to the other parameters
saves time; in the following example, both a and b have default values of 1.

> ricker = function(x, a = 1, b = 1) {
+ a * x * exp(-b * x)
+ }
> yvals = sapply(xvec, ricker)

(In this case, since ricker uses vectorized operations only, ricker(xvec) would
work just as well.)∗

3.2.2 Plotting Surfaces

Functions of two (or more) variables are a bit more complicated to handle: R’s range
of 3D graphics is more limited, it is harder to vectorize operations over two different
parameters, and you may want to compute the value of the function so many times
that you have to worry about computational efficiency (this is our first hint of the
so-called curse of dimensionality, which will come back to haunt us later).

Base R doesn’t have exact multidimensional analogues of curve and sapply,
but the emdbook package supplies some: curve3d and apply2d. The apply2d func-
tion takes an x vector and a y vector and computes the value of a function for all
of the combinations, while curve3d does the same thing for surfaces that curve
does for curves: it computes the function value for a range of values and plots it†.
The basic function for plotting surfaces in R is persp. You can also use image or
contour to plot 2D graphics, or wireframe [lattice package], or persp3d [rgl
package] as alternatives to persp. With persp and wireframe, you may want to
play with the viewing point for the 3D perspective (modify theta and phi for persp
and screen for wireframe); the rgl package lets you use the mouse to move the
viewpoint.

For example, Vonesh and Bolker (2005) combined size- and density-dependent
tadpole mortality risk by using a modified logistic function of size as in Figure 3.1
to compute an attack rate α(s), then assuming that per capita mortality risk declines
with density N as α(s)/(1 + α(s)HN), where H is the handling time (i.e., a Holling
type II functional response). Suppose we already have a function attackrate that
computes the attack rate as a function of size. Then our mortality risk function
would be

> mortrisk = function(N, size, H = 0.84) {
+ a <- attackrate(size)
+ a/(1 + a * N * H)
+ }

The H=0.84 in the function definition sets the default value of the handling time
parameter.

∗ The definition of “input values” and “parameters” is flexible. You can also compute the values of the
function for a fixed value of x and a range of one of the parameters, e.g., ricker(1,a=c(1.1,2.5,3.7)).

† For simple functions you can use the built-in outer function, but outer requires vectorized
functions: apply2d works around this limitation.

“Bolker” — 1/9/2008 — 15:39 — page 76

−1
0
1

76 • C H A P T E R 3

Density

10
15

20
25

30
35

40 Size
0

5
10

15
20

25 30

0.02

0.04

0.06

0.08

M
or

ta
lit

y
ris

k

Figure 3.3 Perspective plot for the mortality risk function used in Vonesh and Bolker (2005):
curve3d(mortrisk(N=x, size=y),to=c(40,30),theta=50).

3.3 Finding Out about Functions Analytically

Exploring functions numerically is quick and easy, but limited. To fully understand
a function’s properties, you must explore it analytically—i.e., you have to analyze
its equation mathematically. To do this and then translate your mathematical intu-
ition into ecological intuition, you must remember some algebra and calculus. In
particular, this section will explain how to take limits at the ends of the range of
the function; understand the behavior in the middle of the range; find critical points;
understand what the parameters mean and how they affect the shape of the curve;
and approximate the function near an arbitrary point (Taylor expansion). These tools
will probably tell you everything you need to know about a function.

3.3.1 Taking Limits: What Happens at Either End?

FUNCTION VALUES

You can take the limit of a function as x gets large (x → ∞) or small (x → 0, or
x → −∞ for a function that makes sense for negative x values). The basic principle

“Bolker” — 1/9/2008 — 15:39 — page 77

−1
0
1

D E T E R M I N I S T I C F U N C T I O N S • 77

is to throw out lower-order terms. As x grows, it will eventually grow much larger
than the largest constant term in the equation. Terms with larger powers of x will
dwarf smaller powers, and exponentials will dwarf any power. If x is very small,
then you apply the same logic in reverse; constants are bigger than (positive) powers
of x, and negative powers (x−1 = 1/x, x−2 = 1/x2, etc.) are bigger than any con-
stants. (Negative exponentials go to 1 as x approaches zero and 0 as x approaches
∞.) Exponentials are stronger than powers: x−nex eventually gets big and xne−x

eventually gets small as x increases, no matter how big n is.
Our examples of the exponential and the Ricker function are almost too simple:

we already know that the negative exponential function approaches 1 (or a, if we
are thinking about the form ae−bx) as x approaches 0 and 0 as x becomes large.
The Ricker is slightly more interesting: for x = 0 we can calculate the value of the
function directly (to get a · 0 · e−b·0 = 0 · 1 = 0) or argue qualitatively that the e−bx

part approaches 1 and the ax part approaches zero (and hence the whole function
approaches zero). For large x we have a concrete example of the xne−x example given
above (with n = 1) and use our knowledge that exponentials always win to say that
the e−bx part should dominate the ax part to bring the function down to zero in the
limit. (When you are doing this kind of qualitative reasoning you can almost always
ignore the constants in the equation.)

As another example, consider the Michaelis-Menten function (f (x) = ax/

(b + x)). We see that as x gets large we can say that x 	 b, no matter what b is
(means “is much greater than”), so b + x ≈ x, so

ax
b + x

≈ ax
x

= a : (3.3.1)

the curve reaches a constant value of a. As x gets small, b 	 x, so

ax
b + x

≈ ax
b

: (3.3.2)

the curve approaches a straight line through the origin, with slope a/b. As x goes
to zero you can see that the value of the function is exactly zero (a × 0)/(b + 0) =
0/b = 0).

For more difficult functions that contain a fraction whose numerator and denom-
inator both approach zero or infinity in some limit (and thus make it hard to find
the limiting value), you can try L’Hôpital’s Rule, which says that the limit of the
function equals the limit of the ratio of the derivatives of the numerator and the
denominator:

lim
a(x)
b(x)

= lim
a′(x)
b′(x)

. (3.3.3)

(a′(x) and da
dx are alternative notations for the derivative of a with respect to x.)

DERIVATIVES

As well as knowing the limits of the function, we also want to know how the function
increases or decreases toward them: the limiting slope. Does the function shoot up or

“Bolker” — 1/9/2008 — 15:39 — page 78

−1
0
1

78 • C H A P T E R 3

down (a derivative that “blows up” to positive or negative infinity), change linearly
(a derivative that reaches a positive or negative constant limiting value), or flatten
out (a derivative with limit 0)? To figure this out, we need to take the derivative with
respect to x and then find its limit at the edges of the range.

The derivative of the exponential function f (x) = ae−bx is easy (if it isn’t, review
the appendix): f ′(x) = −abe−bx. When x = 0 this becomes ab, and when x gets large
the e−bx part goes to zero, so the answer is zero. Thus (as you may already have
known), the slope of the (negative) exponential is negative at the origin (x = 0) and
the curve flattens out as x gets large.

The derivative of the Ricker is only a little harder (use the product rule):

d(axe−bx)
dx

= (a · e−bx + ax · −be−bx) = (a − abx) · e−bx = a(1 − bx)e−bx. (3.3.4)

At zero, this is easy to compute: a(1 − b · 0)e−b·0 = a · 1 · 1 = a. As x goes to infinity,
the (1 − bx) term becomes negative (and large in magnitude) and the e−bx term goes
toward zero, and we again use the fact that exponentials dominate linear and poly-
nomial functions to see that the curve flattens out, rather than becoming more and
more negative and crashing toward negative infinity. (In fact, we already knew that
the curve approaches zero, so we could also have deduced that the curve must flatten
out and the derivative must approach zero.)

In the case of the Michaelis-Menten function it’s easy to figure out the slope
at zero (because the curve becomes approximately (a/b)x for small x), but in some
cases you might have to take the derivative first and then set x to 0. The derivative
of ax/(b + x) is (using the quotient rule)

(b + x) · a − ax · 1
(b + x)2

= ab + ax − ax
(b + x)2

= ab
(b + x)2

(3.3.5)

which (as promised) is approximately a/b when x ≈ 0 (following the rule that (b +
x) ≈ b for x ≈ 0). Using the quotient rule often gives you a complicated denominator,
but when you are only looking for points where the derivative is zero, you can
calculate when the numerator is zero and ignore the denominator (assuming it is not
zero at the same points where the numerator is).

3.3.2 What Happens in the Middle? Scale Parameters and Half-Maxima

It’s also useful to know what happens in the middle of a function’s range.
For unbounded functions (functions that increase to ∞ or decrease to −∞ at

the ends of their range), such as the exponential, we may not be able to find special
points in the middle of the range, although it’s worth trying out special cases such
as x = 1 (or x = 0 for functions that range over negative and positive values) just to
see if they have simple and interpretable answers.

In the exponential function ae−bx, b is a scale parameter. In general, if a parame-
ter appears in a function in the form of bx or x/c, its effect is to scale the curve along
the x axis—stretching it or shrinking it, but keeping the qualitative shape the same.
If the scale parameter is in the form bx, then b has inverse-x units (if x is a time mea-
sured in hours, then b is a rate per hour with units hour−1): such a parameter might

“Bolker” — 1/9/2008 — 15:39 — page 79

−1
0
1

D E T E R M I N I S T I C F U N C T I O N S • 79

a e3

a e2

a 8

a 4

a e

a 2

0
log (2)

b
1
b 2

log(2)
b

2
b

3
log(2)

b
3
b

steps

f (x) = ae −bx

2bb 3b 4b 5b

a 2

2a 3
3a 4
4a 5
5a 6

aa

f (x) =
ax

b + x

a b

Figure 3.4 (Left) Half-lives and e-folding times for a negative exponential function. (Right)
Half-maximum and characteristic scales for a Michaelis-Menten function.

sometimes be called a rate parameter instead of a scale parameter. If the expression is
in the form x/c, then c has the same units as x, and we can call c a characteristic scale.
Mathematicians often choose the form bx because it looks cleaner, while ecologists
may prefer x/c because it’s easier to interpret the parameter when it has the same
units as x. Mathematically, the two forms are equivalent, with b = 1/c; this is an
example of changing the parameterization of a function (see p. 9).

For the negative exponential function ae−bx, the characteristic scale 1/b is also
sometimes called the e-folding time (or e-folding distance if x measures distance
rather than time). The value of the function drops from a at x = 0 to ae−1 = a/e
when x = 1/b, and drops a further factor of e = 2.718 . . . ≈ 3 every time x increases
by 1/b (Figure 3.4). Exponential-based functions can also be described in terms of
the half-life (for decreasing functions) or doubling time (for increasing functions),
which is T1/2 = ln 2/b. When x = T1/2, y = a/2, and every time x increases by T1/2
the function drops by another factor of 2.

For the Ricker function, we already know that the function is zero at the origin
and approaches zero as x gets large. We also know that the derivative is positive
at zero and negative (but the curve is flattening out, so the derivative is increasing
toward zero) as x gets large. We can deduce∗ that the derivative must be zero and the
function must reach a peak somewhere in the middle; we will calculate the location
and height of this peak in the next section.

For functions that reach an asymptote, like the Michaelis-Menten, it’s useful to
know when the function gets “halfway up”—the half-maximum is a point on the x
axis, not the y axis. We figure this out by finding the asymptote (= a for this parame-
terization of the Michaelis-Menten function) and solving f (x1/2) = asymptote/2 for
x1/2. In this case

ax1/2

b + x1/2
= a

2

∗ Because the Ricker function has continuous derivatives.

“Bolker” — 1/9/2008 — 15:39 — page 80

−1
0
1

80 • C H A P T E R 3

ax1/2 = a
2

· (b + x1/2)

(
a − a

2

)
x1/2 = ab

2

x1/2 = 2
a

· ab
2

= b.

The half-maximum b is the characteristic scale for the Michaelis-Menten; we
can see this by dividing the numerator and denominator by b to get f (x) = a ·
(x/b)/(1 + x/b). As x increases by half-maximum units (from x1/2 to 2x1/2 to 3x1/2),
the function first reaches 1/2 its asymptote, then 2/3 its asymptote, then 3/4 . . .
(Figure 3.4).

We can calculate the half-maximum for any function that starts from zero and
reaches an asymptote, although it may not be a simple expression.

3.3.3 Critical Points and Inflection Points

We may also be interested in the critical points—maxima and minima—of a func-
tion. To find the critical points of f , remember from calculus that they occur where
f ′(x) = 0; calculate the derivative, solve it for x, and plug that value for x into f (x)
to determine the value (peak height or trough depth) at that point.∗ The exponential
function is monotonic: it is always either increasing or decreasing depending on the
sign of b (its slope is always either positive or negative for all values of x)—so it never
has any critical points.

The Michaelis-Menten curve is also monotonic: we figured out above that its
derivative is ab/(b + x)2. Since the denominator is squared, the derivative is always
positive. (Strictly speaking, this is true only if a > 0. Ecologists are usually slop-
pier than mathematicians, who are careful to point out all the assumptions behind
a formula (like a > 0, b > 0, x ≥ 0). I’m acting like an ecologist rather than a
mathematician, assuming parameters and x values are positive unless otherwise
stated.) While remaining positive, the derivative decreases to zero as x → ∞ (because
a/(1 + bx)2 ≈ a/(bx)2 ∝ 1/x2); such a function is called saturating.

We already noted that the Ricker function, axe−bx, has a peak in the middle
somewhere: where is it? Using the product rule:

d(axe−bx)
dx

= 0

ae−bx + ax(− be−bx) = 0

(1 − bx)ae−bx = 0.

The left-hand side can be zero only if 1 − bx = 0, a = 0 (a case we’re ignoring as
ecologists) or e−bx = 0. The exponential part e−bx is never equal to 0, so we simply
solve (1 − bx) = 0 to get x = 1/b. Plugging this value of x back into the equation

∗ The derivative is also zero at saddle points, where the function temporarily flattens on its way up
or down.

“Bolker” — 1/9/2008 — 15:39 — page 81

−1
0
1

D E T E R M I N I S T I C F U N C T I O N S • 81

tells us that the height of the peak is (a/b)e−1. (You may have noticed that the peak
location, 1/b, is equal to the characteristic scale for the Ricker equation.)

3.3.4 Understanding and Changing Parameters

Once you know something about a function (its value at zero or other special
points, value at ∞, half-maximum, slope at certain points, and the relationship
of these values to the parameters), you can get a rough idea of the meanings of the
parameters. You will find, alas, that scientists rarely stick to one parameterization.
Reparameterization seems like an awful nuisance—why can’t everyone just pick one
set of parameters and stick to it?—but, even setting aside historical accidents that
make different fields adopt different parameterizations, different parameterizations
are useful in different contexts. Different parameterizations have different mechanis-
tic interpretations. For example, we’ll see shortly that the Michaelis-Menten function
can be interpreted (among other possibilities) in terms of enzyme reaction rates and
half-saturation constants or in terms of predator attack rates and handling times.
Some parameterizations make it easier to estimate parameters by eye. For example,
half-lives are easier to see than e-folding times, and peak heights are easier to see than
slopes. Finally, some sets of parameters are strongly correlated, making them harder
to estimate from data. For example, if you write the equation of a line in the form
y = ax + b, the estimates of the slope a and the intercept b are negatively correlated,
but if you instead say y = a(x − x̄) + ȳ, estimating the mean value of y rather than
the intercept, the estimates are uncorrelated. You just have to brush up your algebra
and learn to switch among parameterizations.

We know the following things about the Michaelis-Menten function f (x) =
ax/(b + x): the value at zero f (0) = 0; the asymptote f (∞) = a; the initial slope
f ′(0) = a/b; and the half-maximum (the characteristic scale) is b.

You can use these characteristics to crudely estimate the parameters from the
data. Find the asymptote and the x value at which y reaches half of its maximum
value, and you have a and b. (You can approximate these values by eye, or use a
more objective procedure such as taking the mean of the last 10% of the data to find
the asymptote.) Or you can estimate the asymptote and the initial slope (�y/�x),
perhaps by linear regression on the first 20% of the data, and then use the algebra
b = a/(a/b) = asymptote/(initial slope) to find b.

Equally important, you can use this knowledge of the curve to translate among
algebraic, geometric, and mechanistic meanings. When we use the Michaelis-Menten
in community ecology as the Holling type II functional response, its formula is P(N) =
αN/(1 + αHN), where P is the predation rate, N is the density of prey, α is the
attack rate, and H is the handling time. In this context, the initial slope is α and
the asymptote is 1/H. Ecologically, this makes sense because at low densities the
predators will consume prey at a rate proportional to the attack rate (P(N) ≈ αN)
while at high densities the predation rate is entirely limited by handling time (P(N) ≈
1/H). It makes sense that the high-density predation rate is the inverse of the handling
time: if a predator needs half an hour to handle (capture, swallow, digest, etc.) a
prey, and needs essentially no time to locate a new one (since the prey density is very
high), then the predation rate is 1/(0.5 hour) = 2/hour. The half-maximum in this
parameterization is 1/(αH).

“Bolker” — 1/9/2008 — 15:39 — page 82

−1
0
1

82 • C H A P T E R 3

On the other hand, biochemists usually parameterize the function more as we
did above, with a maximum rate vmax and a half-maximum Km: as a function of
concentration C, f (C) = vmaxC/(Km + C).

As another example, recall the following facts about the Ricker function f (x) =
axe−bx: the value at zero f (0) = 0; the initial slope f ′(0) = a; the horizontal location
of the peak is at x = 1/b; and the peak height is a/(be). The form we wrote above
is algebraically simplest, but parameterizing the curve in terms of its peak location
(let’s say p = 1/b) might be more convenient: y = axe−x/p. Fisheries biologists often
use another parameterization, R = Se−a3−bS, where a3 = log a (Quinn and Deriso,
1999).∗

3.3.5 Transformations

Beyond changing the parameterization, you can also change the scales of the x
and y axes, or in other words transform the data. For example, in the Ricker
example just given (R = Se−a3−bS), if we plot − log (R/S) against S, we get the line
− log (R/S) = a3 + bS, which makes it easy to see that a3 is the intercept and b is the
slope.

Log transformations of x or y or both are common because they make expo-
nential relationships into straight lines. If y = ae−bx and we log-transform y, we get
log y = log a − bx (a semi-log plot). If y = axb and we log-transform both x and y,
we get log y = log a + b log x (a log-log plot).

Another example: if we have a Michaelis-Menten curve and plot x/y against y,
the relationship is

x/y = x
ax/(b + x)

= b + x
a

= 1
a

· x + b
a

,

which represents a straight line with slope 1/a and intercept b/a.
All of these transformations are called linearizing transformations. Researchers

often used them in the past to fit straight lines to data when computers were
slower. Linearizing is not recommended when another alternative such as non-
linear regression is available, but transformations are still useful. Linearized data
are easier to eyeball, so you can get rough estimates of slopes and intercepts by
eye, and deviations are easier to see from linearity than from (e.g.) an expo-
nential curve. Log-transforming data on geometric growth of a population lets
you look at proportional changes in the population size (a doubling of the
population is always represented by the same distance on the y axis). Square-
root-transforming data on variances lets you look at standard deviations, which
are measured in the same units as the original data and may thus be easier to
understand.

The logit or log-odds function, logit(x) = log (x/(1 − x)) (qlogis in R) is another
common linearizing transformation. If x is a probability, then x/(1 − x) is the ratio
of the probability of occurrence (x) to the probability of nonoccurrence (1 − x),
which is called the odds (e.g., a probability of 0.1 or 10% corresponds to odds of

∗ Throughout this book I use log (x) to mean the natural logarithm of x (also called ln(x) or loge(x).
If you need a refresher on logarithms, see the appendix.

“Bolker” — 1/9/2008 — 15:39 — page 83

−1
0
1

D E T E R M I N I S T I C F U N C T I O N S • 83

0.1/0.9 = 1/9). The logit transformation makes a logistic curve, y = ea+bx/(1 +
ea+bx), into a straight line:

y = ea+bx/(1 + ea+bx)

(1 + ea+bx)y = ea+bx

y = ea+bx(1 − y)

y
1 − y

= ea+bx

log

(
y

1 − y

)
= a + bx

(3.3.6)

3.3.6 Shifting and Scaling

Another way to change or extend functions is to shift or scale them. For example,
let’s see how we can manipulate the simplest form of the Michaelis-Menten function
(Figure 3.5). The function y = x/(1 + x) starts at 0, increases to 1 as x gets large, and
has a half-maximum at x = 1.

• We can stretch, or scale, the x axis by dividing x by a constant—this means you
have to go farther on the x axis to get the same increase in y. If we substitute
x/b for x everywhere in the function, we get y = (x/b)/(1 + x/b). Multiplying
the numerator and denominator by b shows us that y = x/(b + x), so b is just
the half-maximum, which we identified before as the characteristic scale. In
general a parameter that we multiply or divide x by is called a scale parameter
because it changes the horizontal scale of the function.

• We can stretch or scale the y axis by multiplying the whole right-hand side by
a constant. If we use a, we have y = ax/(b + x), which as we saw above moves
the asymptote from 1 to a.

• We can shift the whole curve to the right or the left by subtracting or
adding a constant location parameter from x throughout; subtracting a pos-
itive constant from x shifts the curve to the right. Thus, y = a(x − c)/(b +
(x − c)) hits y = 0 at c rather than zero. (You may want in this case to
specify that y = 0 if y < c—otherwise the function may behave badly [try
curve(x/(x-1),from=0,to=3) to see what might happen].)

• We can shift the whole curve up or down by adding or subtracting a constant
to the right-hand side: y = a(x − c)/(b + (x − c)) + d would start from y = d,
rather than zero, when x = c (the asymptote also moves up to a + d).

These recipes can be used with any function. For example, Emlen (1996) wanted to
describe a relationship between the prothorax and the horn length of horned beetles
where the smallest beetles in his sample had a constant, but nonzero, horn length.
He added a constant to a generalized logistic function to shift the curve up from its
usual zero baseline.

“Bolker” — 1/9/2008 — 15:39 — page 84

−1
0
1

84 • C H A P T E R 3

f (x) =
a(x−c)

(b +(x− c)) + d

d

d +
a
2

d+a

c +bc

Figure 3.5 Scaled, shifted Michaelis-Menten function y = a(x − c)/((x − c) + b) + d.

3.3.7 Taylor Series Approximation

Taylor approximation or the Taylor series is the single most useful, and used, appli-
cation of calculus for an ecologist. Two particularly useful applications of Taylor
approximation are understanding the shapes of goodness-of-fit surfaces (Chapter 6)
and the delta method for estimating errors in estimation (Chapter 7).

The Taylor series allows us to approximate a complicated function near a point
we care about, using a simple function—a polynomial with a few terms, say a
quadratic curve. All we have to do is figure out the slope (first derivative) and curva-
ture (second derivative) at that point. Then we can construct a parabola that matches
the complicated curve in the neighborhood of the point we are interested in. (In real-
ity the Taylor series goes on forever—we can approximate the curve more precisely
with a cubic, then a fourth-order polynomial, and so forth—but in practice ecologists
never go beyond a quadratic expansion.)

Mathematically, the Taylor series says that, near a given point x0,

f (x) ≈ f (x0) + df
dx

∣∣∣∣
x0

· (x − x0) + d2f
dx2

∣∣∣∣∣
x0

· (x − x0)2

2
+ · · ·

+ dnf
dxn

∣∣∣∣
x0

· (x − x0)n

n! + · · · (3.3.7)

“Bolker” — 1/9/2008 — 15:39 — page 85

−1
0
1

D E T E R M I N I S T I C F U N C T I O N S • 85

x

0 1 2

0

5

f(x)

constant : f(0)

quadratic : f(0) + f (0)x + (f (0)/2)x ′ ″ 2

 ′ ″ 2 ′″ 3

linear : f(0) + f (0)x′

cubic: f(0) + f (0)x + (f (0)/2)x + (f (0)/6)x

Figure 3.6 Taylor series expansion of a fourth-order polynomial.

(the notation df
dx

∣∣∣
x0

means “the derivative evaluated at the point x = x0”). Taylor

approximation just means dropping terms past the second or third.
Figure 3.6 shows a function and the constant, linear, quadratic, and cubic

approximations (Taylor expansion using one, two, or three terms). The linear
approximation is bad but the quadratic fit is good very near the center point, and the
cubic accounts for some of the asymmetry in the function. In this case one more term
would match the function exactly, since it is actually a fourth-degree polynomial.

THE EXPONENTIAL FUNCTION

The Taylor expansion of the exponential, erx, around x = 0 is 1 + rx + (rx)2/2 +
(rx)3/(2 · 3) Remembering this fact rather than working it out every time may
save you time in the long run—for example, to understand how the Ricker function
works for small x we can substitute (1 − bx) for e−bx (dropping all but the first two

“Bolker” — 1/9/2008 — 15:39 — page 86

−1
0
1

86 • C H A P T E R 3

terms!) to get y ≈ ax − abx2. This tells us immediately that the function starts linear
but begins to curve downward right away.

THE LOGISTIC CURVE

Calculating Taylor approximations is often tedious (all those derivatives), but we
usually try to do it at some special point where a lot of the complexity goes away
(such as x = 0 for a logistic curve).

The general form of the logistic (p. 95) is ea+bx/(1 + ea+bx), but doing the alge-
bra will be simpler if we take the special case a = 0 and divide numerator and
denominator by ebx to get f (x) = 1/(1 + e−bx). Taking the Taylor expansion around
x = 0:

• f (0) = 1/2.

• f ′(x) = be−bx(
1+e−bx

)2 (writing the formula as (1 + e−bx)−1 and using the power rule

and the chain rule twice) so f ′(0) = (b · 1)/((1 + 1)2) = b/4.∗
• Using the quotient rule and the chain rule:

f ′′(0) = (1 + e−bx)2(− b2e−bx) − (be−bx)(2(1 + e−bx)(− be−bx))

(1 + e−bx)4

∣∣∣∣∣
x=0

= (1 + 1)2(− b2) − (b)(2(1 + 1)(− b))
(1 + 1)4

= (− 4b2) + (4b2)
16

= 0. (3.3.8)

R will actually compute simple derivatives for you (using D; see p. 29), but it
won’t simplify them at all. If you just need to compute the numerical value of the
derivative for a particular b and x, it may be useful, but you’ll often miss general
answers by doing it this way (e.g., in the above case that f ′′(0) is zero for any value
of b).

Stopping to interpret the answer we got from all that tedious algebra: we find
out that the slope of a logistic function around its midpoint is b/4, and its curvature
(second derivative) is zero. This means that the midpoint is an inflection point (where
there is no curvature, or where the curve switches from being concave to convex),
as you might have known already. It also means that near the inflection point, the
logistic can be closely approximated by a straight line. (For y near zero, exponential
growth is a good approximation; for y near the asymptote, exponential approach to
the asymptote is a good approximation.)

∗ We calculate f ′(x) and evaluate it at x = 0. We don’t calculate the derivative of f (0), because f (0)
is a constant value (1/2 in this case) and its derivative is zero.

“Bolker” — 1/9/2008 — 15:39 — page 87

−1
0
1

D E T E R M I N I S T I C F U N C T I O N S • 87

3.4 Bestiary of Functions

The remainder of the chapter describes different families of functions that are useful
in ecological modeling; Table 3.1 gives an overview of their qualitative properties.
This section includes little R code, although the formulas should be easy to translate
into R. You should skim through this section on the first reading to get an idea of
what functions are available. If you begin to feel bogged down, you can skip ahead
and use the section for reference as needed.

3.4.1 Functions Based on Polynomials

3.4.1.1 POLYNOMIAL FUNCTIONS

A polynomial is a function of the form y =∑n
i=0 aixi.

Examples

• Linear: f (x) = a + bx, where a is the intercept (value when x = 0) and b is the
slope. (You know this, right?)

• Quadratic: f (x) = a + bx + cx2. The simplest nonlinear model.
• Cubics and higher-order polynomials: f (x) =∑n

i aixi. The order or degree of a
polynomial is the highest power that appears in it (so, e.g., f (x) = x5 + 4x2 + 1
is fifth-order).

Advantages

Polynomials are easy to understand. They are easy to reduce to simpler functions
(nested functions) by setting some of the parameters to zero. High-order polynomials
can fit arbitrarily complex data.

Disadvantages

On the other hand, polynomials are often hard to justify mechanistically (can you
think of a reason an ecological relationship should be a cubic polynomial?). They
don’t level off as x goes to ±∞—they always go to −∞ or ∞ as x gets large. Extrap-
olating polynomials often leads to nonsensically large or negative values. High-order
polynomials can be unstable: following Forsythe et al. (1977) you can show that
extrapolating a high-order polynomial from a fit to U.S. census data from 1900 to
2000 predicts a population crash to zero around 2015!

It is sometimes convenient to parameterize polynomials differently. For exam-
ple, we could reparameterize the quadratic function y = a1 + a2x + a3x2 as y = a + c
(x − b)2 (where a1 = a + cb2, a2 = −2cb, a3 = c). It’s now clear that the curve has its
minimum (if c > 0) at x = b (because c(x − b)2 is zero there and positive everywhere
else), that y = a at the minimum, and that c governs how fast the curve increases away
from its minimum. Polynomials can be particularly simple if some of their coefficients
are zero: for example, y = bx (a line through the origin, or direct proportionality)

“Bolker” — 1/9/2008 — 15:39 — page 88

−1
0
1

88 • C H A P T E R 3

TABLE 3.1
Qualitative Properties of Bestiary Functions

Function Range Left End Right End Middle

Polynomials
Line {−∞, ∞} y → ±∞, y → ±∞, monotonic

constant slope constant slope

Quadratic {−∞, ∞} y → ±∞, y → ±∞, single max/min
accelerating accelerating

Cubic {−∞, ∞} y → ±∞, y → ±∞, up to 2 max/min
accelerating accelerating

Piecewise polynomials
Threshold {−∞, ∞} flat flat breakpoint

Hockey stick {−∞, ∞} flat or linear flat or linear breakpoint

Piecewise linear {−∞, ∞} linear linear breakpoint

Rational
Hyperbolic {0, ∞} y → ∞ y → 0 decreasing

or finite

Michaelis-Menten {0, ∞} y = 0, linear asymptote saturating

Holling type III {0, ∞} y = 0, accelerating asymptote sigmoid

Holling type IV
(c < 0)

{0, ∞} y = 0, accelerating asymptote hump-shaped

Exponential-based
Negative exponential {0, ∞} y finite y → 0 decreasing

Monomolecular {0, ∞} y = 0, linear y → 0 saturating

Ricker {0, ∞} y = 0, linear y → 0 hump-shaped

logistic {0, ∞} y small,
accelerating

asymptote sigmoid

Power-based
Power law {0, ∞} y → 0 or → ∞ y → 0 or → ∞ monotonic

von Bertalanffy like logistic

Gompertz like logistic

Shepherd like Ricker

Hassell like Ricker

Nonrectangular
hyperbola

like Michaelis-Menten

“Bolker” — 1/9/2008 — 15:39 — page 89

−1
0
1

D E T E R M I N I S T I C F U N C T I O N S • 89

or y = cx2. Where a polynomial actually represents proportionality or area, rather
than being an arbitrary fit to data, you can often simplify in this way.

The advantages and disadvantages just listed all concern the mathematical and
phenomenological properties of polynomials. Sometimes linear and quadratic poly-
nomials do actually make sense in ecological settings. For example, a population or
resource that accumulates at a constant rate from outside the system will grow lin-
early with time. The rates of ecological or physiological processes (e.g., metabolic cost
or resource availability) that depend on an organism’s skin surface or mouth area
will be a quadratic function of linear measurements of its size (e.g., snout-to-vent
length or height).

3.4.1.2 PIECEWISE POLYNOMIAL FUNCTIONS

You can make polynomials (and other functions) more flexible by using them as com-
ponents of piecewise functions. In this case, different functions apply over different
ranges of the predictor (X) variable. (See p. 29 for information on using R’s ifelse
function to build piecewise functions.)

Examples

• The simplest piecewise function is a simple threshold model—y = a1 if x is less
than some threshold T, and y = a2 if x is greater. Hilborn and Mangel (1997)
use a threshold function in an example of the number of eggs a parasitoid
lays in a host as a function of how many she has left (her “egg complement”),
although the original researchers used a logistic function instead (Rosenheim
and Rosen, 1991).

• The hockey-stick function (Bacon and Watts, 1971, 1974) is a combination of
a constant and a linear piece, typically either flat and then increasing linearly or
linearly increasing and then suddenly hitting a plateau. Hockey-stick functions
have a long history in ecology, at least as far back as the definition of the Holling
type I functional response, which is supposed to represent foragers like filter
feeders that can continually increase their uptake rate until they suddenly hit
a maximum (Jeschke et al., 2004). Hockey-stick models have recently become
popular in fisheries modeling, for modeling stock-recruitment curves (Bar-
rowman and Myers, 2000), and in ecology, for detecting edges in landscapes
(Toms and Lesperance, 2003).∗ Under the name of self-excitable threshold
autoregressive (SETAR) models, such functions have been used to model den-
sity dependence in population dynamic models of lemmings (Framstad et al.,
1997), feral sheep (Grenfell et al., 1998), and moose (Post et al., 2002); in
another population dynamic context, Brannström and Sumpter (2005) call
them ramp functions.

• Threshold functions are flat (i.e., the slope is zero) on both sides of the break-
point, and hockey sticks are flat on one side. More general piecewise linear

∗ It is surely only a coincidence that so much significant work on hockey-stick functions has been
done by Canadians.

“Bolker” — 1/9/2008 — 15:39 — page 90

−1
0
1

90 • C H A P T E R 3

functions have nonzero slopes on both sides of the breakpoint s1:

y = a1 + b1x

for x < s1 and

y = (a1 + b1s1) + b2(x − s1)

for x > s1. (The extra complications in the formula for x > s1 ensure that the
function is continuous.)

• Cubic splines are a general-purpose tool for fitting curves to data. They are
piecewise cubic functions that join together smoothly at transition points called
knots. They are typically used as purely phenomenological curve-fitting tools,
when you want to fit a smooth curve to data but don’t particularly care about
interpreting its ecological meaning (Wood, 2001, 2006). Splines have many
of the useful properties of polynomials (adjustable complexity or smoothness;
simple basic components) without their instability.

Advantages

Piecewise functions make sense if you believe there could be a biological switch point.
For example, in optimal behavior problems theory often predicts sharp transitions
among different behavioral strategies (Hilborn and Mangel, 1997, ch. 4). Organisms
might decide to switch from growth to reproduction, or to migrate between locations,
when they reach a certain size or when resource supply drops below a threshold.
Phenomenologically, using piecewise functions is a simple way to stop functions
from dropping below zero or increasing indefinitely when such behavior would be
unrealistic.

Disadvantages

Piecewise functions present some special technical challenges for parameter fitting,
which probably explains why they have gained attention only recently. Using a piece-
wise function means that the rate of change (the derivative) changes suddenly at some
point. Such a discontinuous change may make sense, for example, if the last prey
refuge in a reef is filled, but transitions in ecological systems usually happen more
smoothly. When thresholds are imposed phenomenologically to prevent unrealistic
behavior, it may be better to go back to the original biological system to try to under-
stand what properties of the system would actually stop (e.g.) population densities
from becoming negative: would they hit zero suddenly, or would a gradual approach
to zero (perhaps represented by an exponential function) be more realistic?

3.4.1.3 RATIONAL FUNCTIONS: POLYNOMIALS IN FRACTIONS

Rational functions are ratios of polynomials, (
∑

aixi)/(
∑

bjxj).

Examples

• The simplest rational function is the hyperbolic function, a/x; it is often used
in models of plant competition, to fit seed production as a function of plant

“Bolker” — 1/9/2008 — 15:39 — page 91

−1
0
1

D E T E R M I N I S T I C F U N C T I O N S • 91

a1

a2

s1

threshold:
f (x) = a1 if x < s1

= a2 if x > s1

hockey stick:

f (x) = ax if x < s1
= as1 if x > s1

a

s1

as1

general piecewise linear:

f (x) = ax if x < s1
= as1 − b(x − s1) if x > s1

a

s1

splines:

f(x) is complicated

a

c d

b

Figure 3.7 Piecewise polynomial functions: the first three (threshold, hockey stick, gen-
eral piecewise linear) are all piecewise linear. Splines are piecewise cubic; the equations are
complicated and are usually handled by software (see ?spline and ?smooth.spline).

density. A mechanistic explanation might be that if resources per unit area are
constant, the area available to a plant for resource exploitation might be pro-
portional to 1/density, which would translate (assuming uptake, allocation,
etc., all stay the same) into a hyperbolically decreasing amount of resource
available for seed production. A better-behaved variant of the hyperbolic func-
tion is a/(b + x), which doesn’t go to infinity when x = 0 (Pacala and Silander,
1987, 1990).

• The next most complicated, and probably the most famous, rational function
is the Michaelis-Menten function: f (x) = ax/(b + x). Michaelis and Menten
introduced it in the context of enzyme kinetics; it is also known, by other
names, in resource competition theory (as the Monod function), predator-
prey dynamics (Holling type II functional response), and fisheries biology
(Beverton-Holt model). It starts at 0 when x = 0 and approaches an asymptote
at a as x gets large. The only major caveat with this function is that it takes

“Bolker” — 1/9/2008 — 15:39 — page 92

−1
0
1

92 • C H A P T E R 3

hyperbolic:
a

b + x b + x

a
b

a
2b

b

ax

a

a
b

a
2

b

Holling type III:

b2+ x2

a

b

a
2

Holling type IV (c<0):
ax2ax2

2

a

-2b
c

f(x) = f(x) =

f(x) =f(x) =
b+cx+x

a

c d

b

Figure 3.8 Rational functions.

surprisingly long to approach its asymptote: x/(1 + x), which is halfway to its
asymptote when x = 1, still reaches only 90% of its asymptote when x = 9.
The Michaelis-Menten function can be parameterized in terms of any two of
the asymptote, half-maximum, initial slope, or their inverses.
The mechanism behind the Michaelis-Menten function in biochemistry and
ecology (Holling type II) is similar; as substrate (or prey) become more
common, enzymes (or predators) have to take a larger and larger fraction
of their time handling rather than searching for new items. In fisheries, the
Beverton-Holt stock-recruitment function comes from assuming that over the
course of the season the mortality rate of young-of-the-year is a linear function
of their density (Quinn and Deriso, 1999).

• We can go one more step, from a linear to a quadratic function in the
denominator, and define a function sometimes known as the Holling type III
functional response: f (x) = ax2/(b2 + x2). This function is sigmoid, or
S-shaped. The asymptote is at a; its shape is quadratic near the origin, starting
from zero with slope zero and curvature a/b2; and its half-maximum is

“Bolker” — 1/9/2008 — 15:39 — page 93

−1
0
1

D E T E R M I N I S T I C F U N C T I O N S • 93

at x = b. It can occur mechanistically in predator-prey systems because of
predator switching from rare to common prey, predator aggregation, and
spatial and other forms of heterogeneity (Morris, 1997).

• Some ecologists have extended this family still further to the Holling type
IV functional response: f (x) = ax2/(b + cx + x2). Turchin (2003) derives this
function (which he calls a “mechanistic sigmoidal functional response”) by
assuming that the predator attack rate in the Holling type II functional
response is itself an increasing Michaelis-Menten function of prey density—
that is, predators prefer to pursue more abundant prey. In this case, c > 0. If
c < 0, then the Holling type IV function is unimodal, or “hump-shaped,”
with a maximum at intermediate prey density. Ecologists have used this
version of the Holling type IV phenomenologically to describe situations where
predator interference or induced prey defenses lead to decreased predator suc-
cess at high predator density (Holt, 1983; Collings, 1997; Wilmshust et al.,
1999; Chen, 2004). Whether c is negative or positive, the Holling type IV
reaches an asymptote at a as x → ∞. If c < 0, then it has a maximum at
x = −2b/c.

• More complicated rational functions are potentially useful but rarely used
in ecology. The (unnamed) function y = (a + bx)/(1 + cx) has been used to
describe species-area curves (Flather, 1996; Tjørve, 2003).

Advantages

Like polynomials, rational functions are very flexible (you can always add more
terms in the numerator or denominator) and simple to compute; unlike polynomials,
they can reach finite asymptotes at the ends of their range. In many cases, rational
functions make mechanistic sense, arising naturally from simple models of biological
processes such as competition or predation.

Disadvantages

Rational functions can be complicated to analyze because the quotient rule makes
their derivatives complicated. Like the Michaelis-Menten function they approach
their asymptotes very slowly, which makes estimating the asymptote difficult—
although this problem really says more about the difficulty of getting enough data
rather than about the appropriateness of rational functions as models for ecological
systems. Section 3.4.3 shows how to make rational functions even more flexible by
raising some of their terms to a power, at the cost of making them even harder to
analyze.

3.4.2 Functions Based on Exponential Functions

3.4.2.1 SIMPLE EXPONENTIALS

The simplest examples of functions based on exponentials are the exponen-
tial growth (aebx) or decay (ae−bx) and saturating exponential growth functions

“Bolker” — 1/9/2008 — 15:39 — page 94

−1
0
1

94 • C H A P T E R 3

(monomolecular, a(1 − e−bx)). The monomolecular function (so named because
it represents the buildup over time of the product of a single-molecule chemical
reaction) is also

• The catalytic curve in infectious disease epidemiology, where it represents the
change over time in the fraction of a cohort that has been exposed to disease
(Anderson and May, 1991).

• The simplest form of the von Bertalanffy growth curve in organismal biology
and fisheries, where it arises from the competing effects of changes in catabolic
and metabolic rates with changes in size (Essington et al., 2001).

• The Skellam model in population ecology, giving the number of offspring in
the next year as a function of the adult population size in the current year
when competition has a particularly simple form (Skellam, 1951; Brännström
and Sumpter, 2005).

These functions have two parameters, the multiplier a, which expresses the starting
or final size depending on the function, and the exponential rate b or “e-folding
time” 1/b (the time needed to reach e times the initial value, or the initial
value divided by e, depending whether b is positive or negative). The e-folding
time can be expressed as a half-life or doubling time (log (2)/b) as well. Such
exponential functions arise naturally from any compounding process where the
population loses or gains a constant proportion per unit time; one example is
Beers’ Law for the decrease in light availability with depth in a vegetation canopy
(Teh, 2006).

The differences in shape between an exponential-based function and its rational-
function analogue (e.g., between the monomolecular and the Michaelis-Menten
function) are usually subtle. Unless you have a lot of data you’re unlikely to be able
to distinguish from the data which fits better, and you will instead have to choose on
the basis of which one makes more sense mechanistically, or possibly which is more
convenient to compute or analyze (Figure 3.9).

3.4.2.2 COMBINATIONS OF EXPONENTIALS
WITH OTHER FUNCTIONS

Ricker Function

The Ricker function, ax exp (− bx), is a common model for density-dependent pop-
ulation growth; if per capita fecundity decreases exponentially with density, then
overall population growth will follow the Ricker function. It starts off growing lin-
early with slope a and has its maximum at x = 1/b; it’s similar in shape to the
generalized Michaelis-Menten function (RN/(1 + (aN)b)). It is very widely used as
a phenomenological model for ecological variables that start at zero, increase to a
peak, and decrease gradually back to zero.

Several authors (Hassell, 1975; Royama, 1992; Brännström and Sumpter, 2005)
have derived Ricker equations for the dependence of offspring number on density,
assuming that adults compete with each other to reduce fecundity; Quinn and Deriso
(1999, p. 89) derive the Ricker equation in a fisheries context, assuming that young-
of-year compete with each other and increase mortality (e.g., via cannibalism).

“Bolker” — 1/9/2008 — 15:39 — page 95

−1
0
1

D E T E R M I N I S T I C F U N C T I O N S • 95

negative exponential:
-bx

-bx

-bx

a

a
e

1
b

monomolecular:

a

ab

Ricker:

a 1
b

a
b

e
-1

logistic:
e

b
4

− a
b

1
2

1

f(x) = ae

f(x) = axe

f(x) = a(1 - e)

f(x) =
1+e a+bx

a+bx

a

c d

b

Figure 3.9 Exponential-based functions. “M-M” in the monomolecular figure is the Michaelis-
Menten function with the same asymptote and initial slope.

Logistic Function

Two parameterizations of the logistic function are widely used. The first,

y = ea+bx

1 + ea+bx
(3.4.1)

(or equivalently y = 1/(1 + e−(a+bx))) comes from a statistical or phenomenological
context. The function goes from 0 at −∞ to 1 at +∞. The location parameter a shifts
the curve left or right: the half-maximum, which is also the inflection point, occurs
at x = −a/b when the term in the exponent is 0. The scale parameter b controls the
steepness of the curve.∗

∗ If we reparameterized the function as exp (b(x − c))/(1 + exp (b(x − c))), the half-maximum would
be at c. Since b is still the steepness parameter, we could then shift and steepen the curve independently.

“Bolker” — 1/9/2008 — 15:39 — page 96

−1
0
1

96 • C H A P T E R 3

The second parameterization comes from population ecology:

n(t) = K

1 +
(

K
n0

− 1
)

e−rt
(3.4.2)

where K is the carrying capacity, n0 the value at t = 0, and r the initial per
capita growth rate. (The statistical parameterization is less flexible, with only two
parameters: it has K = 1, n0 = ea/(1 + ea), and r = b.)

The logistic is popular both because it’s a simple sigmoid function (although
its rational analogue the Holling type III functional response is also simple) and
because it’s the solution to one of the simplest population-dynamic models, the
logistic equation:

dn
dt

= rn
(
1 − n

K

)
, (3.4.3)

which says that per capita growth rate ((dn/dt)/n) decreases linearly from a maximum
of r when n is much less than K to zero when n = K. Getting from the logistic equation
(3.4.3) to the logistic function (3.4.2) involves solving the differential equation by
integrating by parts, which is tedious but straightforward (see any calculus book,
e.g., Adler (2004)).

In R you can write out the logistic function yourself, using the exp function, as
exp(x)/(1+exp(x)), or you can use the plogis function. The hyperbolic tangent
(tanh) function is another form of the logistic. Its range extends from −1 as x → −∞
to 1 as x → ∞ instead of from 0 to 1.

Gompertz Function

The Gompertz function, f (x) = e−ae−bx
, is an alternative to the logistic function.

Similar to the logistic, it is accelerating at x = 0 and exponentially approaches 1
as x gets large, but it is asymmetric—the inflection point or change in curvature
occurs 1/e ≈ 1/3 of the way up to the asymptote, rather than halfway up. In this
parameterization the inflection point occurs at x = 0; you may want to shift the curve
c units to the right by using f (x) = e−aeb(x−c)

. If we derive the curves from models of
organismal or population growth, the logistic assumes that growth decreases linearly
with size or density while the Gompertz assumes that growth decreases exponentially.

3.4.3 Functions Involving Power Laws

So far the polynomials involved in our rational functions have been simple linear
or quadratic functions. Ecological modelers sometimes introduce an arbitrary (frac-
tional) power as a parameter (xb) instead of using only integer values (e.g., x, x2,
x3); using power laws in this way is often a phenomenological way to vary the shape
of a curve, although these functions may also have mechanistic derivations.

Here are some categories of power-law functions.

• Simple power laws f (x) = axb (for noninteger b; otherwise the function is just a
polynomial; Figure 3.10a) often describe allometric growth (e.g., reproductive

“Bolker” — 1/9/2008 — 15:39 — page 97

−1
0
1

D E T E R M I N I S T I C F U N C T I O N S • 97

power laws:
axb

0 < b < 1

b > 1

b < 0

von Bertalanffy:

a

Ricker

Shepherd, Hassell:
ax ax

c
,

c

H

S

hyperbola:

f(x) = f(x) =

f(x) =f(x) =
b+x (b+x)

a(1-e)-k(a-d)x (1/(1-d))
a

c d

b

Figure 3.10 Power-based functions. The lower left panel shows the Ricker function for com-
parison with the Shepherd and Hassell functions. The lower right shows the Michaelis-Menten
function (M–M) for comparison with the nonrectangular hyperbola.

biomass as a function of diameter at breast height (Niklas, 1993) or mass
as a function of tarsus length in birds); or quantities related to metabolic
rates (Etienne et al., 2006a); or properties of landscapes with fractal geometry
(Halley et al., 2004); or species-area curves (Tjørve, 2003).

• The generalized form of the von Bertalanffy growth curve, f (x) = a(1 −
exp (− k(a − d)t))1/(1−d) (Figure 3.10b), allows for energy assimilation to
change as a function of mass (i.e., assimilation = massd). The parameter d
is often taken to be 2/3, assuming that energy assimilation is proportional
to area (length2) and mass is proportional to volume (length3) (Quinn and
Deriso, 1999).

• A generalized form of the Michaelis-Menten function, f (x) = ax/(b + xc)
(Figure 3.10c), describes ecological competition (Maynard-Smith and Slatkin,
1973; Brännström and Sumpter, 2005). This model reduces to the standard
Michaelis-Menten curve when c = 1; 0 < c < 1 corresponds to “contest”

“Bolker” — 1/9/2008 — 15:39 — page 98

−1
0
1

98 • C H A P T E R 3

(undercompensating) competition, while c > 1 corresponds to “scramble”
(overcompensating) competition (the function has maximum for finite den-
sities if c > 1). In fisheries, this model is called the Shepherd function. Quinn
and Deriso (1999) show how the Shepherd function emerges as a general-
ization of the Beverton-Holt function when the density-dependent mortality
coefficient is related to the initial size of the cohort.

• A related function, f (x) = ax/(b + x)c, is known in ecology as the Hassell
competition function (Hassell, 1975; Brännström and Sumpter, 2005); it is
similar to the Shepherd/Maynard-Smith/Slatkin model in allowing Michaelis-
Menten (c = 1), undercompensating (c < 1), or overcompensating (c > 1)
dynamics.

• Persson et al. (1998) used a generalized Ricker equation, y = A(x
x0

exp (1 −
x
x0

))α, to describe the dependence of attack rate y on predator body mass x
(Figure 3.1 shows the same curve, but as a function of prey body mass). In
fisheries, Ludwig and Walters proposed this function as a stock-recruitment
curve (Quinn and Deriso, 1999). Bellows (1981) suggested a slightly dif-
ferent form of the generalized Ricker, y = x exp (r(1 − (a/x)α)) (the power is
inside the exponent instead of outside), to model density-dependent population
growth.

• Emlen (1996) used a generalized form of the logistic, y = a + b/(1 +
c exp (− dxe)) extended to allow both a nonzero intercept (via the a parame-
ter, discussed above under “Scaling and Shifting”) and more flexibility in the
shape of the curve (via the power exponent e).

• The nonrectangular hyperbola (Figure 3.10, lower right), based on first prin-
ciples of plant physiology, describes the photosynthetic rate P as a function of
light availability I:

P(I) = 1
2θ

(
αI + pmax −

√
(αI + pmax)2 − 4θαIpmax

)
,

where α is photosynthetic efficiency (and initial slope); pmax is the maximum
photosynthetic rate (and asymptote); and θ is a sharpness parameter. In the
limit as θ → 0, the function becomes a Michaelis-Menten function; in the limit
as θ → 1, it becomes piecewise linear (Thornley, 2002).

Advantages

Functions incorporating power laws are flexible, especially since the power parameter
is usually added to an existing model that already allows for changes in location, scale,
and curvature. In many mechanistically derived power-law functions the value of the
exponent comes from intrinsic geometric or allometric properties of the system and
hence does not have to be estimated from data.

Disadvantages

Many different mechanisms can lead to power-law behavior (Mitzenmacher, 2003).
It can be tempting but is often misguided to reason backward from an observed
pattern to infer something about the meaning of a particular estimated parameter.

“Bolker” — 1/9/2008 — 15:39 — page 99

−1
0
1

D E T E R M I N I S T I C F U N C T I O N S • 99

Despite the apparent simplicity of the formulas, estimating exponents from data
can be numerically challenging—leading to poorly constrained or unstable estimates.
The exponent of the nonrectangular hyperbola, for example, is notoriously difficult
to estimate from reasonable-size data sets (Thornley, 2002). (We will see another
example when we try to fit the Shepherd model to data in Chapter 5.)

3.4.4 Other Possibilities

Of course, there is no way I can enumerate all the functions used even within tradi-
tional population ecology, let alone fisheries, forestry, ecosystem, and physiological
ecology. Haefner (1996, pp. 90–96) gives an alternative list of function types, focus-
ing on functions used in physiological and ecosystem ecology, while Turchin (2003,
Table 4.1, p. 81) presents a variety of predator functional response models. Some
other occasionally useful categories are:

• Curves based on other simple mathematical functions: For example, trigono-
metric functions like sines and cosines (useful for fitting diurnal or seasonal
patterns), and functions based on logarithms.

• Generalized or “portmanteau” functions: These are complex, highly flexible
functions that reduce to various simpler functions for particular parameter
values. For example, the four-parameter Richards growth model

y = k1(
1 +

(
k1
k2

− 1
)

e−k3k4x
)1/k4

(3.4.4)

includes the monomolecular, Gompertz, von Bertalanffy, and logistic equation
as special cases (Haefner, 1996; Damgaard et al., 2002). Schnute (1981) defines
a still more generalized growth model.

• Functions not in closed form: Sometimes it’s possible to define the dynamics
of a population, but not to find an analytical formula (what mathematicians
would call a “closed-form solution”) that describes the resulting population
density.

– The theta-logistic or generalized logistic model (Richards, 1959; Nelder,
1961; Thomas et al., 1980; Sibly et al., 2005) generalizes the logistic equa-
tion by adding a power (θ) to the logistic growth equation given above
(3.4.3):

dn
dt

= rn
(

1 −
(n

K

)θ
)

. (3.4.5)

When θ = 1 this equation reduces to the logistic equation, but when θ
= 1
there is no closed-form solution for n(t)—i.e., no solution we can write
down in mathematical notation. You can use the odesolve library in R to
solve the differential equation numerically and get a value for a particular
set of parameters.

– The Rogers random-predator equation (Rogers, 1972; Juliano, 1993)
describes the numbers of prey eaten by predators, or the numbers of prey

“Bolker” — 1/9/2008 — 15:39 — page 100

−1
0
1

100 • C H A P T E R 3

remaining after a certain amount of time in situations where the prey popu-
lation becomes depleted. Like the theta-logistic, the Rogers equation has no
closed-form solution, but it can be written in terms of a mathematical func-
tion called the Lambert W function (Corless et al. 1996). (See ?lambertW
in the emdbook package.)

3.5 Conclusion

The first part of this chapter showed (or reminded you of) some basic tools for
understanding the mathematical functions used in ecological modeling—slopes, crit-
ical points, derivatives, and limits—and how to use them to figure out the basic
properties of functions you come across in your work. The second part of the chap-
ter briefly reviewed some common functions. You will certainly run across others,
but the tools from the first part should help you figure out how they work.

3.6 R Supplement

3.6.1 Plotting Functions in Various Ways

Using curve:
Plot a Michaelis-Menten curve:

> curve(2 * x/(1 + x))

You do need to specify the parameters: if you haven’t defined a and b previously,
curve(a*x/(b+x)) will give you an error. But if you’re going to use a function a lot,
define a function:

> micmen <- function(x, a = 2, b = 1) {
+ a * x/(b + x)
+ }

Now plot several curves (being more specific about the desired x and y ranges;
changing colors; and adding a horizontal line (abline(h=...)) to show the
asymptote).

> curve(micmen(x), from = 0, to = 8, ylim = c(0, 10))
> curve(micmen(x, b = 3), add = TRUE, col = 2)
> curve(micmen(x, a = 8), add = TRUE, col = 3)
> abline(h = 8)

Sometimes rather than using curve you may want to handle the details yourself.
Use seq to define a vector of x values:

> xvec <- seq(0, 10, by = 0.1)

“Bolker” — 1/9/2008 — 15:39 — page 101

−1
0
1

D E T E R M I N I S T I C F U N C T I O N S • 101

Then use vectorization (yvec=micmen(xvec)) or sapply (yvec=sapply(xvec;
micmen)) or a for loop (for i in (1:length(xvec)) {yvec[i] =micmen
(xvec[i])}) to calculate the y values. Use plot(xvec,yvec,...), lines(xvec,yvec,
...), etc. (with options you learned in Chapter 2) to produce the graphics.

3.6.2 Piecewise Functions Using ifelse

The ifelse function picks one of two numbers (or values from one of two vectors)
depending on a logical condition. For example, a simple threshold function where
y = 1 if x < 5 and y = 2 otherwise:

> curve(ifelse(x < 5, 1, 2), from = 0, to = 10)

or a more complex piecewise linear function:

> curve(ifelse(x < 5, 1 + x, 6 - 3 * (x - 5)), from = 0,
+ to = 10)

You can also nest ifelse functions to get more than one switching point:

> curve(ifelse(x < 5, 1 + x, ifelse(x < 8, 6 - 3 *
+ (x - 5), -3 + 2 * (x - 8))), from = 0, to = 10)

3.6.3 Derivatives

You can use D or deriv to calculate derivatives (although R will not simplify the
results at all): D gives you a relatively simple answer, while deriv gives you a function
that will compute the function and its derivative for specified values of x (you need
to use attr(...,"grad") to retrieve the derivative—see below). To use either of
these functions, you need to use expression to stop R from trying to interpret the
formula.

> D(expression(log(x)), "x")

1/x

> D(expression(xˆ2), "x")

2 * x

Using deriv to plot the logistic and its derivative:

> logist <- expression(exp(x)/(1 + exp(x)))
> dfun <- deriv(logist, "x", function.arg = TRUE)
> xvec <- seq(-4, 4, length = 40)
> y <- dfun(xvec)
> plot(xvec, y)
> lines(xvec, attr(y, "grad"))

“Bolker” — 1/9/2008 — 15:39 — page 102

−1
0
1

102 • C H A P T E R 3

Use eval to fill in parameter values in an expression:

> d1 <- D(expression(a * x/(b + x)), "x")
> d1

a/(b + x) - a * x/(b + x)ˆ2

> eval(d1, list(a = 2, b = 1, x = 3))

[1] 0.125

“Bolker” — 1/9/2008 — 15:39 — page 103

−1
0
1

4 Probability and Stochastic Distributions
for Ecological Modeling

This chapter continues to review the math you need to fit models to data, mov-
ing forward from functions and curves to probability distributions. The first part
discusses ecological variability in general terms, then reviews basic probability the-
ory and some important applications, including Bayes’ Rule and its application in
statistics. The second part reviews how to analyze and understand probability dis-
tributions. The third part provides a bestiary of probability distributions, finishing
with a short digression on some ways to extend these basic distributions.

4.1 Introduction: Why Does Variability Matter?

For many ecologists and statisticians, noise is just a nuisance—it gets in the way
of drawing conclusions from the data. The traditional statistical approach to noise
in data was to assume that all variation in the data was normally distributed, or
transform the data until it was, and then use classical methods based on the normal
distribution to draw conclusions. Some scientists turned to nonparametric statistics,
which assume only that the shape of the data distribution is the same in all categories
and provide tests of differences in the means or “location parameters” among cate-
gories. Unfortunately, such classical nonparametric approaches make it much harder
to draw quantitative conclusions from data (rather than simply rejecting or failing
to reject null hypotheses about differences between groups).

In the 1980s, as they acquired better computing tools, ecologists began to use
more sophisticated models of variability such as generalized linear models (see Chap-
ter 9). Chapter 3 illustrated a wide range of deterministic functions that correspond
to deterministic models of the underlying ecological processes. This chapter will illus-
trate a wide range of models for the stochastic part of the dynamics. In these models,
variability isn’t just a nuisance but actually tells us something about ecological pro-
cesses. For example, census counts that follow a negative binomial distribution (p. 21)
tell us there is some form of environmental variation or aggregative response among
individuals that we haven’t taken into account (Shaw and Dobson, 1995).

“Bolker” — 1/9/2008 — 15:39 — page 104

−1
0
1

104 • C H A P T E R 4

Remember from Chapter 1 that what we treat as “signal” (deterministic) and
what we treat as “noise” (stochastic) depends on the question. The same ecological
variability, such as spatial variation in light, might be treated as random variation by a
forester interested in the net biomass growth of a forest stand and as a deterministic
driving factor by an ecophysiologist interested in the photosynthetic response of
individual plants.

Noise affects ecological data in two different ways—as measurement error and
as process noise (this distinction will become important in Chapter 11 when we deal
with dynamical models). Measurement error is the variability or “noise” in our mea-
surements, which makes it hard to estimate parameters and make inferences about
ecological systems. Measurement error leads to large confidence intervals and low
statistical power. Even if we can eliminate measurement error, process noise or pro-
cess error (often so-called even though it isn’t technically an error but a real part
of the system) still exists. Variability affects any ecological system. For example, we
can observe thousands of individuals to determine the average mortality rate with
great accuracy. The fate of a group of a few individuals, however, depends both
on the variability in mortality rates of individuals and on the demographic stochas-
ticity that determines whether a particular individual lives or dies (“loses the coin
toss”). Even though we know the average mortality rate perfectly, our predictions
are still uncertain. Environmental stochasticity—spatial and temporal variability in
(e.g.) mortality rate caused by variation in the environment rather than by the inher-
ent randomness of individual fates—also affects the dynamics. Finally, even if we can
minimize measurement error by careful measurement and minimize process noise by
studying a large population in a constant environment (i.e., one with low levels of
demographic and environmental stochasticity), ecological systems can still amplify
variability in surprising ways (Bjørnstad and Grenfell, 2001). For example, a tiny bit
of demographic stochasticity at the beginning of an epidemic can trigger huge vari-
ation in epidemic dynamics (Rand and Wilson, 1991). Variability also feeds back to
change the mean behavior of ecological systems. For example, in the damselfish sys-
tem described in Chapter 2 the number of recruits in any given cohort is the number
of settlers surviving density-dependent mortality, but the average number of recruits
is lower than expected from an average-sized cohort of settlers because large cohorts
suffer disproportionately high mortality and contribute relatively little to the average.
This difference is an example of a widespread phenomenon called Jensen’s inequality
(Ruel and Ayres, 1999; Inouye, 2005).

4.2 Basic Probability Theory

To understand stochastic terms in ecological models, you’ll have to (re)learn some
basic probability theory. To define a probability, we first have to identify the sample
space, the set of all the possible outcomes that could occur. Then the probability of
an event A is the frequency with which that event occurs. A few probability rules are
all you need to know:

1. If two events are mutually exclusive (e.g., “individual is male” and “indi-
vidual is female”), then the probability that either occurs (the probability

“Bolker” — 1/9/2008 — 15:39 — page 105

−1
0
1

P R O B A B I L I T Y • 105

of A or B, or Prob(A ∪ B)) is the sum of their individual probabilities:
Prob(male or female) = Prob(male) + Prob(female).
We use this rule, for example, in finding the probability that an outcome
is within a certain numeric range by adding up the probabilities of all the
different (mutually exclusive) values in the range: for a discrete variable, for
example, P(3 ≤ X ≤ 5) = P(X = 3) + P(X = 4) + P(X = 5).

2. If two events A and B are not mutually exclusive—the joint probability that
they occur together, Prob(A ∩ B), is greater than zero—then we have to correct
the rule for combining probabilities to account for double-counting:

Prob(A ∪ B) = Prob(A) + Prob(B) − Prob(A ∩ B).

For example, if we are tabulating the color and sex of animals, Prob(blue
or male) = Prob(blue) + Prob(male) − Prob(blue male).

3. The probabilities of all possible outcomes of an observation or experiment
add to 1.0: Prob(male) + Prob(female) = 1.0.
We will need this rule to understand the form of probability distributions,
which often contain a normalization constant which ensures that the sum of
the probabilities of all possible outcomes is 1.

4. The conditional probability of A given B, Prob(A|B), is the probability that A
happens if we know or assume B happens. The conditional probability equals

Prob(A|B) = Prob(A ∩ B)/Prob(B). (4.2.1)

For example, continuing the color and sex example:

Prob(blue|male) = Prob(blue male)
Prob(male)

. (4.2.2)

By contrast, we may also refer to the probability of A when we make
no assumptions about B as the unconditional probability of A: Prob(A) =
Prob(A|B) + Prob(A|not B). Conditional probability is central to understand-
ing Bayes’ Rule (Section 4.3).

5. If the conditional probability of A given B, Prob(A|B), equals the uncondi-
tional probability of A, then A is independent of B. Knowing about B provides
no information about the probability of A. Independence implies that

Prob(A ∩ B) = Prob(A)Prob(B), (4.2.3)

which follows from substituting Prob(A|B) = Prob(A) in (4.2.1) and multiply-
ing both sides by Prob(B). The probabilities of combinations of independent
events are multiplicative.
Multiplying probabilities, or adding log-probabilities (log (Prob(A ∩ B)) =
log (Prob(A)) + log (Prob(B)) if A and B are independent), is how we find the
combined probability of a series of independent observations.

We can immediately use these rules to think about the distribution of seeds taken
in the seed removal experiment (Chapter 2). The most obvious pattern in the data
is that there are many zeros, probably corresponding to times when no predators
visited the station. The sample space for seed disappearance is the number of seeds

“Bolker” — 1/9/2008 — 15:39 — page 106

−1
0
1

106 • C H A P T E R 4

taken, from 0 to N (the number available). Suppose that when a predator did visit the
station, which happened with probability v, it had an equal probability of taking any
of the possible number of seeds (i.e., a uniform distribution from 0 to N). Since
the probabilities must add to 1, this probability (Prob(x taken|predator visit)) is
1/(N + 1) (0 to N represents N + 1 different possible events). What is the uncon-
ditional probability of x seeds being taken?

If x > 0, then only one type of event is possible—the predator visited and took
x seeds—with overall probability v/(N + 1) (Figure 4.1, left).

If x = 0, then there are two mutually exclusive possibilities. Either the preda-
tor didn’t visit (probability 1 − v), or it visited (probability v) and took zero seeds
(probability 1/(N + 1)), so the overall probability is

(1 − v)︸ ︷︷ ︸
didn’t visit

+


 v︸︷︷︸

visited

× 1
N + 1︸ ︷︷ ︸

took zero seeds


 = 1 − v + v

N + 1
. (4.2.4)

Now make things a little more complicated and suppose that when a predator
visits, it decides independently whether or not to take each seed. If the seeds of a given
species are all identical, so that each seed is taken with the same probability p, then
this process results in a binomial distribution. Using the rules above, the probability
of x seeds being taken when each has probability p is px. It’s also true that N − x seeds
are not taken, with probability (1 − p)N−x. Thus the probability is proportional to
px · (1 − p)N−x. To get the probabilities of all possible outcomes to add to 1, though,
we have to multiply by a normalization constant N!/(x!(N − x)!),∗ or

(N
x

)
. (It’s too

bad we can’t just ignore these ugly normalization factors, which are always the least
intuitive parts of probability formulas, but we really need them in order to get the
right answers. Unless you are doing advanced calculations, however, you can usually
take the formulas for the normalization constants for granted, without trying to
puzzle out their meaning.)

Now adding the “predator may or may not visit” layer to this formula, we have
a probability

(1 − v)︸ ︷︷ ︸
didn’t visit

+

 v︸︷︷︸

visited

· Binom(0, p, N)︸ ︷︷ ︸
took zero seeds


 = (1 − v) + v(1 − p)N (4.2.5)

if x = 0 (since
(N

0

) = 1, the normalization constant disappears from the second term),
or

v︸︷︷︸
visited

· Binom(x, p, N)︸ ︷︷ ︸
took > 0 seeds

= v
(

N
x

)
px(1 − p)N−x (4.2.6)

if x > 0 (Figure 4.1, right).
This distribution is called the zero-inflated binomial (Inouye, 1999; Tyre et al.,

2003). With only a few simple probability rules, we have derived a potentially useful

∗ N! means N · (N − 1) · . . . · 2 · 1, and is referred to as “N factorial.”

“Bolker” — 1/9/2008 — 15:39 — page 107

−1
0
1

P R O B A B I L I T Y • 107

Taken

P
ro

ba
bi

lit
y

0.0

0.1

0.2

0.3

0.4

Taken

P
ro

ba
bi

lit
y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4 50 1 2 3 4 5

a b

Figure 4.1 Zero-inflated distributions. Left, zero-inflated uniform; right, zero-inflated bino-
mial. Number of seeds N = 5, probability of predator visit v = 0.7, binomial probability of
individual seed predation p = 0.4.

distribution that might describe the pattern of seed predation better than any of the
standard distributions we’ll see later in this chapter.

4.3 Bayes’ Rule

With the simple probability rules defined above we can also derive, and understand,
Bayes’ Rule. Most of the time we will use Bayes’ Rule to go from the likelihood
Prob(D|H), the probability of observing a particular set of data D given that a
hypothesis H is true (p. 13), to the information we really want, Prob(H|D)—the
probability of our hypothesis H in light of our data D. Bayes’ Rule is just a recipe
for turning around a conditional probability:

P(H|D) = P(D|H)P(H)
P(D)

. (4.3.1)

Bayes’ Rule is general—H and D can be any events, not just hypothesis and data—
but it’s easier to understand Bayes’ Rule when we have something concrete to tie it to.

“Bolker” — 1/9/2008 — 15:39 — page 108

−1
0
1

108 • C H A P T E R 4

Deriving Bayes’ Rule is almost as easy as remembering it. Rule 4 on p. 105 applied
to P(H|D) implies

P(D ∩ H) = P(H|D)P(D), (4.3.2)

while applying it to P(D|H) tells us

P(H ∩ D) = P(D|H)P(H). (4.3.3)

But P(H ∩ D) = P(D ∩ H), so

P(H|D)P(D) = P(D|H)P(H) (4.3.4)

and dividing both sides by P(D) gives us (4.3.1).
Equation (4.3.1) says that the probability of the hypothesis given (in light of)

the data is equal to the probability of the data given the hypothesis (the likelihood
associated with H), times the probability of the hypothesis, divided by the probability
of the data. There are two problems here: we don’t know the probability of the
hypothesis, P(H) (isn’t that what we were trying to figure out in the first place?), and
we don’t know the unconditional probability of the data, P(D).

Let’s think about the second problem first—our ignorance of P(D). We can calcu-
late an unconditional probability for the data if we have a set of exhaustive, mutually
exclusive hypotheses: in other words, we assume that one, and only one, of our hy-
potheses is true. Figure 4.2 shows a geometric interpretation of Bayes’ Rule. The gray
ellipse represents D, the set of all possibilities that could lead to the observed data.

If one of the hypotheses must be true, then the unconditional probability of
observing the data is the sum of the probabilities of observing the data under any of
the possible hypotheses. For N different hypotheses H1 to HN ,

P(D) =
N∑

j=1

P(D ∩ Hj)

=
N∑

j=1

P(Hj)P(D|Hj). (4.3.5)

In words, the unconditional probability of the data is the sum of the likelihood of
each hypothesis (P(D|Hj)) times its unconditional probability (P(Hj)). In Figure 4.2,
taking each wedge (Hj), finding its area of overlap with the gray ellipse (D ∩ Hj), and
summing the area of these “pizza slices” provides the area of the ellipse (D).

Substituting (4.3.5) into (4.3.1) gives the full form of Bayes’ Rule for a particular
hypothesis Hi when it is one of a mutually exclusive set of hypotheses {Hj}. The
probability of the truth of Hi in light of the data is

P(Hi|D) = P(D|Hi)P(Hi)∑
j P(Hj)P(D|Hj)

. (4.3.6)

In Figure 4.2, having observed the data D means we know that reality lies
somewhere in the gray ellipse. The probability that hypothesis 5 is true (i.e., that
we are somewhere in the hatched area) is equal to the area of the hatched/shaded

“Bolker” — 1/9/2008 — 15:39 — page 109

−1
0
1

P R O B A B I L I T Y • 109

H1

D∩ H1

H2

D∩H2

H3

D∩ H3

H4

D∩ H4

H5

D∩ H5

Figure 4.2 Decomposition of the unconditional probability of the observed data (D) into
the sum of the probabilities of the intersection of the data with each possible hypothesis
(
∑N

j=1 D ∩ Hj). The entire gray ellipse in the middle represents D. Each wedge (e.g., the hatched
area H5) represents an alternative hypothesis. The ellipse is divided into “pizza slices” (e.g.,
D ∩ H5, hatched and shaded area). The area of each slice corresponds to D ∩ Hj, the joint
probability of the data D (ellipse) and the particular hypothesis Hj (wedge).

“pizza slice” divided by the area of the ellipse. Bayes’ Rule breaks this down fur-
ther by supposing that we know how to calculate the likelihood of the data for each
hypothesis—the ratio of the pizza slice divided by the area of the entire wedge (the
area of the pizza slice [D ∩ H5] divided by the hatched wedge [H5]). Then we can
recover the area of each slice by multiplying the likelihood by the prior (the area of
the wedge) and calculate both P(D) and P(H5|D).

Dealing with the second problem, our ignorance of the unconditional or prior
probability of the hypothesis P(Hi), is more difficult. In the next section we will simply
assume that we have other information about this probability, and we’ll revisit the
problem shortly in the context of Bayesian statistics. But first, just to practice with
Bayes’ Rule, we’ll explore two simple examples that use Bayes’ Rule to manipulate
conditional probabilities.

“Bolker” — 1/9/2008 — 15:39 — page 110

−1
0
1

110 • C H A P T E R 4

4.3.1 False Positives in Medical Testing

Suppose the unconditional probability of a random person sampled from the pop-
ulation being infected (I) with some deadly but rare disease is one in a million:
P(I) = 10−6. There is a test for this disease that never gives a false negative result: if
you have the disease, you will definitely test positive (P(+ |I) = 1). However, the test
does occasionally give a false positive result. One person in 100 who doesn’t have the
disease (is uninfected, U) will test positive anyway (P(+ |U) = 10−2). This sounds
like a pretty good test. Let’s compute the probability that someone who tests positive
is actually infected.

Replace H in Bayes’ Rule with “is infected” (I) and D with “tests positive” (+).
Then

P(I| +) = P(+ |I)P(I)
P(+)

. (4.3.7)

We know P(+ |I) = 1 and P(I) = 10−6, but we don’t know P(+), the unconditional
probability of testing positive. You are either infected (I) or uninfected (U), these
events are mutually exclusive,

P(+) = P(+ ∩I) + P(+ ∩U). (4.3.8)

Then

P(+) = P(+ |I)P(I) + P(+ |U)P(U) (4.3.9)

because P(+ ∩I) = P(+ |I)P(I) and similarly for U (4.2.1). We also know that P(U) =
1 − P(I), so

P(+) = P(+ |I)P(I) + P(+ |U)(1 − P(I))

= 1 × 10−6 + 10−2 × (1 − 10−6)

= 10−6 + 10−2 + 10−8

≈ 10−2.

(4.3.10)

Since 10−6 is 10,000 times smaller than 10−2, and 10−8 is even tinier, we can neglect
them.

Now that we’ve done the hard work of computing the denominator P(+), we
can put it together with the numerator:

P(I| +) = P(+ |I)P(I)
P(+)

≈ 1 × 10−6

10−2

= 10−4.

(4.3.11)

Even though false positives are unlikely, the chance that you are infected if you test
positive is still only 1 in 10,000! For a sensitive test (one that produces few false

“Bolker” — 1/9/2008 — 15:39 — page 111

−1
0
1

P R O B A B I L I T Y • 111

negatives) for a rare disease, the probability that a positive test is detecting a true
infection is approximately P(I)/P(false positive), which can be surprisingly small.

This false-positive issue also comes up in forensics cases. Assuming that a positive
test is significant is called the base rate fallacy. It’s important to think carefully about
the sample population and the true probability of being guilty (or at least having been
present at the crime scene) if your DNA matches DNA found at the crime scene.

4.3.2 Bayes’ Rule and Liana Infestation

A student of mine used Bayes’ Rule as part of a simulation model of liana (vine)
dynamics in a tropical forest. He wanted to know the probability that a newly
emerging sapling would be in a given “liana class” (L1 = liana-free, L2 − L3 = light
to moderate infestation, L4 = heavily infested with lianas). This probability depends
on the number of trees nearby that are already infested (N). We have measurements
of infestation of saplings from the field, and for each one we know the number of
nearby infestations. Thus if we calculate the fraction of individuals in liana class Li
with N nearby infested trees, we get an estimate of Prob(N|Li). We also know the
overall fractions in each liana class, Prob(Li). When we add a new tree to the model,
we know the neighborhood infestation N from the model. Thus we can figure out
the rules for assigning infestation to a new sapling, Prob(Li|N), by using Bayes’ Rule
to calculate

Prob(Li|N) = Prob(N|Li)Prob(Li)∑4
j=1 Prob(N|Lj)Prob(Lj)

. (4.3.12)

For example, suppose we find that a new tree in the model has 3 infested neighbors.
Let’s say that the probabilities of each liana class (1 to 4) having 3 infested neighbors
are Prob(N|Li) = {0.05, 0.1, 0.3, 0.6} and that the overall fractions of each liana class
in the forest (unconditional probabilities) are Li = {0.5, 0.25, 0.2, 0.05}. Then the
probability that the new tree is heavily infested (i.e., is in class L4) is

0.6 × 0.05
(0.05 × 0.5) + (0.1 × 0.25) + (0.3 × 0.2) + (0.6 × 0.05)

= 0.21. (4.3.13)

We would expect that a new tree with several infested neighbors has a much higher
probability of heavy infestation than the overall (unconditional) probability of 0.05.
Bayes’ Rule allows us to quantify this guess.

4.3.3 Bayes’ Rule in Bayesian Statistics

So what does Bayes’ Rule have to do with Bayesian statistics?
Bayesians translate likelihood into information about parameter values using

Bayes’ Rule as given above. The problem is that we have the likelihood
L(data|hypothesis), the probability of observing the data given the model (parame-
ters); what we want is Prob(hypothesis|data). After all, we already know what the
data are!

“Bolker” — 1/9/2008 — 15:39 — page 112

−1
0
1

112 • C H A P T E R 4

4.3.3.1 PRIORS

In the disease testing and the liana examples, we knew the overall, unconditional
probability of disease or liana class in the population. When we’re doing Bayesian
statistics, however, we interpret P(Hi) instead as the prior probability of a hypothesis,
our belief about the probability of a particular hypothesis before we see the data.
Bayes’ Rule is the formula for updating the prior in order to compute the posterior
probability of each hypothesis, our belief about the probability of the hypothesis after
we see the data. Suppose I have two hypotheses A and B and have observed some
data D with likelihoods LA = 0.1 and LB = 0.2. In other words, the probability
of D occurring if hypothesis A is true (P(D|A)) is 10%, while the probability of D
occurring if hypothesis B is true (P(D|B)) is 20%. If I assign the two hypotheses equal
prior probabilities (0.5 each), then Bayes’ Rule says the posterior probability of A is

P(A|D) = 0.1 × 0.5
0.1 × 0.5 + 0.2 × 0.5

= 0.1
0.3

= 1
3

(4.3.14)

and the posterior probability of B is 2/3. However, if I had prior information that
said A was twice as probable (Prob(A) = 2/3, Prob(B) = 1/3), then the probability
of A given the data would be 0.5 (do the calculation). If you rig the prior, you can
get whatever answer you want: e.g., if you assign B a prior probability of 0, then
no data will ever convince you that B is true (in which case you probably shouldn’t
have done the experiment in the first place). Frequentists claim that this possibility
makes Bayesian statistics open to cheating (Dennis, 1996); however, every Bayesian
analysis must clearly state the prior probabilities it uses. If you have good reason to
believe that the prior probabilities are not equal, from previous studies of the same or
similar systems, then arguably you should use that information rather than starting
as frequentists do from the ground up every time. (The frequentist-Bayesian debate is
one of the oldest and most virulent controversies in statistics (Dennis, 1996; Ellison
1996); I can’t possibly do it justice here.)

However, trying so-called flat or weak or uninformative priors—priors that
assume you have little information about which hypothesis is true—as a part of
your analysis is a good idea, even if you do have prior information (Edwards, 1996).
You may have noticed in the first example above that when we set the prior prob-
abilities equal, the posterior probabilities were just equal to the likelihoods divided
by the sum of the likelihoods. If all the P(Hi) are equal to the same constant C, then

P(Hi|D) = P(D|Hi)C∑
j P(D|Hj)C

= Li∑
j Lj

(4.3.15)

where Li is the likelihood of hypothesis i.
You may think that setting all the priors equal would be an easy way to eliminate

the subjective nature of Bayesian statistics and make everybody happy. Two examples,
however, will demonstrate that it’s not that easy to say what it means to be completely
“objective” or ignorant of which hypothesis is true.

• Partitioning hypotheses: Suppose we find a nest missing eggs that might have
been taken by a raccoon, a squirrel, or a snake (only). The three hypotheses
“raccoon” (R), “squirrel” (Q), and “snake” (S) are our mutually exclusive
and exhaustive set of hypotheses for the identity of the predator. If we have

“Bolker” — 1/9/2008 — 15:39 — page 113

−1
0
1

P R O B A B I L I T Y • 113

Predator

P
ro

ba
bi

lit
y

0.0

0.1

0.2

0.3

0.4

0.5

raccoon squirrel snake

mammalian

by species by group

Figure 4.3 The difficulty of defining an uninformative prior for discrete hypotheses. Dark bars
are priors that assume predation by each species is equally likely; light bars divide predation
by group first, then by species within group.

no other information (e.g., about the local densities or activity levels of dif-
ferent predators), we might choose equal prior probabilities for all three
hypotheses. Since there are three mutually exclusive predators, Prob(R) =
Prob(Q) = Prob(S) = 1/3. Now a friend comes and asks us whether we really
believe that mammalian predators are twice as likely to eat the eggs as reptiles
(Prob(R) + Prob(Q) = 2Prob(S)) (Figure 4.3). What do we do? We might solve
this particular problem by setting the probability for snakes (the only reptiles)
to 0.5, the probability for mammals (Prob(R ∪ Q)) to 0.5, and the probability
for raccoons and squirrels equal (Prob(R) = Prob(Q) = 0.25), but this simple
example suggests that such pitfalls are ubiquitous.

• Changing scales: A similar problem arises with continuous variables. Sup-
pose we believe that the mass of a particular bird species is between 10 and
100 g, and that no particular value is any more likely than other: the prior
distribution is uniform, or flat. That is, the probability that the mass is in
some range of width �m is constant: Prob(mass = m) = 1/90�m (so that∫ 100

10 Prob(m) dm = 1: see p. 116 for more on probability densities).
But is it sensible to assume that the probability that a species’ mass is between
10 and 20 is the same as the probability that it is between 20 and 30, or should
it be the same as the probability that it is between 20 and 40—that is, would
it make more sense to think of the mass distribution on a logarithmic scale?

“Bolker” — 1/9/2008 — 15:39 — page 114

−1
0
1

114 • C H A P T E R 4

linear scale

Mass

P
ro

ba
bi

lit
y

de
ns

ity

10 100
0.00

0.02

0.04

uniform

log scale

Log mass
log(10) log(100)

0.0

0.5

1.0

a b

uniform

Figure 4.4 The difficulty of defining an uninformative prior on continuous scales. If we assume
that the probabilities are uniform on one scale (linear or logarithmic), they must be nonuniform
on the other.

If we say that the probability distribution is uniform on a logarithmic scale,
then a species is less likely to be between 20 and 30 than it is to be between 10
and 20 (Figure 4.4).∗ Since changing the scale is not really changing anything
about the world, just the way we describe it, this change in the prior is another
indication that it’s harder than we think to say what it means to be ignorant. In
any case, many Bayesians think that researchers try too hard to pretend igno-
rance, and that one really should use what is known about the system. Crome
et al. (1996) compare extremely different priors in a conservation context to
show that their data really are (or should be) informative to a wide spectrum
of stakeholders, regardless of their perspectives.

4.3.3.2 INTEGRATING THE DENOMINATOR

The other challenge with Bayesian statistics, which is purely technical and does
not raise any deep conceptual issues, is the problem of adding up the denominator∑

j P(Hj)P(D|Hj) in Bayes’ Rule. If the set of hypotheses (parameters) is continuous,
then the denominator is

∫
P(h)P(D|h) dh where h is a particular parameter value.

For example, the binomial distribution says that the likelihood of obtaining 2
heads in 3 (independent, equal-probability) coin flips is

(3
2

)
p2(1 − p), a function of p.

∗ If the probability is uniform between a and b on the usual, linear scale (Prob(mass = m) = 1/(b −
a) dm), then on the log scale it is Prob(log mass = M) = 1/(b − a)eM dM [if we change variables to log
mass M, then dM = d(log m) = 1/m dm, so dm = m dM = eM dM]. Going the other way, a log-uniform
assumption gives Prob(mass = m) = 1/(log (b/a)m)dm on the linear scale.

“Bolker” — 1/9/2008 — 15:39 — page 115

−1
0
1

P R O B A B I L I T Y • 115

The likelihood for p = 0.5 is therefore 0.375, but to get the posterior probability
we have to divide by the probability of getting 2 heads in 3 flips for any value of p.
Assuming a flat prior, the denominator is

∫ 1
0

(3
2

)
p2(1 − p) dp = 0.25, so the posterior

probability density of p = 0.5 is 0.375/0.25 = 1.5.∗
For the binomial case and other simple probability distributions, it’s easy to

sum or integrate the denominator either analytically or numerically. If we care only
about the relative probability of different hypotheses, we don’t need to integrate the
denominator because it has the same constant value for every hypothesis.

Often, however, we do want to know the absolute probability. Calculating
the unconditional probability of the data (the denominator for Bayes’ Rule) can
be extremely difficult for more complicated problems. Much of current research
in Bayesian statistics focuses on ways to calculate the denominator. We will revisit
this problem in Chapters 6 and 7, first integrating the denominator by brute-force
numerical integration, then looking briefly at a sophisticated technique for Bayesian
analysis called Markov chain Monte Carlo.

4.3.4 Conjugate Priors

Using so-called conjugate priors makes it easy to do the math for Bayesian analysis.
Imagine that we’re flipping coins (or measuring tadpole survival or counting numbers
of different morphs in a fixed sample) and that we use the binomial distribution to
model the data. For a binomial with a per-trial probability of p and N trials, the
probability of x successes is proportional (leaving out the normalization constant)
to px(1 − p)N−x. Suppose that instead of describing the probability of x successes
with a fixed per-trial probability p and number of trials N we wanted to describe
the probability of a given per-trial probability p with fixed x and N. We would
get Prob(p) proportional to px(1 − p)N−x—exactly the same formula, but with a
different proportionality constant and a different interpretation. Instead of a discrete
probability distribution over a sample space of all possible numbers of successes (0 to
N), now we have a continuous probability distribution over all possible probabilities
(all values between 0 and 1). The second distribution, for Prob(p), is called the Beta
distribution (p. 133) and it is the conjugate prior for the binomial distribution.

Mathematically, conjugate priors have the same structure as the probability dis-
tribution of the data. They lead to a posterior distribution with the same mathematical
form as the prior, although with different parameter values. Intuitively, you get a
conjugate prior by turning the likelihood around to ask about the probability of a
parameter instead of the probability of the data.

We’ll come back to conjugate priors and how to use them in Chapters 6 and 7.

4.4 Analyzing Probability Distributions

You need the same kinds of skills and intuitions about the characteristics of
probability distributions that we developed in Chapter 3 for mathematical functions.

∗ This value is a probability density, not a probability, so it’s OK for it to be greater than 1: probability
density will be explained on p. 116.

“Bolker” — 1/9/2008 — 15:39 — page 116

−1
0
1

116 • C H A P T E R 4

4.4.1 Definitions

DISCRETE

A probability distribution is the set of probabilities on a sample space or set of
outcomes. Since this book is about modeling quantitative data, we will always be
dealing with sample spaces that are numbers—the number or amount observed in
some measurement of an ecological system. The simplest distributions to understand
are discrete distributions whose outcomes are a set of integers; most of the discrete
distributions we deal with describe counting or sampling processes and have ranges
that include some or all of the nonnegative integers.

A discrete distribution is most easily described by its distribution function, which
is just a formula for the probability that the outcome of an experiment or observation
(called a random variable) X is equal to a particular value x (f (x) = Prob(X = x)). A
distribution can also be described by its cumulative distribution function F(x) (note
the uppercase F), which is the probability that the random variable X is less than or
equal to a particular value x (F(x) = Prob(X ≤ x)). Cumulative distribution functions
are most useful for frequentist calculations of tail probabilities, e.g., the probability
of getting n or more heads in a coin-tossing experiment with a given trial probability.

CONTINUOUS

A probability distribution over a continuous range (such as all real numbers, or
the nonnegative real numbers) is called a continuous distribution. The cumula-
tive distribution function of a continuous distribution (F(x) = Prob(X ≤ x)) is easy
to define and understand—it’s just the probability that the observed value of a
continuous random variable X is smaller than a particular value x in any given
observation or experiment. The probability density function (the analogue of the
distribution function for a discrete distribution), although useful, is more confusing,
since the probability of any precise value is zero. You may imagine that a measure-
ment of (say) pH is exactly 7.9, but in fact what you have observed is that the
pH is between 7.82 and 7.98—if your meter has a precision of ±1%. Thus con-
tinuous probability distributions are expressed as probability densities rather than
probabilities—the probability that random variable X is between x and x + �x,
divided by �x (Prob(7.82 < X < 7.98)/0.16, in this case). Dividing by �x allows
the observed probability density to have a well-defined limit as precision increases
and �x shrinks to zero. Unlike probabilities, probability densities can be larger than
1 (Figure 4.5). For example, if the pH probability distribution is uniform on the
interval [7,7.1] but zero everywhere else, its probability density is 10 in this range.
In practice, we will be concerned mostly with relative probabilities or likelihoods,
and so the maximum density values and whether they are greater than or less than 1
won’t matter much.

4.4.2 Means (Expectations)

The first thing you usually want to know about a distribution is its average value,
also called its mean or expectation.

“Bolker” — 1/9/2008 — 15:39 — page 117

−1
0
1

P R O B A B I L I T Y • 117

P
ro

ba
bi

lit
y

0.0

0.4

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

0

1
P

ro
ba

bi
lit

y
de

ns
ity

0.0

1.5

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

0

1

0 6 0 6

0 1 2 3 4 50 1 2 3 4 5

a b

c d

Figure 4.5 Probability, probability density, and cumulative distributions. Top: discrete
(binomial: N = 5, p = 0.3) probability and cumulative probability distributions. Bottom: con-
tinuous (exponential: λ = 1.5) probability density and cumulative probability distributions.

In general the expectation operation, denoted by E[·] (or a bar over a variable,
such as x̄) gives the “expected value” of a set of data, or a probability distribution,
which in the simplest case is the same as its (arithmetic) mean value. For a set of N
data values written down separately as {x1, x2, x3, . . . , xN}, the formula for the mean
is familiar:

E[x] =
∑N

i=1 xi

N
. (4.4.1)

Suppose we have the data tabulated instead, so that for each possible value of x
(for a discrete distribution) we have a count of the number of observations (possibly
zero, possibly more than 1), which we call c(x). Summing over all of the possible
values of x, we have

E[x] =
∑N

i=1 xi

N
=
∑

c(x)x
N

=
∑(

c(x)
N

)
x =

∑
Prob(x)x (4.4.2)

where Prob(x) is the discrete probability distribution representing this particular
data set. More generally, you can think of Prob(x) as representing some particular
theoretical probability distribution which only approximately matches any actual
data set.

We can compute the mean of a continuous distribution as well. First, let’s
think about grouping (or “binning”) the values in a discrete distribution into cat-
egories of size �x. Then if p(x), the density of counts in bin x, is c(x)/�x, the

“Bolker” — 1/9/2008 — 15:39 — page 118

−1
0
1

118 • C H A P T E R 4

formula for the mean becomes
∑

p(x) · x�x. If we have a continuous distribu-
tion with �x very small, this becomes

∫
p(x)x dx. (This is in fact the definition of

an integral.) For example, an exponential distribution p(x) = λ exp (− λx) has an
expectation or mean value of

∫
λ exp (− λx)x dx = 1/λ. (You don’t need to know

how to do this integral analytically: the R supplement will briefly discuss numerical
integration in R.)

4.4.3 Variances (Expectation of X2)

The mean is the expectation of the random variable X itself, but we can also ask about
the expectation of functions of X. The first example is the expectation of X2. We
just fill in the value x2 for x in all of the formulas above: E[x2] =∑Prob(x)x2 for a
discrete distribution, or

∫
p(x)x2 dx for a continuous distribution. (We are not asking

for
∑

Prob(x2)x2.) The expectation of x2 is a component of the variance, which is the
expected value of (x − E[x])2 or (x − x̄)2, or the expected squared deviation around
the mean. (We can also show that

E[(x − x̄)2] = E[x2] − (x̄)2 (4.4.3)

by using the rules for expectations that (1) E[x + y] = E[x] + E[y] and (2) if c is
a constant, E[cx] = cE[x]. The right-hand formula is simpler to compute than
E[(x − x̄)2], but more subject to roundoff error.)

Variances are easy to work with because they are additive (we will show later
that Var(a + b) = Var(a) + Var(b) if a and b are uncorrelated), but harder to com-
pare with means since their units are the units of the mean squared. Thus we often
use instead the standard deviation of a distribution, (

√
Var), which has the same

units as X.
Two other summaries related to the variance are the variance-to-mean ratio and

the coefficient of variation (CV), which is the ratio of the standard deviation to the
mean. The variance-to-mean ratio has units equal to the mean; it is used primarily
to characterize discrete sampling distributions and compare them to the Poisson
distribution, which has a variance-to-mean ratio of 1. The CV is more common and
is useful when you want to describe variation that is proportional to the mean. For
example, if you have a pH meter that is accurate to ±10%, so that a true pH value
of x will give measured values that are normally distributed with 2σ = 0.1x∗, then
σ = 0.05 x̄ and the CV is 0.05.

4.4.4 Higher Moments

The expectation of (x − E[x])3 tells you the skewness of a distribution or a data
set, which indicates whether it is asymmetric around its mean. The expectation
E[(x − E[x])4] measures the kurtosis, the “pointiness” or “flatness,” of a distribu-
tion.† These are called the third and fourth central moments of the distribution. In

∗ Remember that the 95% confidence limits of the normal distribution are approximately µ ± 2σ .
† The Kurtosis is sometimes scaled by Var2, or by 3 Var2.

“Bolker” — 1/9/2008 — 15:39 — page 119

−1
0
1

P R O B A B I L I T Y • 119

general, the nth moment is E[xn], and the nth central moment is E[(x − x̄)n]; the mean
is the first moment, and the variance is the second central moment. We won’t be too
concerned with these summaries (of data or distributions), but they do come up
sometimes.

4.4.5 Median and Mode

The median and mode are two final properties of probability distributions that are
not related to moments. The median of a distribution is the point that divides the
area of the probability density in half, or the point at which the cumulative dis-
tribution function is equal to 0.5. It is often useful for describing data, since it is
robust—outliers change its value less than they change the mean—but for many dis-
tributions it’s more complicated to compute than the mean. The mode is the “most
likely value,” the maximum of the probability distribution or density function. For
symmetric distributions the mean, mode, and median are all equal; for right-skewed
distributions, in general mode < median < mean.

4.4.6 The Method of Moments

Suppose you know the theoretical values of the moments (e.g., mean and variance) of
a distribution and have calculated the sample values of the moments (by calculating
x̄ =∑x/N and s2 =∑ (x − x̄)2/N; don’t worry for the moment about whether the
denominator in the sample variance should be N or N − 1). Then there is a simple
way to estimate the parameters of a distribution, called the method of moments:
just match the sample values up with the theoretical values. For the normal distri-
bution, where the parameters of the distribution are just the mean and the variance,
this is trivially simple: µ = x̄, σ 2 = s2. For a distribution like the negative bino-
mial, however (p. 124), it involves a little bit of algebra. The negative binomial has
parameters µ (equal to the mean, so that’s easy) and k; the theoretical variance is
σ 2 = µ(1 + µ/k). Therefore, setting µ = x̄, s2 ≈ µ(1 + µ/k), and solving for k, we
calculate the method-of-moments estimate of k:

σ 2 = µ(1 + µ/k)

s2 ≈ x̄(1 + x̄/k)

s2

x̄
− 1 ≈ x̄

k

k ≈ x̄
s2/x̄ − 1

.

(4.4.4)

The method of moments is very simple but is often biased; it’s a good way to get
a first estimate of the parameters of a distribution, but for serious work you should
follow it up with a maximum likelihood estimator (Chapter 6).

“Bolker” — 1/9/2008 — 15:39 — page 120

−1
0
1

120 • C H A P T E R 4

TABLE 4.1
Summary of Probability Distributions

Distribution Type Range Skew Examples

Binomial Discrete 0, N Any Number surviving, number
killed

Poisson Discrete 0, ∞ Right Seeds per quadrat, settlers
(variance/mean ≈ 1)

Negative Discrete 0, ∞ Right Seeds per quadrat, settlers
binomial (variance/mean > 1)

Geometric Discrete 0, ∞ Right Discrete lifetimes

Beta-binomial Discrete 0, 8 Any Similar to binomial

Uniform Continous 0, 1 None Cover proportion

Normal Continuous −∞, ∞ None Mass

Gamma Continuous 0, ∞ Right Survival time, distance
to nearest edge

Beta Continuous 0, 1 Any Cover proportion

Exponential Continuous 0, ∞ Right Survival time, distance
to nearest edge

Lognormal Continuous 0, ∞ Right Size, mass (exponential
growth)

4.5 Bestiary of Distributions

The rest of the chapter presents brief introductions to a variety of useful probability
distribution (Table 4.1), including the mechanisms behind them and some of their
basic properties. Like the bestiary in Chapter 3, you can skim this bestiary on the
first reading. The appendix of Gelman et al. (1996) contains a useful table, more
abbreviated than these descriptions but covering a wider range of functions. The
book by Evans et al. (2000) is also useful.

4.5.1 Discrete Models

4.5.1.1 BINOMIAL

The binomial (Figure 4.6) is probably the easiest distribution to understand. It applies
when you have samples with a fixed number of subsamples or “trials” in each one,
and each trial can have one of two values (black/white, heads/tails, alive/dead, species
A/species B), and the probability of “success” (black, heads, alive, species A) is the
same in every trial. If you flip a coin 10 times (N = 10) and the probability of a
head in each coin flip is p = 0.7, then the probability of getting 7 heads (k = 7)

“Bolker” — 1/9/2008 — 15:39 — page 121

−1
0
1

P R O B A B I L I T Y • 121

1086420
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

of successes

P
ro

ba
bi

lit
y

p=0.1

p=0.5

p=0.9

Figure 4.6 Binomial distribution. Number of trials (N) equals 10 for all distributions.

will will have a binomial distribution with parameters N = 10 and p = 0.7.∗ Don’t
confuse the trials (subsamples), and the probability of success in each trial, with the
number of samples and the probabilities of the number of successful trials in each
sample. In the seed predation example, a trial is an individual seed and the trial
probability is the probability that an individual seed is taken, while a sample is the
observation of a particular station at a particular time and the binomial probabilities
are the probabilities that a certain total number of seeds disappears from the station.
You can derive the part of the distribution that depends on x, px(1 − p)N−x, by
multiplying the probabilities of x independent successes with probability p and N − x
independent failures with probability 1 − p. The rest of the distribution function,(N

x

) = N!/(x!(N − x)!), is a normalization constant that we can justify either with a
combinatorial argument about the number of different ways of sampling x objects
out of a set of N, or simply by saying that we need a factor in front of the formula
to make sure the probabilities add up to 1.

The mean of the binomial is Np and its variance is Np(1 − p). Like most discrete
sampling distributions (e.g., the binomial, Poisson, negative binomial), this variance
is proportional to the number of samples per trial N. When the number of sam-
ples per trial increases the variance also increases, but the coefficient of variation
(
√

Np(1 − p)/(Np) = √(1 − p)/(Np)) decreases. The dependence on p(1 − p) means

∗ Gelman and Nolan (2002) point out that it is not physically possible to construct a coin that is
biased when flipped—although a spinning coin can be biased. Diaconis et al. (2004) even tested a coin
made of balsa wood on one side and lead on the other to establish that it was unbiased.

“Bolker” — 1/9/2008 — 15:39 — page 122

−1
0
1

122 • C H A P T E R 4

the binomial variance is small when p is close to 0 or 1 (and therefore the values are
scrunched up near 0 or N) and largest when p = 0.5. The coefficient of variation, on
the other hand, is largest for small p.

When N is large and p isn’t too close to 0 or 1 (i.e., when Np is large), then the
binomial distribution is approximately normal (Figure 4.17).

A binomial distribution with only one trial (N = 1) is called a Bernoulli trial.
You should use the binomial in fitting data only when to the number of possible

successes has an upper limit. When N is large and p is small, so that the probability
of getting N successes is small, the binomial approaches the Poisson distribution,
which is covered in the next section (Figure 4.17).

Examples: number of surviving individuals/nests out of an initial sample; number
of infested/infected animals, fruits, etc. in a sample; number of a particular class
(haplotype, subspecies, etc.) in a larger population.

Summary:

range discrete, 0 ≤ x ≤ N
distribution

(N
x

)
px(1 − p)N−x

R dbinom, pbinom, qbinom, rbinom
parameters p [real, 0–1], probability of success [prob]

N [positive integer], number of trials [size]
mean Np
variance Np(1 − p)
CV

√
(1 − p)/(Np)

conjugate prior Beta

4.5.1.2 POISSON

The Poisson distribution (Figure 4.7) gives the distribution of the number of indi-
viduals, arrivals, events, counts, etc., in a given time/space/unit of counting effort
if each event is independent of all the others. The most common definition of the
Poisson has only one parameter, the average density or arrival rate, λ, which equals
the expected number of counts in a sampling unit. An alternative parameterization
gives a density per unit sampling effort and then specifies the mean as the product
of the density per sampling effort r times the sampling effort t, λ = rt. This param-
eterization emphasizes that even when the population density is constant, you can
change the Poisson distribution of counts by sampling more extensively—for longer
times or over larger quadrats.

The Poisson distribution has no upper limit, although values much larger than
the mean value are highly improbable. This characteristic provides a rule for choosing
between the binomial and Poisson. If you expect to observe a “ceiling” on the number
of counts, you should use the binomial; if you expect the number of counts to be
effectively unlimited, even if it is theoretically bounded (e.g., there can’t really be an
infinite number of plants in your sampling quadrat), use the Poisson.

The variance of the Poisson is equal to its mean. However, the coefficient of varia-
tion decreases as the mean increases, so in that sense the Poisson distribution becomes
more regular as the expected number of counts increases. The Poisson distribution

“Bolker” — 1/9/2008 — 15:39 — page 123

−1
0
1

P R O B A B I L I T Y • 123

1050 15 20
0.0

0.1

0.2

0.3

0.4

of events

P
ro

ba
bi

lit
y

λ = 0.8

λ = 3

λ = 12

Figure 4.7 Poisson distribution.

makes sense only for count data. Since the CV is unitless, it should not depend on
the units we use to express the data; since the CV of the Poisson is 1/

√
mean, if we

used a Poisson distribution to describe data on measured lengths, we could reduce
the CV by a factor of 10 by changing units from meters to centimeters (which would
be silly).

For λ < 1 the Poisson’s mode is at zero. When the expected number of counts
gets large (e.g., λ > 10) the Poisson becomes approximately normal (Figure 4.17).

Examples: number of seeds/seedlings falling in a gap; number of offspring pro-
duced in a season (although this might be better fit by a binomial if the number of
breeding attempts is fixed); number of prey caught per unit time.

Summary:

range discrete (0 ≤ x)

distribution e−λλn

n!
or e−rt(rt)n

n!
R dpois, ppois, qpois, rpois
parameters λ (real, positive), expected number per sample

[lambda] or r (real, positive), expected
number per unit effort, area, time, etc.
(arrival rate)

“Bolker” — 1/9/2008 — 15:39 — page 124

−1
0
1

124 • C H A P T E R 4

mean λ (or rt)
variance λ (or rt)
CV 1/

√
λ (or 1/

√
rt)

conjugate prior Gamma

4.5.1.3 NEGATIVE BINOMIAL

Most probability books derive the negative binomial distribution (Figure 4.8) from
a series of independent binary (heads/tails, black/white, male/female, yes/no) trials
that all have the same probability of success, like the binomial distribution. However,
rather than counting the number of successes obtained in a fixed number of trials
as in a binomial distribution, the negative binomial counts the number of failures
before a predetermined number of successes occurs.

This failure-process parameterization is only occasionally useful in ecological
modeling. Ecologists use the negative binomial because it is discrete, like the Poisson,
but its variance can be larger than its mean (i.e., it can be overdispersed). Thus, it’s
a good phenomenological description of a patchy or clustered distribution with no
intrinsic upper limit that has more variance than the Poisson.

The “ecological” parameterization of the negative binomial replaces the param-
eters p (probability of success per trial: prob in R) and n (number of successes before
you stop counting failures: size in R) with µ = n(1 − p)/p, the mean number of
failures expected (or of counts in a sample: mu in R), and k, which is typically called
an overdispersion parameter. Confusingly, k is also called size in R, because it is
mathematically equivalent to n in the failure-process parameterization.

The overdispersion parameter measures the amount of clustering, or aggregation,
or heterogeneity, in the data: a smaller k means more heterogeneity. The variance of
the negative binomial distribution is µ + µ2/k, so as k becomes large the variance
approaches the mean and the distribution approaches the Poisson distribution. For
k > 10 µ, the negative binomial is hard to tell from a Poisson distribution, but k is
often less than µ in ecological applications.∗

Specifically, you can get a negative binomial distribution as the result of a
Poisson sampling process where the rate λ itself varies. If λ is Gamma-distributed
(p. 131) with shape parameter k and mean µ, and x is Poisson-distributed with
mean λ, then the distribution of x will be a negative binomial distribution with
mean µ and overdispersion parameter k (May, 1978; Hilborn and Mangel, 1997).
In this case, the negative binomial reflects unmeasured (“random”) variability in the
population.

Negative binomial distributions can also result from a homogeneous birth-death
process, births and deaths (and immigrations) occurring at random in continuous
time. Samples from a population that starts from 0 at time t = 0, with immigration
rate i, birthrate b, and death rate d will be negative binomially distributed with
parameters µ = i/(b − d)(e(b−d)t − 1) and k = i/b (Bailey, 1964, p. 99).

∗ Beware of the word “overdispersion,” which is sometimes used with an opposite meaning in spatial
statistics, where it can mean “more regular than expected from a random distribution of points.” If you
took quadrat samples from such an “overdispersed” population, the distribution of counts would have
variance less than the mean and would be “underdispersed” in the probability distribution sense (Brown
and Bolker, 2004)!

“Bolker” — 1/9/2008 — 15:39 — page 125

−1
0
1

P R O B A B I L I T Y • 125

1086420

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

P
ro

ba
bi

lit
y

k = 10

k =1

k = 0.1

Figure 4.8 Negative binomial distribution. Mean µ = 2 in all cases.

Several different ecological processes can often generate the same probability dis-
tribution. We can usually reason forward from knowledge of probable mechanisms
operating in the field to plausible distributions for modeling data, but this many-
to-one relationship suggests that it is unsafe to reason backwards from probability
distributions to particular mechanisms that generate them.

Examples: essentially the same as the Poisson distribution, but allowing for het-
erogeneity. Numbers of individuals per patch; distributions of numbers of parasites
within individual hosts; number of seedlings in a gap, or per unit area, or per seed
trap.

Summary:

range discrete, x ≥ 0

distribution (n+x−1)!
(n−1)!x! pn(1 − p)x

or �(k+x)
�(k)x! (k/(k + µ))k(µ/(k + µ))x

R dnbinom, pnbinom, qnbinom, rnbinom
parameters p (0 < p < 1) probability per trial [prob]

or µ (real, positive) expected number of counts [mu]
n (positive integer) number of successes awaited [size]
or k (real, positive), overdispersion parameter [size]

(= shape parameter of underlying heterogeneity)

“Bolker” — 1/9/2008 — 15:39 — page 126

−1
0
1

126 • C H A P T E R 4

mean µ = n(1 − p)/p

variance µ + µ2/k = n(1 − p)/p2

CV
√

(1+µ/k)
µ

= 1/
√

n(1 − p)

conjugate prior No simple conjugate prior (Bradlow et al., 2002)

R’s default is the coin-flipping (n=size, p=prob) parameterization. In order
to use the “ecological” (µ=mu, k=size) parameterization, you must name the mu
parameter explicitly (e.g., dnbinom(5,size=0.6,mu=1)).

4.5.1.4 GEOMETRIC

The geometric distribution (Figure 4.9) is the number of trials (with a constant prob-
ability of failure) until you get a single failure: it’s a special case of the negative
binomial, with k or n = 1.

Examples: number of successful/survived breeding seasons for a seasonally
reproducing organism. Lifespans measured in discrete units.

Summary:

range discrete, x ≥ 0
distribution p(1 − p)x

R dgeom, pgeom, qgeom, rgeom
parameters p (0 < p < 1) probability of “success” (death) [prob]
mean 1/p − 1
variance (1 − p)/p2

CV 1/
√

(1 − p)

4.5.1.5 BETA-BINOMIAL

Just as one can compound the Poisson distribution with a Gamma distribution to
allow for heterogeneity in rates, producing a negative binomial, one can compound
the binomial distribution with a Beta distribution (p. 243) to allow for heterogeneity
in per-trial probability, producing a beta-binomial distribution (Figure 4.10) (Crow-
der, 1978; Reeve and Murdoch, 1985; Hatfield et al., 1996). The most common
parameterization of the beta-binomial distribution uses the binomial parameter N
(trials per sample), plus two additional parameters a and b that describe the Beta
distribution of the per-trial probability. When a = b = 1 the per-trial probability is
equally likely to be any value between 0 and 1 (the mean is 0.5), and the beta-binomial
gives a uniform (discrete) distribution between 0 and N. As a + b increases, the vari-
ance of the underlying heterogeneity decreases and the beta-binomial converges to
the binomial distribution. Morris (1997) suggests a different parameterization that
uses an overdispersion parameter θ , like the k parameter of the negative binomial dis-
tribution. In this case the parameters are N, the per-trial probability p (= a/(a + b)),
and θ (= a + b). When θ is large (small overdispersion), the beta-binomial becomes

“Bolker” — 1/9/2008 — 15:39 — page 127

−1
0
1

P R O B A B I L I T Y • 127

1050 15 20

0.1

0.2

0.3

0.4

0.5

Survival time

P
ro

ba
bi

lit
y

p=0.2

p=0.5

Figure 4.9 Geometric distribution.

binomial. When θ is near zero (large overdispersion), the beta-binomial becomes
U-shaped (Figure 4.10).

Examples: as for the binomial.

Summary:

range discrete, 0 ≤ x ≤ N
R dbetabinom, rbetabinom [emdbook package]

(pbetabinom and qbetabinom are missing)

density �(θ)
�(pθ)�((1−p)θ) · N!

x!(N−x)! · �(x+pθ)�(N−x+(1−p)θ)∗
�(N+θ)

parameters p (real, positive), probability: average per-trial
probability [prob]

θ (real, positive), overdispersion parameter [theta]
or a and b (shape parameters of Beta

distribution for per-trial probability)
[shape1 and shape2]

a = θp, b = θ (1 − p)

mean Np

* See p. 237 and the appendix for a description of the � (“gamma”) function.

“Bolker” — 1/9/2008 — 15:39 — page 128

−1
0
1

128 • C H A P T E R 4

0 108642

0.05

0.10

0.15

0.20

0.25

of successes

P
ro

ba
bi

lit
y

θ = 0.5

θ = 5

Figure 4.10 Beta-binomial distribution. Number of trials (N) equals 10, average per-trial
probability (p) equals 0.5 for all distributions.

variance Np(1 − p)
(
1 + N−1

θ+1

)

CV
√

(1−p)
Np

(
1 + N−1

θ+1

)

4.5.2 Continuous Distributions

4.5.2.1 UNIFORM DISTRIBUTION

The uniform distribution (Figure 4.11) with limits a and b, denoted U(a, b), has
a constant probability density of 1/(b − a) for a ≤ x ≤ b and zero probability else-
where. The standard uniform, U(0, 1), is frequently used as a building block for
other distributions but the uniform distribution is surprisingly rarely used in ecology
otherwise.

Summary:

range a ≤ x ≤ b
distribution 1/(b − a)

“Bolker” — 1/9/2008 — 15:39 — page 129

−1
0
1

P R O B A B I L I T Y • 129

Value

P
ro

ba
bi

lit
y

de
ns

ity

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0

U(0,1)

U(0.5,2.5)

Figure 4.11 Uniform distribution.

R dunif, punif, qunif, runif
parameters minimum (a) and maximum (b) limits (real) [min, max]
mean (a + b)/2
variance (b − a)2/12

CV (b − a)/((a + b)
√

3)

4.5.2.2 NORMAL DISTRIBUTION

Normally distributed variables (Figure 4.12) are everywhere, and most classical sta-
tistical methods use this distribution. The explanation for the normal distribution’s
ubiquity is the Central Limit Theorem, which says that if you add a large number

“Bolker” — 1/9/2008 — 15:39 — page 130

−1
0
1

130 • C H A P T E R 4

Value

P
ro

ba
bi

lit
y

de
ns

ity

0.0

0.1

0.2

0.3

0 5 10

µ = 0, σ = 1

µ = 0 , σ = 3

µ = 2 , σ = 1

µ = 2 , σ = 3

Figure 4.12 Normal distribution.

of independent samples from the same distribution, the distribution of the sum will
be approximately normal. “Large,” for practical purposes, can mean as few as 5.
The Central Limit Theorem does not mean that “all samples with large numbers are
normal.” One obvious counterexample is two different populations with different
means that are lumped together, leading to a distribution with two peaks (p. 138).
Also, adding isn’t the only way to combine samples: if you multiply many indepen-
dent samples from the same distribution, you get a lognormal distribution instead
(p. 135).

Many distributions (binomial, Poisson, negative binomial, Gamma) become
approximately normal in some limit (Figure 4.17). You can usually think about this
as some form of “adding lots of things together.”

The normal distribution specifies the mean and variance separately, with two
parameters, which means that one often assumes constant variance (as the mean
changes), in contrast to the Poisson and binomial distribution where the variance is
a fixed function of the mean.

Examples: many continuous, symmetrically distributed measurements—
temperature, pH, nitrogen concentration.

“Bolker” — 1/9/2008 — 15:39 — page 131

−1
0
1

P R O B A B I L I T Y • 131

Summary:

range all real values

distribution 1√
2πσ

exp
(
− (x−µ)2

2σ2

)
R dnorm, pnorm, qnorm, rnorm
parameters µ (real), mean [mean]

σ (real, positive), standard deviation [sd]
mean µ

variance σ 2

CV σ/µ

conjugate prior Normal (µ); Gamma (1/σ 2)

4.5.2.3 GAMMA

The Gamma distribution (Figure 4.13) is the distribution of waiting times until a
certain number of events take place. For example, Gamma(shape = 3, scale = 2) is
the distribution of the length of time (in days) you’d expect to have to wait for 3
deaths in a population, given that the average survival time is 2 days (or mortality
rate is 1/2 per day). The mean waiting time is 6 days = (3 deaths/(1/2 death per day)).
(While the gamma function (gamma in R; see the appendix) is usually written with
a capital Greek gamma, �, the Gamma distribution (dgamma in R) is written out as
Gamma.) Gamma distributions with integer shape parameters are also called Erlang
distributions. The Gamma distribution is still defined, and useful, for noninteger
(positive) shape parameters, but the simple description given above breaks down:
how can you define the waiting time until 3.2 events take place?

For shape parameters ≤ 1, the Gamma has its mode at zero; for shape parameter
= 1, the Gamma is equivalent to the exponential (see below). For shape parameters
greater than 1, the Gamma has a peak (mode) at a value greater than zero; as the
shape parameter increases, the Gamma distribution becomes more symmetrical and
approaches the normal distribution. This behavior makes sense if you think of the
Gamma as the distribution of the sum of independent, identically distributed waiting
times, in which case it is governed by the Central Limit Theorem.

The scale parameter (sometimes defined in terms of a rate parameter instead,
1/scale) just adjusts the mean of the Gamma by adjusting the waiting time per event;
however, multiplying the waiting time by a constant to adjust its mean also changes
the variance, so both the variance and the mean depend on the scale parameter.

The Gamma distribution is less familiar than the normal, and new users of the
Gamma often find it annoying that in the standard parameterization you can’t adjust
the mean independently of the variance. You could define a new set of parameters m
(mean) and v (variance), with scale = v/m and shape = m2/v—but then you would
find (unlike the normal distribution) the shape changing as you changed the vari-
ance. Nevertheless, the Gamma is extremely useful; it solves the problem that many
researchers face when they have a continuous, positive variable with “too much vari-
ance,” whose coefficient of variation is greater than about 0.5. Modeling such data
with a normal distribution leads to unrealistic negative values, which then have to

“Bolker” — 1/9/2008 — 15:39 — page 132

−1
0
1

132 • C H A P T E R 4

1050 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Value

P
ro

b.
 d

en
si

ty

shape=1, scale=1

shape=2, scale=1

shape=5, scale=1

shape=1, scale=1/3

shape=2, scale=1/3

shape=5, scale=1/3

Figure 4.13 Gamma distribution.

be dealt with in some ad hoc way like truncating them or otherwise trying to ignore
them. The Gamma is often a more convenient and realistic alternative.

The Gamma is the continuous counterpart of the negative binomial, which is the
discrete distribution of a number of trials (rather than length of time) until a certain
number of events occur. Both the negative binomial and Gamma distributions are
often generalized, however, in ways that are useful phenomenologically but that don’t
necessarily make sense according to their simple mechanistic descriptions.

The Gamma and negative binomial are both frequently used as phenomenolog-
icaly, skewed, or overdispersed versions of the normal or Poisson distributions. The
Gamma is less widely used than the negative binomial because the negative binomial
replaces the Poisson, which is restricted to a particular variance, while the Gamma
replaces the normal, which can have any variance. Thus you might use the negative
binomial for any discrete distribution with a variance greater than its mean, whereas
you wouldn’t need a Gamma distribution unless the distribution you were trying to
match was skewed to the right.

Examples: almost any variable with a large coefficient of variation where negative
values don’t make sense: nitrogen concentrations, light intensity, growth rates.

Summary:

range positive real values
R dgamma, pgamma, qgamma, rgamma

“Bolker” — 1/9/2008 — 15:39 — page 133

−1
0
1

P R O B A B I L I T Y • 133

distribution 1
sa�(a)x

a−1e−x/s

parameters s (real, positive), scale: length per event [scale]
or r (real, positive), rate = 1/s; rate at which events occur

[rate]
a (real, positive), shape: number of events [shape]

mean as or a/r

variance as2 or a/r2

CV 1/
√

a

4.5.2.4 EXPONENTIAL

The exponential distribution (Figure 4.14) describes the distribution of waiting times
for a single event to happen, given that there is a constant probability per unit time
that it will happen. It is the continuous counterpart of the geometric distribution
and a special case (for shape parameter = 1) of the Gamma distribution. It can be
useful both mechanistically, as a distribution of interevent times or lifetimes, and
phenomenologically, for any continuous distribution that has highest probability for
zero or small values.

Examples: times between events (bird sightings, rainfall, etc.); lifespans/survival
times; random samples of anything that decreases exponentially with time or distance
(e.g., dispersal distances, light levels in a forest canopy).

Summary:

range positive real values
R dexp, pexp, qexp, rexp
density λe−λx

parameters λ (real, positive), rate: death/disappearance rate [rate]
mean 1/λ

variance 1/λ2

CV 1

4.5.2.5 BETA

The Beta distribution (Figure 4.15), a continuous distribution closely related to the
binomial distribution, completes our basic family of continuous distributions (Fig-
ure 4.17). The Beta distribution is the only standard continuous distribution besides
the uniform distribution with a finite range, from 0 to 1. The Beta distribution is
the inferred distribution of the probability of success in a binomial trial with a − 1
observed successes and b − 1 observed failures. When a = b the distribution is sym-
metric around x = 0.5, when a < b the peak shifts toward zero, and when a > b it
shifts toward 1. With a = b = 1, the distribution is U(0, 1). As a + b (equivalent to
the total number of trials +2) gets larger, the distribution becomes more peaked. For
a or b less than 1, the mechanistic description stops making sense (how can you have
fewer than zero trials?), but the distribution is still well-defined, and when a and b
are both between 0 and 1 it becomes U-shaped—it has peaks at p = 0 and p = 1.

“Bolker” — 1/9/2008 — 15:39 — page 134

−1
0
1

134 • C H A P T E R 4

1086420 12 14

0.2

0.4

0.6

0.8

Value

P
ro

ba
bi

lit
y

de
ns

ity

λ = 1

λ = 1 2

λ =1 5

Figure 4.14 Exponential distribution.

The Beta distribution is obviously good for modeling probabilities or propor-
tions. It can also be useful for modeling continuous distributions with peaks at both
ends, although in some cases a finite mixture model (p. 138) may be more appropri-
ate. The Beta distribution is also useful whenever you have to define a continuous
distribution on a finite range, as it is the only such standard continuous distribution.
It’s easy to rescale the distribution so that it applies over some other finite range
instead of from 0 to 1; for example, Tiwari et al. (2005) used the Beta distribution
to describe the distribution of turtles on a beach, so the range would extend from 0
to the length of the beach.

Summary:

range real, 0 to 1
R dbeta, pbeta, qbeta, rbeta

density �(a+b)
�(a)�(b)x

a−1(1 − x)b−1

parameters a (real, positive), shape 1: number of successes +1 [shape1]
b (real, positive), shape 2: number of failures +1 [shape2]

mean a/(a + b)
mode (a − 1)/(a + b − 2)
variance ab/((a + b)2)(a + b + 1)

CV
√

(b/a)/(a + b + 1)

“Bolker” — 1/9/2008 — 15:39 — page 135

−1
0
1

P R O B A B I L I T Y • 135

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

Value

P
ro

ba
bi

lit
y

de
ns

ity

a=1, b=5

a=5, b=5

a=5, b=1

a=0.5, b=0.5

a=1, b=1

Figure 4.15 Beta distribution.

4.5.2.6 LOGNORMAL

The lognormal (Figure 4.16) falls outside the neat classification scheme we’ve been
building so far; it is not the continuous analogue or limit of some discrete sampling
distribution (Figure 4.17).∗ Its mechanistic justification is like the normal distribution
(the Central Limit Theorem), but for the product of many independent, identical
variates rather than their sum. Just as taking logarithms converts products into sums,
taking the logarithm of a lognormally distributed variable—which might result from
the product of independent variables—converts it into a normally distributed variable
resulting from the sum of the logarithms of those independent variables. The best
example of this mechanism is the distribution of the sizes of individuals or populations
that grow exponentially, with a per capita growth rate that varies randomly over time.
At each time step (daily, yearly, etc.), the current size is multiplied by the randomly

∗ The lognormal extends our table in another direction—exponential transformation of a known
distribution. Other distributions have this property, most notably the extreme-value distribution, which is
the log-exponential: if Y is exponentially distributed, then log Y is extreme-value distributed. As its name
suggests, the extreme-value distribution occurs mechanistically as the distribution of extreme values (e.g.,
maxima) of samples of other distributions (Katz et al., 2005).

“Bolker” — 1/9/2008 — 15:39 — page 136

−1
0
1

136 • C H A P T E R 4

1086420 12

0.0

0.5

1.0

1.5

2.0

Value

P
ro

ba
bi

lit
y

de
ns

ity

µ log = 0, σ log = 0.2

µ log = 0, σ log = 0.5

µ log = 0, σ log = 1

µ log = 2, σ log = 0.2

µ log = 2, σ log = 0.5

µ log = 2, σ log = 1

Figure 4.16 Lognormal distribution.

chosen growth increment, so the final size (when measured) is the product of the
initial size and all of the random growth increments.

One potentially puzzling aspect of the lognormal distribution is that its mean is
not what you might naively expect if you exponentiate a normal distribution with
mean µ (i.e., eµ). Because the exponential function is an accelerating function, the
mean of the lognormal, eµ+σ2/2, is greater than eµ (Jensen’s inequality). When the
variance is small relative to the mean, the mean is approximately equal to eµ, and
the lognormal itself looks approximately normal (e.g., solid lines in Figure 4.16, with
σ (log) = 0.2). As with the Gamma distribution, the distribution also changes shape
as the variance increases, becoming more skewed.

The lognormal is used phenomenologically in some of the same situations where
a Gamma distribution also fits: continuous, positive distributions with long tails
or variance much greater than the mean (McGill et al., 2006). Like the distinction
between a Michaelis-Menten and a saturating exponential function, you may not be
able to tell the difference between a lognormal and a Gamma without large amounts
of data. Use the one that is more convenient, or that corresponds to a more plausible
mechanism for your data.

Examples: sizes or masses of individuals, especially rapidly growing individuals;
abundance vs. frequency curves for plant communities.

Summary:

range positive real values
R dlnorm, plnorm, qlnorm, rlnorm

“Bolker” — 1/9/2008 — 15:39 — page 137

−1
0
1

P R O B A B I L I T Y • 137

large N,
small p

uniform

geometric

Poisson

large k

k=1

binomial
large N,

intermediate p

normal

lognormal

shape=1

exponential

log/exp

large shape

large λ

gamma

beta

a and b large

large θ a=b=1

negative binomial

transform

conjugate priors

limit / special case

DISCRETE CONTINUOUS

Figure 4.17 Relationships among probability distributions.

density 1√
2πσx

e−(log x−µ)2/(2σ2)

parameters µ (real): mean of the logarithm [meanlog]
σ (real): standard deviation of the logarithm [sdlog]

mean exp (µ + σ 2/2)

variance exp (2µ + σ 2)(exp (σ 2) − 1)

CV
√

exp (σ 2) − 1 (≈ σ when σ < 1/2)

4.6 Extending Simple Distributions: Compounding and Generalizing

What do you do when none of these simple distributions fits your data? You could
always explore other distributions. For example, the Weibull distribution (similar

“Bolker” — 1/9/2008 — 15:39 — page 138

−1
0
1

138 • C H A P T E R 4

to the Gamma distribution in shape: dweibull in R) generalizes the exponential
to allow for survival probabilities that increase or decrease with age (p. 251). The
Cauchy distribution (dcauchy in R), described as fat-tailed because the probability
of extreme events (in the tails of the distribution) is very large—larger than for the
exponential or normal distributions—can be useful for modeling distributions with
many outliers. You can often find useful distributions for your data in modeling
papers from your subfield of ecology.

However, in addition to simply learning more distributions, learning some
strategies for generalizing more familiar distributions can also be useful.

4.6.1 Adding Covariates

One obvious strategy is to look for systematic differences within your data that
explain the nonstandard shape of the distribution. For example, a bimodal or
multimodal distribution (one with two or more peaks, in contrast to most of the
distributions discussed above that have a single peak) may make perfect sense once
you realize that your data are a collection of objects from different populations with
different means. For example, the sizes or masses of sexually dimorphic animals or
animals from several different cryptic species would bi- or multimodal distributions,
respectively. A distribution that isn’t multimodal but is more fat-tailed than a nor-
mal distribution might indicate systematic variation in a continuous covariate such
as nutrient availability, or maternal size, of environmental temperature, of different
individuals. If you can measure these covariates, then you may be able to add them
to the deterministic part of the model and use standard distributions to describe the
variability conditioned on the covariates.

4.6.2 Mixture Models

But what if you can’t identify, or measure, systematic differences? You can still
extend standard distributions by supposing that your data are really a mixture of
observations from different types of individuals, but that you can’t observe the (finite)
types or (continuous) covariates of individuals. These distributions are called mixture
distributions or mixture models. Fitting them to data can be challenging, but they
are very flexible.

4.6.2.1 FINITE MIXTURES

Finite mixture models suppose that your observations are drawn from a discrete
set of unobserved categories, each of which has its own distribution. Typically all
categories have the same type of distribution, such as normal, but with different
mean or variance parameters. Finite mixture distributions often fit multimodal data.
Finite mixtures are typically parameterized by the parameters of each component
of the mixture, plus a set of probabilities or percentages describing the amount of
each component. For example, 30% of the organisms (p = 0.3) could be in group 1,
normally distributed with mean 1 and standard deviation 2, while 70% (1 − p =
0.7) are in group 2, normally distributed with mean 5 and standard deviation 1

“Bolker” — 1/9/2008 — 15:39 — page 139

−1
0
1

P R O B A B I L I T Y • 139

0 5 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
ro

ba
bi

lit
y

de
ns

ity

x

Figure 4.18 Finite mixture distribution: 70% Normal(µ = 1, σ = 2), 30% Normal(µ = 5,
σ = 1).

(Figure 4.18). If the peaks of the distributions are closer together, or their standard
deviations are larger so that the distributions overlap, you’ll see a broad (and perhaps
lumpy) peak rather than two distinct peaks.

Zero-inflated models are a common type of finite mixture model (Inouye, 1999;
Martin et al., 2005); we saw a simple example of a zero-inflated binomial at the
beginning of this chapter. Zero-inflated models (Figure 4.1) combine a standard dis-
crete probability distribution (e.g., binomial, Poisson, or negative binomial), which
typically includes some probability of sampling zero counts even when some individ-
uals are present, with an additional process that can also lead to a zero count (e.g.,
complete absence of the species or trap failure).

4.6.3 Continuous Mixtures

Continuous mixture distributions, also known as compounded distributions, allow
the parameters themselves to vary randomly, drawn from their own distribution.
They are a sensible choice for overdispersed data, or for data where you suspect
that continuous unobserved covariates may be important. Technically, compounded
distributions are the distribution of a sampling distribution S(x, p) with parameter(s)
p that vary according to another (typically continuous) distribution P(p). The dis-
tribution of the compounded distribution C is C(x) = ∫ S(x, p)P(p)dp. For example,

“Bolker” — 1/9/2008 — 15:39 — page 140

−1
0
1

140 • C H A P T E R 4

compounding a Poisson distribution by drawing the rate parameter λ from a Gamma
distribution with shape parameter k (and scale parameter λ/k, to make the mean
equal to λ) results in a negative binomial distribution (p. 124). Continuous mixture
distributions are growing ever more popular in ecology as ecologists try to account
for heterogeneity in their data.

The negative binomial, which could also be called the Gamma-Poisson distribu-
tion to highlight its compound origin, is the most common compounded distribution.
The beta-binomial is also fairly common: like the negative binomial, it compounds
a common discrete distribution (binomial) with its conjugate prior (Beta), resulting
in a mathematically simple form that allows for more variability. The lognormal-
Poisson is very similar to the negative binomial, except that (as its name suggests) it
uses the lognormal instead of the Gamma as a compounding distribution. One tech-
nical reason to use the less common lognormal-Poisson is that on the log scale the
rate parameter is normally distributed, which simplifies some numerical procedures
(Elston et al., 2001).

Clark et al. (1999) used the Student t distribution to model seed dispersal curves.
Seeds often disperse fairly uniformly near parental trees but also have a high proba-
bility of long dispersal. These two characteristics are incompatible with standard seed
dispersal models like the exponential and normal distributions. Clark et al. assumed
that the seed dispersal curve represents a compounding of a normal distribution for
the dispersal of any one seed with a Gamma distribution of the inverse variance of
the distribution of any particular seed (i.e., 1/σ 2 ∼ Gamma).∗ This variation in vari-
ance accounts for the different distances that different seeds may travel as a function
of factors like their size, shape, height on the tree, and the wind speed at the time
they are released. Clark et al. used compounding to model these factors as random,
unobserved covariates since they are practically impossible to measure for all the
individual seeds on a tree or in a forest.

The inverse Gamma-normal model is equivalent to the Student t distribution,
which you may recognize from t tests in classical statistics and which statisticians
often use as a phenomenological model for fat-tailed distributions. Clark et al.
extended the usual one-dimensional t distribution (dt in R) to the two-dimensional
distribution of seeds around a parent and called it the 2Dt distribution. The 2Dt
distribution has a scale parameter that determines the mean dispersal distance and a
shape parameter p. When p is large the underlying Gamma distribution has a small
coefficient of variation and the 2Dt distribution is close to normal; when p = 1 the
2Dt becomes a Cauchy distribution.

Generalized distributions are an alternative class of mixture distribution that
arises when there is a sampling distribution S(x) for the number of individuals within
a cluster and another sampling distribution C(x) for number of clusters in a sam-
pling unit. For example, the distribution of number of eggs per quadrat might be
generalized from the distribution of clutches per quadrat and of eggs per clutch.
A standard example is the “Poisson-Poisson” or “Neyman Type A” distribution
(Pielou, 1977), which assumes a Poisson distribution of clusters with a Poisson
distribution of individuals in each cluster.

∗ This choice of a compounding distribution, which may seem arbitrary, turns out to be mathemati-
cally convenient.

“Bolker” — 1/9/2008 — 15:39 — page 141

−1
0
1

P R O B A B I L I T Y • 141

Figuring out the probability distribution or density formulas for compounded
distributions analytically is mathematically challenging (see Bailey (1964) or Pielou
(1977) for the gory details), but R can easily generate random numbers from these
distributions.

The key is that R’s functions for generating random distributions (rpois, rbinom,
etc.) can take vectors for their parameters. Rather than generate (say) 20 deviates
from a binomial distribution with N trials and a fixed per-trial probability p, you can
choose 20 deviates with N trials and a vector of 20 different per-trial probabilities
p1 to p20. Furthermore, you can generate this vector of parameters from another
randomizing function! For example, to generate 20 beta-binomial deviates with N =
10 and the per-trial probabilities drawn from a Beta distribution with a = 2 and
b = 1, you could use rbinom(20,rbeta(20,2,1)). (See the R supplement for more
detail.)

Compounding and generalizing are powerful ways to extend the range of stochas-
tic ecological models. A good fit to a compounded distribution also suggests that
environmental variation is shaping the variation in the population. But be careful:
Pielou (1977) demonstrates that for Poisson distributions, every generalized distri-
bution (corresponding to variation in the underlying density) can also be generated
by a compound distribution (corresponding to individuals occurring in clusters). She
concludes that “the fitting of theoretical frequency distributions to observational
data can never by itself suffice to ‘explain’ the pattern of a natural population”
(p. 123).

4.7 R Supplement

For all of the probability distributions discussed in this chapter (and many more:
try help.search("distribution")), R can generate random numbers (deviates)
drawn from the distribution; compute the cumulative distribution function and the
probability distribution function; and compute the quantile function, which gives
the x value such that

∫ x
−∞ P(x) dx (the probability that X ≤ x) is a specified value.

For example, you can obtain the critical values of the standard normal distribution,
±1.96, with qnorm(0.025) and qnorm(0.975) (Figure 4.19).

4.7.1 Discrete Distribution

For example, let’s explore the (discrete) negative binomial distribution.
First set the random-number seed for consistency so that you get exactly the same

results shown here:

> set.seed(1001)

Arbitrarily choose parameters µ = 10 and k = 0.9—since k < 1, this represents
a strongly overdispersed population. Remember that R uses size to denote k,
because k is mathematically equivalent to the number of failures in the failure-process
parameterization.

> z <- rnbinom(1000, mu = 10, size = 0.9)

“Bolker” — 1/9/2008 — 15:39 — page 142

−1
0
1

142 • C H A P T E R 4

x

x0

ddist(x0)

pdist (x0)

P
ro

ba
bi

lit
y

de
ns

ity

rdist(10)

x

x0

pdist(x0)

0.95

qdist(0.95)

C
um

ul
at

iv
e

di
st

rib
ut

io
n

a b

Figure 4.19 R functions for an arbitrary distribution dist, showing density function (ddist),
cumulative distribution function (pdist), quantile function (qdist), and random-deviate
function (rdist).

Check the first few values:

> head(z)

[1] 41 3 3 0 11 14

Since the negative binomial has no set upper limit, we will just plot the results
up to the maximum value sampled:

> maxz <- max(z)

The easiest way to plot the results is

> f <- factor(z, levels = 0:maxz)
> plot(f)

using the levels specification to make sure that all values up to the maximum are
included in the plot even when none were sampled in this particular experiment.

If we want the observed probabilities (freq/N) rather than the frequencies:

> obsprobs <- table(f)/1000
> plot(obsprobs)

“Bolker” — 1/9/2008 — 15:39 — page 143

−1
0
1

P R O B A B I L I T Y • 143

Add theoretical values:

> tvals <- dnbinom(0:maxz, size = 0.9, mu = 10)
> points(0:maxz, tvals)

You could plot the deviations with plot(0:maxz,obsprobs-tvals); this gives you
some idea how the variability changes with the mean.

Find the probability that x > 30:

> pnbinom(30, size = 0.9, mu = 10, lower.tail = FALSE)

[1] 0.05725252

By default R’s distribution functions will give you the lower tail of the distribution—
the probability that x is less than or equal to some particular value. You could
use 1-pnbinom(30,size=0.9,mu=10) to get the uppper tail since Prob(x > 30) =
1 − Prob(x ≤ 30), but using lower.tail=FALSE to get the upper tail is more accurate.

What is the upper 95th percentile of the distribution?

> qnbinom(0.95, size = 0.9, mu = 10)

[1] 32

To get the lower and upper 95% confidence limits, you need

> qnbinom(c(0.025, 0.975), size = 0.9, mu = 10)

[1] 0 40

You can also use the random sample z to check that the mean and variance,
and the 95th quantile of the sample, agree reasonably well with the theoretical
expectations:

> mu <- 10
> k <- 0.9
> c(mu, mean(z))

[1] 10.000 9.654

> c(mu * (1 + mu/k), var(z))

[1] 121.1111 113.6539

> c(qnbinom(0.95, size = k, mu = mu), quantile(z, 0.95))

95%
32 31

4.7.2 Continuous Distribution: Lognormal

Going through the same exercise for the lognormal, a continuous distribution:

> z <- rlnorm(1000, meanlog = 2, sdlog = 1)

“Bolker” — 1/9/2008 — 15:39 — page 144

−1
0
1

144 • C H A P T E R 4

Plot the results:

> hist(z, breaks = 100, freq = FALSE)
> lines(density(z, from = 0), lwd = 2)

Add theoretical values:

> curve(dlnorm(x, meanlog = 2, sdlog = 1), add = TRUE,
+ lwd = 2, from = 0, col = "darkgray")

The probability of x > 20:

> plnorm(30, meanlog = 2, sdlog = 1, lower.tail = FALSE)

[1] 0.08057753

95% confidence limits:

> qlnorm(c(0.025, 0.975), meanlog = 2, sdlog = 1)

[1] 1.040848 52.455437

Comparing the theoretical values (p. 137) with the observed values for this
random sample:

> meanlog <- 2
> sdlog <- 1
> c(exp(meanlog + sdlogˆ2/2), mean(z))

[1] 12.18249 12.12708

> c(exp(2 * meanlog + sdlogˆ2) * (exp(sdlogˆ2) - 1),
+ var(z))

[1] 255.0156 184.7721

> c(qlnorm(0.95, meanlog = meanlog, sdlog = sdlog),
+ quantile(z, 0.95))

95%
38.27717 39.65172

The difference between the expected and observed variance is fairly large. This is
typical: variances of random samples have larger variances, or absolute differences
from their theoretical expected values, than means of random samples.

Sometimes it’s easier to deal with lognormal data by taking logarithms of the
data and comparing them to the normal distribution:

> hist(log(z), freq = FALSE, breaks = 100)
> curve(dnorm(x, mean = meanlog, sd = sdlog), add = TRUE,
+ lwd = 2)

“Bolker” — 1/9/2008 — 15:39 — page 145

−1
0
1

P R O B A B I L I T Y • 145

4.7.3 Mixing and Compounding Distributions

4.7.3.1 FINITE MIXTURE DISTRIBUTIONS

The general recipe for generating samples from finite mixtures is to use a uniform
distribution to choose different components of the mixture, then use ifelse to pick
values from one distribution or the other. To pick 1000 values from a mixture of
normal distributions with the parameters shown in Figure 4.18 (p = 0.3, µ1 = 1,
σ1 = 2, µ2 = 5, σ2 = 1):

> u1 <- runif(1000)
> z <- ifelse(u1 < 0.3, rnorm(1000, mean = 1, sd = 2),
+ rnorm(1000, mean = 5, sd = 1))
> hist(z, breaks = 100, freq = FALSE)

The probability density of a finite mixture composed of two distributions D1
and D2 in proportions p1 and 1 − p1 is p1D1 + (1 − p1)D2. We can superimpose the
theoretical probability density for the finite mixture above on the histogram:

> curve(0.3 * dnorm(x, mean = 1, sd = 2) + 0.7 * dnorm(x,
+ mean = 5, sd = 1), add = TRUE, lwd = 2)

The general formula for the probability distribution of a zero-inflated dis-
tribution, with an underlying distribution P(x) and a zero-inflation probability
of pz, is

Prob(0) = pz + (1 − pz)P(0)

Prob(x > 0) = (1 − pz)P(x)

So, for example, we could define a probability distribution for a zero-inflated negative
binomial as follows:

> dzinbinom = function(x, mu, size, zprob) {
+ ifelse(x == 0, zprob + (1 - zprob) * dnbinom(0,
+ mu = mu, size = size), (1 - zprob) * dnbinom(x,
+ mu = mu, size = size))
+ }

(The name, dzinbinom, follows the R convention for a probability distribution func-
tion: a d followed by the abbreviated name of the distribution, in this case zinbinom
for “zero-inflated negative binomial.”)

The ifelse command checks every element of x to see whether it is zero or not
and fills in the appropriate value depending on the answer.

Here’s a random deviate generator:

> rzinbinom = function(n, mu, size, zprob) {
+ ifelse(runif(n) < zprob, 0, rnbinom(n, mu = mu,
+ size = size))
+ }

“Bolker” — 1/9/2008 — 15:39 — page 146

−1
0
1

146 • C H A P T E R 4

The command runif(n) picks n random values between 0 and 1; the ifelse com-
mand compares them with the value of zprob. If an individual value is less than
zprob (which happens with probability zprob = pz), then the corresponding ran-
dom number is zero; otherwise it is a value picked out of the appropriate negative
binomial distribution (which may also be zero).

4.7.3.2 COMPOUNDED DISTRIBUTIONS

Start by confirming numerically that a negative binomial distribution is really a
compounded Poisson-Gamma distribution. Pick 1000 values out of a Gamma dis-
tribution, then use those values as the rate (λ) parameters in random draws from a
Poisson distribution:

> k <- 3
> mu <- 10
> lambda <- rgamma(1000, shape = k, scale = mu/k)
> z <- rpois(1000, lambda)
> P1 <- table(factor(z, levels = 0:max(z)))/1000
> plot(P1)
> P2 <- dnbinom(0:max(z), mu = 10, size = 3)
> points(0:max(z), P2)

Establish that a Poisson-lognormal and a Poisson-Gamma (negative binomial)
are not very different: pick the Poisson-lognormal with approximately the same mean
and variance as the negative binomial just shown.

> mlog <- mean(log(lambda))
> sdlog <- sd(log(lambda))
> lambda2 <- rlnorm(1000, meanlog = mlog, sdlog = sdlog)
> z2 <- rpois(1000, lambda2)
> P3 <- table(factor(z2, levels = 0:max(z)))/1000
> matplot(0:max(z), cbind(P1, P3), pch = 1:2)
> lines(0:max(z), P2)

“Bolker” — 1/9/2008 — 15:39 — page 147

−1
0
1

5 Stochastic Simulation and Power Analysis

This chapter introduces techniques and ideas related to simulating ecological pat-
terns. Its main goals are: (1) to show you how to generate patterns you can use to
sharpen your intuition and test your estimation tools; and (2) to introduce statistical
power and related concepts, and show you how to estimate statistical power by sim-
ulation. This chapter and the supplements will also give you more practice working
with R.

5.1 Introduction

Chapters 3 and 4 gave a basic overview of functions to describe deterministic patterns
and probability distributions to describe stochastic patterns. This chapter will show
you how to use stochastic simulation to understand and test your data. Simulation
is sometimes called forward modeling, to emphasize that you pick a model and
parameters and work forward to predict patterns in the data. Parameter estimation,
or inverse modeling (the main focus of this book), starts from the data and works
backward to choose a model and estimate parameters.

Ecologists often use simulation to explore the patterns that emerge from ecolog-
ical models. Often they use theoretical models without accompanying data, in order
to understand qualitative patterns and plan future studies. But even if you have
data, you might want to start by simulating your system. You can use simulations to
explore the functions and distributions you chose to quantify your data. If you can
choose parameters that make the simulated output from those functions and distri-
butions look like your data, you can confirm that the models are reasonable—and
simultaneously find a rough estimate of the parameters.

You can also use simulated “data” from your system to test your estimation
procedures. Chapters 6–8 will show you how to estimate parameters; in this chapter
I’ll work with more “canned” procedures like nonlinear regression. Since you never
know the true answer to an ecological question—you only have imperfect measure-
ments with which you’re trying to get as close to the answer as possible—simulation
is the only way to test whether you can correctly estimate the parameters of an

“Bolker” — 1/9/2008 — 15:39 — page 148

−1
0
1

148 • C H A P T E R 5

ecological system. It’s always good to test such a best-case scenario, where you know
that the functions and distributions you’re using are correct, before you proceed to
real data.

Power analysis is a specific kind of simulation testing where you explore how
large a sample size you would need to get a reasonably precise estimate of your param-
eters. You can also also use power analysis to explore how variations in experimental
design would change your ability to answer ecological questions.

5.2 Stochastic Simulation

Static ecological processes, where the data represent a snapshot of some ecological
system, are easy to simulate.∗ For static data, we can use a single function to simulate
the deterministic process and then add heterogeneity. Often, however, we will chain
together several different mathematical functions and probability distributions rep-
resenting different stages in an ecological process to produce surprisingly complex
and rich descriptions of ecological systems.

I’ll start with three simple examples that illustrate the general procedure, and
then move on to two slightly more in-depth examples.

5.2.1 Simple Examples

5.2.1.1 SINGLE GROUPS

Figure 5.1 shows the results of two simple simulations, each with a single group and
single continuous covariate.

The first simulation (Figure 5.1a) is a linear model with normally distributed
errors. It might represent productivity as a function of nitrogen concentration,
or predation risk as a function of predator density. The mathematical formula is
Y ∼ Normal(a + bx, σ 2), specifying that Y is a random variable drawn from a normal
distribution with mean a + bx and variance σ 2. The symbol ∼ means “is distributed
according to.” This model can also be written as yi = a + bxi + εi, εi ∼ N(0, σ 2),
specifying that the ith value of Y, yi, is equal to a + bxi plus a normally distributed
error term with mean zero. I will always use the first form because it is more general:
normally distributed error is one of the few kinds that can simply be added onto
the deterministic model in this way. The two lines on the plot show the theoretical
relationship between y and x and the best-fit line by linear regression, lm(y˜x) (Sec-
tion 9.2.1). The lines differ slightly because of the randomness incorporated in the
simulation.

A few lines of R code will run this simulation. Set up the values of x, and specify
values for the parameters a and b:

> x = 1:20
> a = 2
> b = 1

∗ Dynamic processes are more challenging. See Chapter 11.

“Bolker” — 1/9/2008 — 15:39 — page 149

−1
0
1

S T O C H A S T I C S I M U L A T I O N • 149

5 10 15 20

5

10

15

20

x

y

true

best fit

x

y

0

0 1 2 3 4 5

2

4

6

8

10
true

best fit

a b

Figure 5.1 Two simple simulations: (a) a linear function with normal errors (Y ∼ Normal
(a + bx, σ2)) and (b) a hyperbolic function with negative binomial errors (Y ∼ NegBin(µ = ab/

(b + x), k)).

Calculate the deterministic part of the model:

> y_det = a + b * x

Pick 20 random normal deviates with the mean equal to the deterministic equation
and σ = 2:

> y = rnorm(20, mean = y_det, sd = 2)

(You could also specify this as y = y_det+rnorm(20,sd=2), corresponding to
the additive model yi = a + bxi + εi, εi ∼ N(0, σ 2) (the mean parameter is zero by
default). However, the additive form works only for the normal, and not for most of
the other distributions we will be using.)

The second simulation uses hyperbolic functions (y = ab/(b + x)) with nega-
tive binomial error, or, in symbols, Y ∼ NegBin(µ = ab/(b + x), k). The function is
parameterized so that a is the intercept term (when x = 0, y = ab/b = a). This simu-
lation might represent the decreasing fecundity of a species as a function of increasing
population density; the hyperbolic function is a natural expression of the decreasing
quantity of a limiting resource per individual.

In this case, we cannot express the model as the deterministic function “plus
error.” Instead, we have to incorporate the deterministic model as a control on one
of the parameters of the error distribution—in this case, the mean µ. (Although
the negative binomial is a discrete distribution, its parameters µ and k are continu-
ous.) Ecological models typically describe the differences in the mean among groups

“Bolker” — 1/9/2008 — 15:39 — page 150

−1
0
1

150 • C H A P T E R 5

or as covariates change, but we could also allow the variance or the shape of the
distribution to change.

The R code for this simulation is easy, too. Define parameters

> a = 20
> b = 1
> k = 5

How you simulate the x values depends on the experimental design you are
trying to simulate. In this case, we choose 50 x values randomly distributed between
0 and 5 to simulate a study where the samples are chosen from natural varying
sites, in contrast to the previous simulation where x varied systematically (x=1:20),
simulating an experimental or observational study that samples from a gradient in
the predictor variable x.

> x = runif(50, min = 0, max = 5)

Now we calculate the deterministic mean y_det, and then sample negative
binomial values with the appropriate mean and overdispersion:

> y_det = a * b/(b + x)
> y = rnbinom(50, mu = y_det, size = k)

5.2.1.2 MULTIPLE GROUPS

Ecological studies typically compare the properties of organisms in different groups
(e.g., control and treatment, parasitized and unparasitized, high and low altitude).

Figure 5.2 shows a simulation that extends the hyperbolic simulation above to
compare the effects of a continuous covariate in two different groups (species in this
case). Both groups have the same overdispersion parameter k, but the hyperbolic
parameters a and b differ:

Y ∼ NegBin(µ = aibi/(bi + x), k) (5.2.1)

where i is 1 or 2 depending on the species of an individual.
Suppose we still have 50 individuals, but the first 25 are species 1 and the

second 25 are species 2. We use rep to set up a factor that describes the group struc-
ture (the R commands gl and expand.grid are useful for more complicated group
assignments):

> g = factor(rep(1:2, each = 25))

Defining vectors of parameters, each with one element per species, or a single
parameter for k since the species have the same degree of overdispersion:

> a = c(20, 10)
> b = c(1, 2)
> k = 5

R’s vectorization makes it easy to incorporate different parameters for different
species into the formula, by using the group vector g to specify which element of the

“Bolker” — 1/9/2008 — 15:39 — page 151

−1
0
1

S T O C H A S T I C S I M U L A T I O N • 151

x

y

0

0 1 2 3 4 5

5

10

15 data (sp. 1)
true (sp. 1)

best fit (sp. 1)

data (sp. 2)
true (sp. 2)

best fit (sp. 2)

Figure 5.2 Simulation results from a hyperbolic/negative binomial model with groups differ-
ing in both intercept and slope: Y ∼ NegBin(µ = aibi/(bi + x), k). Parameters: a = {20, 10},
b = {1, 2}, k = 5.

parameter vectors to use for any particular individual:

> y_det = a[g]/(b[g] + x)
> y = rnbinom(50, mu = y_det, size = k)

5.2.2 Intermediate Examples

5.2.2.1 REEF FISH SETTLEMENT

The damselfish settlement data from Schmitt et al. (1999; also Section 2.4.3 above)
include random variation in settlement density (the density of larvae arriving on a
given anemone) and random variation in density-dependent recruitment (number of
settlers surviving for 6 months on an anemone).

To simulate the variation in settlement density I took random draws from a
zero-inflated negative binomial (p. 145), although a noninflated binomial, or even
a geometric distribution (i.e., a negative binomial with k = 1) might be sufficient to
describe the data.

Schmitt et al. modeled density-dependent recruitment with a Beverton-Holt curve
(equivalent to the Michaelis-Menten function). I have simulated this curve with

“Bolker” — 1/9/2008 — 15:39 — page 152

−1
0
1

152 • C H A P T E R 5

Settlers

F
re

qu
en

cy

100500 150 200

Settlers

100500 150 200

0

50

100

150

0

2

4

6

8

10

12

14

R
ec

ru
its

ba

Figure 5.3 Damselfish recruitment: (a) distribution of settlers; (b) recruitment as a function of
settlement density.

binomial error (for survival of recruits) superimposed. The model is

R ∼ Binom(N = S, p = a/(1 + (a/b)S)). (5.2.2)

With the recruitment probability per settler p given as the hyperbolic function a/(1 +
(a/b)S), the mean number of recruits is Beverton-Holt: Np = aS/(1 + (a/b)S). The
settlement density S is drawn from the zero-inflated negative binomial distribution
shown in Figure 5.3a.

Set up the parameters, including the number of samples (N):

> N = 603
> a = 0.696
> b = 9.79
> mu = 25.32
> zprob = 0.123
> k = 0.932

Define a function for the recruitment probability:

> recrprob = function(S) {
+ a/(1 + (a/b) * S)
+ }

Now simulate the number of settlers and the number of recruits, using rzinbinom
from the emdbook package:

> settlers = rzinbinom(N, mu = mu, size = k, zprob = zprob)
> recr = rbinom(N, prob = recrprob(settlers),
+ size = settlers)

“Bolker” — 1/9/2008 — 15:39 — page 153

−1
0
1

S T O C H A S T I C S I M U L A T I O N • 153

5.2.2.2 PIGWEED DISTRIBUTION AND FECUNDITY

Pacala and Silander (1990) quantified the strength and spatial scale of competition
between the annual weeds velvetweed (Abutilon theophrasti) and pigweed (Amaran-
thus retroflexus). They were interested in neighborhood competition among nearby
plants. Local dispersal of seeds changes the distribution of the number of neighbors
per plant. If plants were randomly distributed, we would expect a Poisson distribu-
tion of neighbors within a given distance, but if seeds have a limited dispersal range
so that plants are spatially aggregated, we expect a distribution with higher variance
(and a higher mean number of neighbors for a given overall plant density) such as
the negative binomial. Neighbors increase local competition for nutrients, which in
turn decreases plants’ growth rate, their biomass at the end of the growing season,
and their fecundity (seed set). Thus Interspecific differences in dispersal and spatial
patterning could change competitive outcomes (Bolker et al., 2003), although Pacala
and Silander found that spatial structure had little effect in their system.

To explore the patterns of competition driven by local dispersal and crowding,
we can simulate this spatial competitive process. Let’s start by simulating a spatial
distribution of plants in an L × L plot (L = 30 m below). We’ll use a Poisson cluster
process, where mothers are located randomly in space at points {xp, yp} (called a
Poisson process in spatial ecology), and their children are distributed nearby (only
the children, and not the mothers, are included in the final pattern). The simulation
includes N = 50 parents, for which we pick 50 x and 50 y values, each uniformly
distributed between 0 and L. The distance of each child from its parent is exponen-
tially distributed with rate = 1/d (mean dispersal distance d), and the direction is
random—that is, uniformly distributed between 0 and 2π radians.∗ I use a little bit
of trigonometry to calculate the offspring locations (Figure 5.4a).

The formal mathematical definition of the model for offspring location is:

parent locations xp, yp ∼ U(0, L)
distance from parent r ∼ Exp(1/d)
dispersal angle θ ∼ U(0, 2π)
offspring x xc = xp + r cos θ

offspring y yc = yp + r sin θ

In R, set up the parameters:

> set.seed(1001)
> L = 30
> nparents = 50
> offspr_per_parent = 10
> noffspr = nparents * offspr_per_parent
> dispdist = 2

Pick locations for the parents:

> parent_x = runif(nparents, min = 0, max = L)
> parent_y = runif(nparents, min = 0, max = L)

∗ R, like most computer languages, works in radians rather than degrees; to convert from
degrees to radians, multiply by π/180. Since R doesn’t understand Greek letters, use pi to denote π :
radians=degrees*pi/180.

“Bolker” — 1/9/2008 — 15:39 — page 154

−1
0
1

154 • C H A P T E R 5

0 10 20 30

0

10

20

30

0 3 6 9 13 18 23 28

Number of neighbors
P

ro
po

rt
io

n

0.00

0.02

0.04

0.06

0.08

0.10

0 20 40 60 80

1e−06

1e−04

1e−02

1e+00

Competition index

B
io

m
as

s
(g

)

1e−06 1e−04 1e−02 1e+00

1

5
10

50
100

500
1000

Mass

1+
S

ee
d

se
t

b

dc

a

Figure 5.4 Pigweed simulations. (a) Spatial pattern (Poisson cluster process). (b) Distribution
of number of neighbors within 2 m. (c) End-of-year biomass, based on a hyperbolic function
of crowding index with a Gamma error distribution. (d) Seed set, proportional to biomass
with a negative binomial error distribution.

Pick angles and distances for dispersal:

> angle = runif(noffspr, min = 0, max = 2 * pi)
> dist = rexp(noffspr, 1/dispdist)

Add the offspring displacements to the parent coordinates (using rep(...,each=
offspr_per_parent)):

> offspr_x = rep(parent_x, each = offspr_per_parent) +
+ cos(angle) * dist
> offspr_y = rep(parent_y, each = offspr_per_parent) +
+ sin(angle) * dist

“Bolker” — 1/9/2008 — 15:39 — page 155

−1
0
1

S T O C H A S T I C S I M U L A T I O N • 155

If you wanted to allow different numbers of offspring for each parent—for
example, drawn from a Poisson distribution—you could use offspr_per_parent=
rpois(nparents,lambda) and then rep(...,times=offspr_per_parent). Instead
of specifying that each parent’s coordinates should be repeated the same number of
times, you would be telling R to repeat each parent’s coordinates according to its
number of offspring.

Next we calculate the neighborhood density, or the number of individuals within
2 m of each plant (not counting itself). Figure 5.4b shows this distribution, along with
a fitted negative binomial distribution. This calculation reduces the spatial pattern
to a simpler nonspatial distribution of crowding.

> pos <- cbind(offspr_x, offspr_y)
> ndist <- as.matrix(dist(pos, upper = TRUE, diag = TRUE))
> nbrcrowd = rowSums(ndist < 2,) - 1

The dist command calculates the distances among plant positions, while rowSums
counts the number of distances in each row that satisfy the condition ndist < 2; we
subtract 1 to ignore self-crowding.

Next we use a relationship that Pacala and Silander found between end-of-year
mass (M) and competition index (C) (Figure 5.4c). They fitted this relationship based
on a competition index estimated as a function of the neighborhood density of con-
specific (pigweed) and heterospecific (velvetleaf) competitors, C = 1 + cppnp + cvpnv.
For this example, I simplified the crowding index to C = 1 + 3np. Pacala and Silan-
der found that biomass M ∼ Gamma(shape = m/(1 + C), scale = α), with m = 2.3
and α = 0.49.

> ci = nbrcrowd * 3
> m = 2.3
> alpha = 0.49
> Mass_det = m/(1 + ci)
> Mass = rgamma(length(Mass_det), scale = Mass_det,
+ shape = alpha)

Finally, we simulate seed set as a function of biomass, again using a relationship
estimated by Pacala and Silander. Seed set is proportional to mass, with negative
binomial errors: S ∼ NegBin(µ = bM, k), with b = 271.6, k = 0.569.

> b = 271.6
> k = 0.569
> seed_det = b * Mass
> seed = rnbinom(length(seed_det), mu = seed_det, size = k)

Figure 5.4d shows both mass and (1 + seed set) on a logarithmic scale, along with
dashed lines showing the 95% confidence limits of the theoretical distribution.

The idea behind realistic static models is that they can link together simple deter-
ministic and stochastic models of each process in a chain of ecological processes—in
this case from spatial distribution to neighborhood crowding to biomass to seed
set. (Pacala and Silander actually went a step further and computed the density-
dependent survival probability. We could simulate this using a standard model like

“Bolker” — 1/9/2008 — 15:39 — page 156

−1
0
1

156 • C H A P T E R 5

survival ∼ Binom(N = 1, p = logistic(a + bC)), where the logistic function allows
the survival probability to be an increasing function of competition index that cannot
exceed 1.)

Thus, although writing down a single function that describes the relationship
between competition index and the number surviving would be extremely difficult,
as shown here we can break the relationship down into stages in the ecological process
and use a simple model for each stage.

5.3 Power Analysis

Power analysis in the narrow sense means figuring out the (frequentist) statisti-
cal power, the probability of failing to reject the null hypothesis when it is false
(Figure 5.5). Power analysis is important, but the narrow frequentist definition suf-
fers from some of the problems that we are trying to move beyond by learning new
statistical methods, such as a focus on p values and on the “truth” of a particular
null hypothesis. Thinking about power analysis even in this narrow sense is already a
vast improvement on the naive and erroneous “the null hypothesis is false if p < 0.05
and true if p > 0.05” approach. However, we should really be considering a much
broader question: How do the quality and quantity of my data and the true prop-
erties (parameters) of my ecological system affect the quality of the answers to my
questions about ecological systems?

For any real experiment or observation situation, we don’t know what is really
going on (the “true” model or parameters), so we don’t have the information required
to answer these questions from the data alone. But we can approach them by analysis
or simulation. Historically, questions about statistical power could be answered only
by sophisticated analyses, and only for standard statistical models and experimental
designs such as one-way ANOVA or linear regression. Increases in computing power
have extended power analyses to many new areas, and R’s capability to run repeated
stochastic simulations is a great help. Paradoxically, the mathematical difficulty of
deriving power formulas is a great equalizer: since even research statisticians typically
use simulations to estimate power, it’s now possible (by learning simulation, which
is easier than learning advanced mathematical statistics) to work on an equal footing
with even cutting-edge researchers.

The first part of the rather vague (but commonsense) question above is about
“quantity and quality of data and the true properties of the ecological system.” These
properties include:

• Number of data points (number of observations/sampling intensity).
• Distribution of data (experimental design):

– Number of observations per site, number of sites.
– Temporal and spatial extent (distance between the farthest samples, con-

trolling the largest scale you can measure) and grain (distance between the
closest samples, controlling the smallest scale you can measure).

– Even or clustered distribution in space and/or time. Blocking. Balance (i.e.,
equal or similar numbers of observations in each treatment).

“Bolker” — 1/9/2008 — 15:39 — page 157

−1
0
1

S T O C H A S T I C S I M U L A T I O N • 157

−2 40 2 0

0

2

P
ro

ba
bi

lit
y

x

H0 H1

α

Power
1 − β

−4 −2 4

0.2

0.4

0.6

0.8

1.0

Effect size

P
ow

er

σ = 0.25

σ = 0.75

σ = 2

ba

Figure 5.5 The frequentist definition of power. In the left-hand plot, the type I (false positive)
rate α is the area under the tails of the null hypothesis H0; the type II error rate β is the area
under the sampling distribution of the alternative hypothesis (H1) between the tails of the null
hypothesis; thus the power 1 − β is the gray area shown that lies above the upper critical value
of the null hypothesis curve. (There is also a tiny area, too small to see, where H1 overlaps
the lower tail of H0.) The right-hand plot shows power as a function of effect size (distance
between the means) and standard deviation; the point shows the scenario (effect size = 2,
σ = 0.75) illustrated in the left figure.

– Distribution of continuous covariates—mimicking the natural distribution,
or stratified to sample evenly across the natural range of values, or artificially
extended to a wider range.

• Amount of variation (measurement/sampling error, demographic stochasticity,
environmental variation). Experimental control or quantification of variation.

• Effect size (small or large), or the distance of the true parameter from the
null-hypothesis value.

These properties will determine how much information you can extract from your
data. Large data sets are better than smaller ones; balanced data sets with wide
ranges are better than unbalanced data sets with narrow ranges; data sets with large
extent (maximum spatial and/or temporal range) and small grain (minimum dis-
tance between samples) are best; and larger effects are obviously easier to detect and

“Bolker” — 1/9/2008 — 15:39 — page 158

−1
0
1

158 • C H A P T E R 5

characterize. There are obvious trade-offs between effort (measured in person-hours
or dollars) and the number of samples, and in how you allocate that effort. Would
you prefer more information about fewer samples, or less information about more?
More observations at fewer sites, or fewer at more sites? Should you spend your
effort increasing extent or decreasing grain?

Subtler trade-offs also affect the value of an experiment. For example, controlling
extraneous variation allows a more powerful answer to a statistical question—but
how do we know what is “extraneous”? Variation actually affects the function of
ecological systems (Jensen’s inequality; Ruel and Ayres, 1999). Measuring a plant in
a constant laboratory environment may answer the wrong question: we ultimately
want to know how the plant performs in the natural environment, not in the lab,
and variability is an important part of most environments. In contrast, performing
“unrealistic” manipulations like pushing population densities beyond their natural
limits may help to identify density-dependent processes that are real and important
but undetectable at ambient densities (Osenberg et al., 2002). These questions have
no simple answer, but they’re important to consider.

The quality of the answers we get from our analyses is as multifaceted as the
quality of the data. Precision specifies how finely you can estimate a parameter—
the number of significant digits, or the narrowness of the confidence interval—while
accuracy specifies how likely your answer is to be correct. Accurate but imprecise
answers are better than precise but inaccurate ones: at least in this case you know
that your answer is imprecise, rather than having misleadingly precise but inaccurate
answers. But you need both precision and accuracy to understand and predict
ecological systems.

More specifically, I will show how to estimate the following aspects of precision
and accuracy for the damselfish system:

• Bias (accuracy): Bias is the expected difference between the estimate and the
true value of the parameter. If you run a large number of simulations with
a true value of d and estimate a value of d̂ for each one, then the bias is
E[d̂ − d]. Most simple statistical estimators are unbiased, and so most of us
have come to expect (wrongly) that statistical estimates are generally unbiased.
Most statistical estimators are indeed asymptotically unbiased, which means
that in the limit of a large amount of data they will give the right answer on
average, but surprisingly many common estimators are biased (Poulin, 1996;
Doak et al., 2005).

• Variance (precision): Variance, or E[(d̂ − E[d̂])2], measures the variability of
the point estimates (d̂) around their mean value. Just as an accurate but impre-
cise answer is worthless, unbiased answers are worthless if they have high
variance. With low bias we know that we get the right answer on average, but
high variability means that any particular estimate could be way off. With real
data, we never know which estimates are right and which are wrong.

• Confidence interval width (precision): The width of the confidence intervals,
either in absolute terms or as a proportion of the estimated value, provides
useful information on the precision of your estimate. If the confidence interval
is estimated correctly (see coverage, below), then low variance will give rise to
narrow confidence intervals and high variance will give rise to broad confidence
intervals.

“Bolker” — 1/9/2008 — 15:39 — page 159

−1
0
1

S T O C H A S T I C S I M U L A T I O N • 159

• Mean squared error (MSE: accuracy and precision): MSE combines bias and
variance as (bias2+ variance). It represents the total variation around the true
value, rather than the average estimated value (E[d −d̂])2 + E[(d̂ − E[d̂])2] =
E[(d̂ − d)2]. MSE gives an overall measure of the quality of the estimator.

• Coverage (accuracy): When we sample data and estimate parameters, we try
to estimate the uncertainty in those parameters. Coverage describes how accu-
rate those confidence intervals are and (once again) can be estimated only via
simulation. If the confidence intervals (for a given confidence level 1 − α) are
dlow and dhigh, then the coverage describes the proportion or percentage of
simulations in which the confidence intervals actually include the true value:
coverage = Prob(dlow < d < dhigh). Ideally, the observed coverage should
equal the nominal coverage of 1 − α; values that are larger than 1 − α are pes-
simistic or conservative, overstating the level of uncertainty, while values that
are smaller than 1 − α are optimistic or “anticonservative.” (It often takes sev-
eral hundred simulations to get a reasonably precise estimate of the coverage,
especially when estimating the coverage for 95% confidence intervals.)

• Power (precision): Finally, the narrow-sense power gives the probability of
correctly rejecting the null hypothesis, or in other words the fraction of the
times that the null-hypothesis value d0 will be outside of the confidence limits:
Power = Prob(d0 < dlow or d0 > dhigh). In frequentist language, it is 1 − β,
where β is the probability of making a type II error.

H0 true H0 false

accept H0 1 − α β

reject H0 α 1 − β

Typically you specify an alternative hypothesis H1, a desired type I error rate
α, and a desired power (1 − β) and then calculate the required sample size,
or alternatively calculate (1 − β) as a function of sample size, for some par-
ticular H1. When the effect size is zero (the difference between the null and
the alternate hypotheses is zero—i.e., the null hypothesis is true), the power is
undefined, but it approaches α as the effect size gets small (H1 → H0).∗

R has built-in functions for several standard cases (power of tests of difference
between means of two normal populations [power.t.test], tests of difference in
proportions, [power.prop.test], and one-way, balanced ANOVA [power.anova.
test]).† For more discussion of these cases, or for other straightforward exam-
ples, you can look in any relatively advanced biometry book (e.g., Sokal and Rohlf
(1995) or Quinnand Keough (2002)), or even find a calculator on the Web (search
for “statistical power calculator”). For more complicated and ecologically realistic
examples, however, you’ll probably have to find the answer through simulation, as
demonstrated below.

∗ The power does not approach zero! Even when the null hypothesis is true, we reject it a proportion
α of the time. Thus we can expect to correctly reject the null hypothesis, even for very small effects, with
probability at least α.

† The Hmisc package, available on CRAN, has a few more power calculators.

“Bolker” — 1/9/2008 — 15:39 — page 160

−1
0
1

160 • C H A P T E R 5

5.3.1 Simple Examples

5.3.1.1 LINEAR REGRESSION

Let’s start by estimating the statistical power of detecting the linear trend in
Figure 5.1a, as a function of sample size. To find out whether we can reject the
null hypothesis in a single “experiment,” we simulate a data set with a given slope,
intercept, and number of data points; run a linear regression; extract the p-value;
and see whether it is less than our specified α criterion (usually 0.05). For example:

> y_det = a + b * x
> y = rnorm(N, mean = y_det, sd = sd)
> m = lm(y ˜ x)
> coef(summary(m))["x", "Pr(>|t|)"]

[1] 0.003615899

Extracting p-values from R analyses can be tricky. In this case, the coefficients of the
summary of the linear fit are a matrix including the standard error, t statistic, and
p-value for each parameter; I used matrix indexing based on the row and column
names to pull out the specific value I wanted. More generally, you will have to use
the names and str commands to pick through the results of a test to find the p-value.

To estimate the probability of successfully rejecting the null hypothesis when it
is false (the power), we have to repeat this procedure many times and calculate the
proportion of the time that we reject the null hypothesis.

Specify the number of simulations to run (400 is a reasonable number if we want
to calculate a percentage—even 100 would do to get a crude estimate):

> nsim = 400

Set up a vector to hold the p-value for each simulation:

> pval = numeric(nsim)

Now repeat what we did above 400 times, each time saving the p-value in the storage
vector:

> for (i in 1:nsim) {
+ y_det = a + b * x
+ y = rnorm(N, mean = y_det, sd = sd)
+ m = lm(y ˜ x)
+ pval[i] = coef(summary(m))["x", "Pr(>|t|)"]
+ }

Calculate the power:

> sum(pval < 0.05)/nsim

[1] 0.87

However, we don’t just want to know the power for a single experimental design.
Rather, we want to know how the power changes as we change some aspect of the
design such as the sample size or the variance. Thus we have to repeat the entire
procedure multiple times, each time changing some parameter of the simulation such

“Bolker” — 1/9/2008 — 15:39 — page 161

−1
0
1

S T O C H A S T I C S I M U L A T I O N • 161

as the slope, or the error variance, or the distribution of the x values. Coding this in
R usually involves nested for loops. For example:

> bvec = seq(-2, 2, by = 0.1)
> power.b = numeric(length(bvec))
> for (j in 1:length(bvec)) {
+ b = bvec[j]
+ for (i in 1:nsim) {
+ y_det = a + b * x
+ y = rnorm(N, mean = y_det, sd = sd)
+ m = lm(y ˜ x)
+ pval[i] = coef(summary(m))["x", "Pr(>|t|)"]
+ }
+ power.b[j] = sum(pval < 0.05)/nsim
+ }

The results would resemble a noisy version of the right subfigure in Figure 5.5. The
power equals α = 0.05 when the slope is zero, rising to 0.8 for slope ≈ ±1.

You could repeat these calculations for a different set of parameters (e.g., chang-
ing the sample size or the number of parameters). If you were feeling ambitious, you
could calculate the power for many combinations of (e.g.) slope and sample size,
using yet another for loop, saving the results in a matrix; and using contour or
persp to plot the results.

5.3.1.2 HYPERBOLIC/NEGATIVE BINOMIAL DATA

What about the power to detect the difference between the two groups shown in
Figure 5.1b with hyperbolic dependence on x, negative binomial errors, and different
intercepts and hyperbolic slopes?

To estimate the power of the analysis, we have to know how to test statistically
for a difference between the two groups. Jumping the gun a little bit (this topic will
be covered in much greater detail in Chapter 6), we can define negative log-likelihood
functions for a null model that assumes the intercept is the same for both groups as
well as for a more complex model that allows for differences in the intercept.

The mle2 command in the bbmle package lets us fit the parameters of these
models, and the anova command gives us a p-value for the difference between the
models (p. 206):

> m0 = mle2(y ˜ dnbinom(mu = a * b * x/(b + x), size = k),
+ start = list(a = 15, b = 1, k = 5))
> m1 = mle2(y ˜ dnbinom(mu = a * b * x/(b + x), size = k),
+ parameters = list(a ˜ g, b ˜ g), start = list(a = 15,
+ b = 1, k = 5))
> anova(m0, m1)[2, "Pr(>Chisq)"]

Without showing the details, we now run a for loop that simulates the system
200 times each for a range of sample sizes, uses anova to calculate the p-values,
and calculates the proportion of p-values that are smaller than 0.05 for each sample
size (Figure 5.6). For small sample sizes (< 20), the power is abysmal (≈ 0.2–0.4).

“Bolker” — 1/9/2008 — 15:39 — page 162

−1
0
1

162 • C H A P T E R 5

Sample size

P
ow

er

0.0

0.2

0.4

0.6

0.8

1.0

10 20 50 100 200 500

Figure 5.6 Statistical power to detect differences between two hyperbolic functions with inter-
cepts a = {10, 20}, slopes b = {2, 1}, and negative binomial k = 5, as a function of sample
size. Sample size is plotted on a logarithmic scale.

Power then rises approximately linearly, reaching acceptable levels (0.8 and up) at
sample sizes of 50–100 and greater. The variation in Figure 5.6 is due to stochastic
variation in the simulations. We could run more simulations per sample size to reduce
the variation, but it’s probably unnecessary since all power analysis is approximate
anyway.

5.3.1.3 BIAS AND VARIANCE IN ESTIMATES OF THE NEGATIVE
BINOMIAL K PARAMETER

For another simple example, one that demonstrates that there’s more to life than
p-values, consider the problem of estimating the k parameter of a negative binomial
distribution. Are standard estimators biased? How large a sample do you need for a
reasonably accurate estimate of aggregation?

Statisticians have long been aware that maximum likelihood estimates of the
negative binomial k and similar aggregation indices, while better than simpler method
of moments estimates (p. 119), are biased for small sample sizes (Pieters et al., 1977;
Piegorsch, 1990; Poulin, 1996; Lloyd-Smith, 2007). Although you could delve into
the statistical literature on this topic and even find special-purpose estimators that
reduce the bias (Saha and Paul, 2005), being able to explore the problem yourself
through simulation is empowering.

“Bolker” — 1/9/2008 — 15:39 — page 163

−1
0
1

S T O C H A S T I C S I M U L A T I O N • 163

We can generate negative binomial samples with rnbinom, and the fitdistr
command from the MASS package is a convenient way to estimate the parame-
ters. fitdistr finds maximum likelihood estimates, which generally have good
properties—but are not infallible, as we will see shortly. For a single sample:

> x = rnbinom(100, mu = 1, size = 0.5)
> f = fitdistr(x, "negative binomial")
> f

size mu
0.21908756 1.05996103
(0.05712932) (0.24875054)

(The standard deviations of the parameter estimates are given in parentheses.)
You can see that for this example the value of k (size) is underestimated relative to
the true value of 0.5—but how do the estimates behave in general?

To dig the particular values we want (estimated k and standard deviation of the
estimate) out of the object that fitdistr returns, we have to use str(f) to examine
its internal structure. It turns out that f$estimate["size"] and f$sd["size"] give
us the numbers we want.

Set up a vector of sample sizes (lseq is a function from the emdbook package
that generates a logarithmically spaced sequence) and set aside space for the estimate
of k and its standard deviation:

> Nvec = round(lseq(20, 500, length = 100))
> estk = numeric(100)
> estksd = numeric(100)

Now pick samples and estimate the parameters:

> set.seed(1001)
> for (i in 1:100) {
+ N = Nvec[i]
+ x = rnbinom(N, mu = 1, size = 0.5)
+ f = fitdistr(x, "negative binomial")
+ estk[i] = f$estimate["size"]
+ estksd[i] = f$sd["size"]
+ }

The estimate is indeed biased, and highly variable, for small sample sizes
(Figure 5.7). For sample sizes below about 100, the estimate k is biased upward
by about 20% on average. The coefficient of variation (standard deviation divided
by the mean) is similarly greater than 0.2 for sample sizes less than 100.

5.3.2 Detecting Under- and Overcompensation in Fish Data

Finally, we will explore a more extended and complex example—the difficulty of esti-
mating the exponent d in the Shepherd function, R = aS/(1 + (a/b)Sd) (Figure 3.10).
This parameter controls whether the Shepherd function is undercompensating
(d < 1: recruitment increases indefinitely as the number of settlers grows), saturating

“Bolker” — 1/9/2008 — 15:39 — page 164

−1
0
1

164 • C H A P T E R 5

Sample size

E
st

im
at

ed
 k

0.5

1.0

1.5

2.0

20 50 100 200 500

Sample size
E

st
im

at
ed

 s
d(

k)

0.05

0.10

0.20

0.50

1.00

2.00

5.00

20 50 100 200 500

ba

Figure 5.7 Estimates of negative binomial k with increasing sample size. In (a) the left-hand
solid line is a loess fit; horizontal dashed line is the true value. The y axis in (b) is logarithmic.

(d = 1: recruitment reaches an asymptote), or overcompensating (d > 1: recruitment
decreases at high settlement). Schmitt et al. (1999) set d = 1 in part because d is very
hard to estimate reliably—we are about to see just how hard.

You can use the simulation approach described above to generate simulated
“data sets” of different sizes whose characteristics match Schmitt et al.’s data: a
zero-inflated negative binomial distribution of numbers of settlers and a Shepherd
function relationship (with a specified value of d) between the number of settlers
and the number of recruits. For each simulated data set, use R’s nls function to
estimate the values of the parameters by nonlinear least squares.∗ Then calculate the
confidence limits on d (using the confint function) and record the estimated value
of the parameter and the lower and upper confidence limits.

Figure 5.8 shows the point estimates (d̂) and 95% confidence limits (dlow, dhigh)
for the first 20 out of 400 simulations each with 1000 simulated observations and
a true value of d = 1.2. The figure also illustrates several of the summary statistics
discussed above: bias, variance, power, and coverage (see the caption for details).

For this particular case (n = 1000, d = 1.2) I can compute the bias (0.0039),
variance (0.003, or σd̂ = 0.059), mean-squared error (0.003), coverage (0.921), and
power (0.986). With 1000 observations, things look great, but 1000 observations
is a lot and d = 1.2 represents strong overcompensation. The real value of power
analyses comes when we compare the quality of estimates across a range of sample
sizes and effect sizes.

Figure 5.9 gives a gloomier picture, showing the bias, precision, coverage, and
power for a range of d values from 0.7 to 1.3 and a range of sample sizes from
50 to 2000. Sample sizes of at least 500 are needed to obtain reasonably unbiased
estimates with adequate precision, and even then the coverage may be low if d < 1.0

∗ Nonlinear least-squares fitting assumes constant, normally distributed error, ignoring the fact that
the data are really binomially distributed. Chapter 5, 6 and 7 will present more sophisticated maximum
likelihood approaches to this problem.

“Bolker” — 1/9/2008 — 15:39 — page 165

−1
0
1

S T O C H A S T I C S I M U L A T I O N • 165

Simulation

d^

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

20101

estimates lower
bounds

mean: E[d]
^

true: d

null: d 0

a

b

c

σ d̂

Figure 5.8 Simulations and power/coverage. Points and error bars show point estimates (d̂)
and 95% confidence limits (dlow, dhigh) for the first 20 out of 400 simulations with a true

value of d = 1.2 and 1000 samples. Horizontal lines show the mean value of d̂, E[d̂] =1.204;
the true value for this set of simulations, d = 1.2; and the null value, d0 = 1. The left-hand
vertical density plot shows the distribution ofd̂ for all 400 simulations. The right-hand density
shows the distribution of the lower confidence limit, dlow. The distance between d (solid
horizontal line) and E[d̂] (short-dashed horizontal line) shows the bias. The error bar showing
the standard deviation of d̂, σ

d̂
, shows the square root of the variance of d̂. The coverage

is the proportion of lower confidence limits that fall below the true value, area b + c in the
lower-bound density. The power is the proportion of lower confidence limits that fall above the
null value, area a + b in the lower-bound density. For simplicity, I have omitted the distribution
of the upper bounds dhigh.

and the power low if d is close to 1 (0.9 ≤ d ≤ 1.1). Because of the upward bias in d
at low sample sizes, the calculated power is actually higher at very low sample sizes,
but this is not particularly comforting. The power of the analysis is slightly greater
for overcompensation than undercompensation. The relatively low power values are
as expected from Figure 5.9b, which shows wide confidence intervals. Low power
would also be predictable from the high variance of the estimates, which I didn’t even
bother to show in Figure 5.9a because they obscured the figure too much.

Another use for our simulations is to take a first look at the trade-offs involved
in adding complexity to models. Figure 5.10 shows estimates of b, the asymptote if

“Bolker” — 1/9/2008 — 15:39 — page 166

−1
0
1

166 • C H A P T E R 5

7

7
7

777 7 7

Sample size

E
st

im
at

ed
 d

8

88888 8 8

9
9

9999 9 9

0
00000 0 0

1
11111 1 1

222222 2 2

333333 3 3

0 500 1000 1500 2000

0.7

0.8

0.9

1.0

1.1

1.2

1.3

a
7

7

7
777

7
7

Sample size
C

on
fid

en
ce

 in
te

rv
al

 w
id

th 8

8

8
888

8 8

9

9

9
999

9 9

0

0

0
000

0 0

1

1

1
111

1 1

2

2

2
222

2 2

3

3

3
333

3 3

0 500 1000 1500 2000

0.2

0.4

0.6

0.8

1.0

1.2

1.4

b

7
77 7

7

0 500 1000 1500 2000

0.75

0.80

0.85

0.90

0.95

1.00

Sample size

C
ov

er
ag

e

8

888
8 8

9
99

9 9
9

0

000

0

0
0

1

1
111 1 1

2

2
222 2 23

3
333 3 3

c

7
7

7

7
7

7

7
3 7

0 500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0

Sample size

P
ow

er
 o

r
α

8

8
8

8

8

8

8

8

9

9
99

9
9

9

90

0
0000 0 0

1

1

11
11

1

1
2
2

2
2

2
2

2 2333333
d

3

Figure 5.9 Summaries of statistical accuracy, precision, and power for extimating the Shepherd
exponent d for a range of d values from undercompensation, d = 0.7 (line marked “7”), to
overcompensation, d = 1.3 (line marked “3”). (a) Estimated d: the estimates are strongly
biased upward for sample sizes less than 500, especially for undercompensation (d < 1). (b)
Confidence interval width: the confidence intervals are large (> 0.4) for sample sizes smaller
than about 500, for any value of d. (c) Coverage of the nominal 95% confidence intervals
is adequate for large sample size (> 250) and overcompensation (d > 1), but poor even for
large sample sizes when d < 1. (d) For statistical power (1 − β) of at least 0.8, sample sizes of
500–1000 are required if d ≤ 0.7 or d ≥ 1.2; sample sizes of 1000 if d = 0.8; and sample sizes
of at least 2000 if d = 0.9 or d = 1.1. When d = 1.0 (“0” line), the probability of rejecting
the null hypothesis is a little above the nominal value of α = 0.05.

d = 1, for different sample sizes and values of d. If d = 1, then the Shepherd model
reduces to the Beverton-Holt model. In this case, you might think that it wouldn’t
matter whether you used the Shepherd or the Beverton-Holt model to estimate the
b parameter, but the Shepherd function presents serious disadvantages. First, even
when d = 1, the Shepherd estimate of d is biased upward for low sample sizes, leading
to a severe upward bias in the estimate of b. Second, not shown on the graph because
it would have obscured everything else, the variance of the Shepherd estimate is far

“Bolker” — 1/9/2008 — 15:39 — page 167

−1
0
1

S T O C H A S T I C S I M U L A T I O N • 167

99 9 9 9 9 9 9

0

5

10

15

20

500 1000 1500 2000

Number of samples

E
st

im
at

ed
 b

00 0 0 0 0 0 0

11 1 1 1 1 1 1

9

9

9 9

9 9

0

0
0 0

0 0

1

1
1

1
1

1 1

B−H est.: d=1.1

B−H est.: d=1.0

Shepherd est.

B−H est.: d=0.9

Figure 5.10 Estimates of b, using Beverton-Holt or Shepherd functions, for different values of
d and sample sizes. Shepherd estimate lines labeled “9”, “0”, and “1”, correspond to estimates
of b when d = 0.9, 1.0, or 1.1.

higher than the variance of the Beverton-Holt estimate (e.g., for a sample size of 200,
the Beverton-Holt estimate is 9.83 ± 0.78 (s.d.), while the Shepherd estimate is 14.16
± 13.94 (s.d.)).

On the other hand, if d is not equal to 1, the Beverton-Holt estimate of b (hor-
izontal lines in Figure 5.10) is strongly biased, independent of the sample size. For
reasonable sample sizes, if d = 0.9, the Beverton-Holt estimate is biased upward by
6 to 16; if d = 1.1, it is biased downward by about 4 to 6. Since the Beverton-Holt
model isn’t flexible enough to account for the changes in shape caused by d, it has
to modify b in order to compensate.

This general phenomenon is called the bias–variance trade-off (see p. 204): more
complex models reduce bias at the price of increased variance. (The small-sample bias
of the Shepherd is a separate, and slightly less general, phenomenon.)

Because estimating parameters or testing hypotheses with noisy data is funda-
mentally difficult, and most ecological data sets are noisy, power analyses are often
depressing. On the other hand, even if things are bad, it’s better to know how bad
they are than just to guess; knowing how much you really know is important. In addi-
tion, you can make some design decisions (e.g., number of treatments vs. number of

“Bolker” — 1/9/2008 — 15:39 — page 168

−1
0
1

168 • C H A P T E R 5

replicates per treatment) that will optimize power given the constraints of time and
money.

Remember that the overall quality of your experimental design—including good
technique; proper randomization replication, and controls; and common sense—is
often far more important than the fussy details of your statistical design (Hurlbert,
1984). While you should quantify the power of your experiment to make sure it has
a reasonable chance of success, thoughtful experimental design (e.g., measuring and
statistically accounting for covariates such as mass and rainfall; pairing control and
treatment samples; or expanding the range of covariates tested) will make a much
bigger difference than tweaking experimental details to squeeze out a little more
statistical power.

“Bolker” — 1/9/2008 — 15:39 — page 169

−1
0
1

6 Likelihood and All That

This chapter presents the basic concepts and methods you need in order to estimate
parameters, establish confidence limits, and choose among competing hypotheses and
models. It defines likelihood and discusses frequentist, Bayesian, and information-
theoretic inference based on likelihood.

6.1 Introduction

Previous chapters introduced all the ingredients you need to define a model—mathe-
matical functions to describe the deterministic patterns and probability distributions
to describe the stochastic patterns—and showed how to use these ingredients to
simulate simple ecological systems. The final steps of the modeling process are esti-
mating parameters from data and testing models against each other. You may be
wondering by now how you would actually do this.

Estimating the parameters of a model means finding the parameters that make
that model fit the data best. To compare among models we have to figure out which
one fits the data best, and decide if one or more models fit sufficiently better than the
rest that we can declare them the winners. Our goodness-of-fit metrics will be based
on the likelihood, the probability of seeing the data we actually collected given a
particular model; depending on the context, “model” could mean either the general
form of the model or a specific set of parameter values.

6.2 Parameter Estimation: Single Distributions

Parameter estimation is simplest when we have a a collection of independent data
that are drawn from a distribution (e.g., Poisson, binomial, normal), with the same
parameters for all observations.∗ As an example with discrete data, we will select
one particular case out of Vonesh’s tadpole predation data (p. 47)—small tadpoles
at a density of 10—and estimate the per-trial probability parameter of a binomial
distribution (i.e., each individual’s probability of being eaten by a predator). As an

∗ In statistical jargon, such data are called independent and identically distributed (iid).

“Bolker” — 1/9/2008 — 15:39 — page 170

−1
0
1

170 • C H A P T E R 6

example with continuous data, we will introduce a new data set on myxomatosis
virus concentration in experimentally infected rabbits (Myxo in the emdbook pack-
age; Fenner et al., 1956; Dwyer et al., 1990). Although the titer actually changes
systematically over time, we will gloss over that problem for now and pretend that
all the measurements are drawn from the same distribution so that we can estimate
the parameters of a Gamma distribution that describes the variation in titer among
different rabbits.

6.2.1 Maximum Likelihood

We want the maximum likelihood estimates of the parameters—those parameter
values that make the observed data most likely to have happened. Since the obser-
vations are independent, the joint likelihood of the whole data set is the product of
the likelihoods of each individual observation. Since the observations are identically
distributed, we can write the likelihood as a product of similar terms. For math-
ematical convenience, we almost always maximize the logarithm of the likelihood
(log-likelihood) instead of the likelihood itself. Since the logarithm is a monotoni-
cally increasing function, the maximum log-likelihood estimate is the same as the
maximum likelihood estimate. Actually, it is conventional to minimize the negative
log-likelihood rather than maximizing the log-likelihood. For continuous probabil-
ity distributions, we compute the probability density of observing the data rather
than the probability itself. Since we are interested in relative (log-)likelihoods, not
the absolute probability of observing the data, we can ignore the distinction between
the density (P(x)) and the probability (which includes a term for the measurement
precision: P(x) dx).

6.2.1.1 TADPOLE PREDATION DATA: BINOMIAL LIKELIHOOD

For a single observation from the binomial distribution (e.g., the number of small
tadpoles killed by predators in a single tank at a density of 10), the likelihood that k
out of N individuals are eaten as a function of the per capita predation probability
p is Prob(k|p, N) = (Nk)pk(1 − p)N−k. If we have n observations, each with the same
total number of tadpoles N, and the number of tadpoles killed in the ith observation
is ki, then the likelihood is

L =
n∏

i=1

(
N
ki

)
pki (1 − p)N−ki . (6.2.1)

The log-likelihood is

L =
n∑

i=1

(
log

(
N
ki

)
+ ki log p + (N − ki) log (1 − p)

)
. (6.2.2)

In R, this would be sum(dbinom(k,size=N,prob=p,log=TRUE)).

“Bolker” — 1/9/2008 — 15:39 — page 171

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 171

Analytical Approach

In this simple case, we can actually solve the problem analytically, by differentiating
with respect to p and setting the derivative to zero. Let p̂ be the maximum likelihood
estimate, the value of p that satisfies

dL
dp

=
d
∑n

i=1

(
log
(N
ki

)+ ki log p + (N − ki) log (1 − p)
)

dp
= 0. (6.2.3)

Since the derivative of a sum equals the sum of the derivatives,

n∑
i=1

d log
(N
ki

)
dp

+
n∑

i=1

d ki log p
dp

+
n∑

i=1

d (N − ki) log (1 − p)
dp

= 0. (6.2.4)

The term log
(N
ki

)
is a constant with respect to p, so its derivative is zero and the first

term disappears. Since ki and (N − ki) are constant factors, they come out of the
derivatives and the equation becomes

n∑
i=1

ki
d log p

dp
+

n∑
i=1

(N − ki)
d log (1 − p)

dp
= 0. (6.2.5)

The derivative of log p is 1/p, so the chain rule says the derivative of log (1 − p) is
d(log (1 − p))/d(1 − p) · d(1 − p)/dp = −1/(1 − p). Remembering that p̂ is the value
of p that satisfies this equation:

1

p̂

n∑
i=1

ki − 1

1 − p̂

n∑
i=1

(N − ki) = 0

1

p̂

n∑
i=1

ki = 1

1 − p̂

n∑
i=1

(N − ki)

(1 − p̂)
n∑

i=1

ki = p̂
n∑

i=1

(N − ki)

n∑
i=1

ki = p̂

(
n∑

i=1

ki +
n∑

i=1

(N − ki)

)
= p̂

n∑
i=1

N

n∑
i=1

ki = p̂nN

p̂ =
∑n

i=1 ki

nN
. (6.2.6)

So the maximum likelihood estimate, p̂, is just the overall fraction of tadpoles eaten,
lumping all the observations together: a total of

∑
ki tadpoles were eaten out of a

total of nN tadpoles exposed in all of the observations.
We seem to have gone to a lot of effort to prove the obvious, that the best esti-

mate of the per capita predation probability is the observed frequency of predation.

“Bolker” — 1/9/2008 — 15:39 — page 172

−1
0
1

172 • C H A P T E R 6

Other simple distributions like the Poisson behave similarly. If we differentiate the
likelihood, or the log-likelihood, and solve for the maximum likelihood estimate, we
get a sensible answer. For the Poisson, the estimate of the rate parameter λ̂ is equal
to the mean number of counts observed per sample. For the normal distribution,
with two parameters µ and σ 2, we have to compute the partial derivatives (see the
appendix) of the likelihood with respect to both parameters and solve the two
equations simultaneously (∂L/∂µ = ∂L/∂σ 2 = 0). The answer is again obvious
in hindsight: µ̂ = x̄ (the estimate of the mean is the observed mean) and σ̂ 2 =∑

(xi − x̄)2/n (the estimate of the variance is the variance of the sample).∗
Some simple distributions like the negative binomial, and all the complex prob-

lems we will be dealing with hereafter, have no easy analytical solution, so we will
have to find the maximum likelihood estimates of the parameters numerically. The
point of the algebra here is just to convince you that maximum likelihood estimation
makes sense in simple cases.

Numerics

This chapter presents the basic process of computing and maximizing likelihoods
(or minimizing negative log-likelihoods) in R; Chapter 7 will go into much more
technical detail. First, you need to define a function that calculates the negative log-
likelihood for a particular set of parameters. Here’s the R code for a binomial negative
log-likelihood function:

> binomNLL1 = function(p, k, N) {
+ -sum(dbinom(k, prob = p, size = N, log = TRUE))
+ }

The dbinom function calculates the binomial likelihood for a specified data set (vector
of number of successes) k, probability p, and number of trials N; the log=TRUE option
gives the log-probability instead of the probability (more accurately than taking the
log of the product of the probabilities); -sum adds the log-likelihoods and changes
the sign to compute an overall negative log-likelihood for the data set.

Load the data and extract the subset we plan to work with:

> data(ReedfrogPred)
> x = subset(ReedfrogPred, pred == "pred" & density == 10
+ & size == "small")
> k = x$surv

The total number of tadpoles exposed in this subset of the data is 40 (10 in each
of 4 trials), 30 of which were eaten by predators, so the maximum likelihood estimate
will be p̂ = 0.75.

We can use the optim function to numerically optimize (by default, minimiz-
ing rather than maximizing) this function. You need to give optim the objective
function—the function you want to minimize (binomNLL1 in this case)—and a vector
of starting parameters. You can also give it other information, such as a data set, to

∗ Maximum likelihood estimation gives a biased estimate of the variance, dividing the sum of squares∑
(xi − x̄)2 by n instead of n − 1.

“Bolker” — 1/9/2008 — 15:39 — page 173

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 173

be passed on to the objective function. The starting parameters don’t have to be very
accurate (if we had accurate estimates already we wouldn’t need optim), but they do
have to be reasonable. That’s why we spent so much time in Chapters 3 and 4 on
eyeballing curves and the method of moments.

> O1 = optim(fn = binomNLL1, par = c(p = 0.5), N = 10,
+ k = k, method = "BFGS")

fn is the argument that specifies the objective function and par specifies the
vector of starting parameters. Using c(p=0.5) names the parameter p—probably
not necessary here but very useful for keeping track when you start fitting models
with more parameters. The rest of the command specifies other parameters and data
and optimization details; Chapter 7 explains why you should use method="BFGS"
for a single-parameter fit.

Check the estimated parameter value and the maximum likelihood—we need
to change sign and exponentiate the minimum negative log-likelihood that optim
returns to get the maximum log-likelihood:

> O1$par

p
0.7499998

Because it was computed numerically the answer is almost, but not exactly, equal to
the theoretical answer of 0.75.

> exp(-O1$value)

[1] 0.0005150149

The mle2 function in the bbmle package provides a “wrapper” for optim that
gives prettier output and makes standard tasks easier.∗ Unlike optim, which is
designed for general-purpose optimization, mle2 assumes that the objective func-
tion is a negative log-likelihood function. The names of the arguments are easier to
understand: minuslogl instead of fn for the negative log-likelihood function, start
instead of par for the starting parameters, and data for additional parameters and
data.

> library(bbmle)
> m1 = mle2(minuslogl = binomNLL1, start = list(p = 0.5),
+ data = list(N = 10, k = k))
> m1

Call:
mle2(minuslogl = binomNLL1, start = list(p = 0.5), data =

list(N = 10, k = k))

∗ Why mle2? There is an mle function in the stats4 package that comes with R, but I added some
features—and then renamed it to avoid confusion with the original R function.

“Bolker” — 1/9/2008 — 15:39 — page 174

−1
0
1

174 • C H A P T E R 6

Coefficients:
p

0.7499998

Log-likelihood: -7.57

The mle2 package has a shortcut for simple likelihood functions. Instead of
writing an R function to compute the negative log-likehood, you can specify a
formula:

> mle2(k ˜ dbinom(prob = p, size = 10),
+ start = list(p = 0.5))

gives exactly the same answer as the previous commands. R assumes that the variable
on the left-hand side of the formula is the response variable (k in this case) and that
you want to sum the negative log-likelihood of the expression on the right-hand side
for all values of the response variable.

Another way to find maximum likelihood estimates for data drawn from most
simple distributions—although not for the binomial distribution—is the fitdistr
command in the MASS package, which will even guess reasonable starting values for
you. However, it works only in the very simple case where none of the parameters
of the distribution depend on other covariates.

The estimated value of the per capita predation probability, 0.7499…, is very
close to the analytic solution of 0.75. The estimated value of the maximum likelihood
(Figure 6.1) is quite small (L = 5.15 × 10−4). That is, the probability of this particular
outcome—5, 7, 9 and 9 out of 10 tadpoles eaten in four replicates—is low.∗ In general,
however, we will be interested only in the relative likelihoods (or log-likelihoods) of
different parameters and models rather than their absolute likelihoods.

Having fitted a model to the data (even a very simple one), it’s worth plotting
the predictions of the model. In this case the data set is so small (four points) that
sampling variability dominates the plot (Figure 6.1b).

6.2.1.2 MYXOMATOSIS DATA: GAMMA LIKELIHOOD

As part of the effort to use myxomatosis as a biocontrol agent against introduced
European rabbits in Australia, Fenner and co-workers (1956) studied the virus con-
centrations (titer) in the skin of rabbits that had been infected with different virus
strains. We’ll choose a Gamma distribution to model these continuously distributed,
positive data.† For the sake of illustration, we’ll use just the data for one viral strain
(grade 1).

> data(MyxoTiter_sum)
> myxdat = subset(MyxoTiter_sum, grade == 1)

∗ I randomly simulated 1000 samples of four values drawn from the binomial distribution with
p = 0.75, N = 10. The maximum likelihood was smaller than the observed value given in the text 22%
of the time. Thus, although small, this likelihood is not significantly lower than would be expected by
chance.

† We could also use a log-normal distribution or (since the minimum values are far from zero and
the distributions are reasonably symmetric) a normal distribution.

“Bolker” — 1/9/2008 — 15:39 — page 175

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 175

Predation probability
per capita

Li
ke

lih
oo

d

0.00 0.25 0.50 0.75 1.00

10
−20

10
−15

10
−10

10
−5

10
0 p̂ = 0.75

L
max

= 5.1 × 10−4

0.0

0.1

0.2

0.3

0.4

0.5

of successes

P
ro

ba
bi

lit
y

1086420

ba

Figure 6.1 Binomial-distributed predation. (a) Likelihood curve, on a logarithmic y scale.
(b) Best-fit model prediction compared with the data.

The likelihood equation for Gamma-distributed data is hard to maximize ana-
lytically, so we’ll go straight to a numerical solution. The negative log-likelihood
function looks just very much like the one for binomial data.∗

> gammaNLL1 = function(shape, scale) {
+ -sum(dgamma(myxdat$titer, shape = shape, scale = scale,
+ log = TRUE))
+ }

It’s harder to find starting parameters for the Gamma distribution. We can use the
method of moments (Chapter 4) to determine reasonable starting values for the scale
(= variance/mean = coefficient of variation [CV]) and shape(= variance/mean2 =
mean/CV) parameters.†

> gm = mean(myxdat$titer)
> cv = var(myxdat$titer)/mean(myxdat$titer)

Now fit the data:

> m3 = mle2(gammaNLL1, start = list(shape = gm/cv,
+ scale = cv))

> m3

∗ optim insists that you specify all of the parameters packed into a single numeric vector in your
negative log-likelihood function. mle prefers the parameters as a list. mle2 will accept either a list, or, if
you use parnames to specify the parameter names, a numeric vector (p. 183).

† Because the estimates of the shape and scale are very strongly correlated in this case, I ended
up having to tweak the starting conditions slightly away from the method of moments estimates, to
{45.8,0.151}.

“Bolker” — 1/9/2008 — 15:39 — page 176

−1
0
1

176 • C H A P T E R 6

Call:
mle2(minuslogl = gammaNLL1, start = list(shape = 45.8,

scale = 0.151))

Coefficients:
shape scale

49.3421124 0.1403326

Log-likelihood: -37.67

I could also use the formula interface,

> m3 = mle2(myxdat$titer ˜ dgamma(shape, scale = scale),
+ start = list(shape = gm/cv, scale = cv))

Since the default parameterization of the Gamma distribution in R uses a rate param-
eter instead of a scale parameter, I have to make sure to specify the scale parameter
explicitly. Or I could use fitdistr from the MASS package:

> f1 = fitdistr(myxdat$titer, "gamma")

fitdistr gives slightly different values for the parameters and the likelihood, but not
different enough to worry about. A greater possibility for confusion is that fitdistr
reports the rate (= 1/scale) instead of the scale parameter.

Figure 6.2 shows the negative log-likelihood (now a negative log-likelihood sur-
face as a function of two parameters, the shape and scale) and the fit of the model
to the data (virus titer for grade 1). Since the “true” distribution of the data is hard
to visualize (all of the distinct values of virus titer are displayed as jittered values
along the bottom axis), I’ve plotted the nonparametric (kernel) estimate of the prob-
ability density in gray for comparison. The Gamma fit is very similar, although it
takes account of the lowest point (a virus titer of 4.2) by spreading out slightly rather
than allowing the bump in the left-hand tail that the nonparametric density esti-
mate shows. The large shape parameter of the best-fit Gamma distribution (shape
= 49.34) indicates that the distribution is nearly symmetrical and approaching nor-
mality (Chapter 4). Ironically, in this case the plain old normal distribution actually
fits slightly better than the Gamma distribution, despite the fact that we would have
said the Gamma was a better model on biological grounds (it doesn’t allow virus titer
to be negative). However, according to criteria we will discuss later in the chapter,
the models are not significantly different and you could choose either on the basis of
convenience and appropriateness for the rest of the story you were telling. If we fitted
a more skewed distribution, like the damselfish settlement distribution, the Gamma
would certainly win over the normal.

6.2.2 Bayesian Analysis

Bayesian estimation also uses the likelihood, but it differs in two ways from maxi-
mum likelihood analysis. First, we combine the likelihood with a prior probability
distribution in order to determine a posterior probability distribution. Second, we
often report the mean of the posterior distribution rather than its mode (which would

“Bolker” — 1/9/2008 — 15:39 — page 177

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 177

Shape

S
ca

le

0.05

0.10

0.15

0.20

0.25

0.30

30 50 70

MLE

93 4 5 6 7 8

0.0

0.1

0.2

0.3

0.4

Virus titer

P
ro

ba
bi

lit
y

de
ns

ity

density

Gamma

normal

a b

Figure 6.2 Likelihood curves for a simple distribution: Gamma-distributed virus titer. Black
contours are spaced 200 log-likelihood units apart; gray contours are spaced 20 log-likelihood
units apart. In the right-hand plot, the gray line is a kernel density estimate; solid line is the
Gamma fit; and dashed line is the normal fit.

equal the MLE if we were using a completely uninformative, or “flat,” prior). Unlike
the mode, which reflects only local information about the peak of the distribution,
the mean incorporates the entire pattern of the distribution, so it can be harder to
compute.

6.2.2.1 BINOMIAL DISTRIBUTION: CONJUGATE PRIORS

In the particular case when we have so-called conjugate priors for the distribution of
interest, Bayesian estimation is easy. As introduced in Chapter 4, a conjugate prior
is a choice of the prior distribution that matches the likelihood model so that the
posterior distribution has the same form as the prior distribution. Conjugate priors
also allow us to interpret the strength of the prior in simple ways.

For example, the conjugate prior of the binomial likelihood that we used for
the tadpole predation data is the Beta distribution. If we pick a Beta prior with
shape parameters a and b, and if our data include a total of

∑
k “successes” (pre-

dation events) and nN −∑k “failures” (surviving tadpoles) out of a total of nN
“trials” (exposed tadpoles), the posterior distribution is a Beta distribution with
shape parameters a +∑k and b + (nN −∑k). If we interpret a − 1 as the total num-
ber of previously observed successes and b − 1 as the number of previously observed
failures, then the new distribution just combines the total number of successes and
failures in the complete (prior plus current) data set. When a = b = 1, the Beta distri-
bution is flat, corresponding to no prior information (a − 1 = b − 1 = 0). As a and b
increase, the prior distribution gains more information and becomes peaked. We can
also see that, as far as a Bayesian is concerned, how we divide our experiments up
doesn’t matter. Many small experiments, aggregated with successive uses of Bayes’

“Bolker” — 1/9/2008 — 15:39 — page 178

−1
0
1

178 • C H A P T E R 6

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

12

Predation probability
per capita

P
ro

ba
bi

lit
y

de
ns

ity

prior
(121,81)

prior
(1,1)

posterior
(151, 91)

posterior
(31,11)

scaled
likelihood

Figure 6.3 Bayesian priors and posteriors for the tadpole predation data. The scaled likelihood
is the normalized likelihood curve, corresponding to the weakest prior possible. Prior(1,1) is
weak, corresponding to zero prior samples and leading to a posterior (31,11) that is almost
identical to the scaled likelihood curve. Prior(121,81) is strong, corresponding to a previous
sample size of 200 trials and leading to a posterior (151,111) that is much closer to the prior
than to the scaled likelihood.

Rule, give the same information as one big experiment (provided of course that there
is no variation in per-trial probability among sets of observations, which we have
assumed in our statistical model for both the likelihood and the Bayesian analysis).

We can also examine the effect of different priors on our estimate of the
mean (Figure 6.3). If we have no prior information and choose a flat prior with
a = b = 1, then our final answer is that the per capita predation probability is dis-
tributed as a Beta distribution with shape parameters a =∑k + 1 = 31, b = nN −∑

k + 1 = 11. The mode of this Beta distribution occurs at (a − 1)/(a + b − 2) =∑
k/(nN) = 0.75—exactly the same as the maximum likelihood estimate of the per

capita predation probability. Its mean is a/(a + b) = 0.738—very slightly shifted
toward 0.5 (the mean of our prior distribution) from the MLE. If we wanted a
distribution whose mean was equal to the maximum likelihood estimate, we could
generate a scaled likelihood by normalizing the likelihood so that it integrated to 1.
However, to create the Beta prior that would lead to this posterior distribution we
would have to take the limit as a and b go to zero, implying a very peculiar prior
distribution with infinite spikes at 0 and 1.

“Bolker” — 1/9/2008 — 15:39 — page 179

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 179

If we had much more prior data—say a set of experiments with a total of
(nN)prior = 200 tadpoles, of which

∑
kprior = 120 were eaten—then the parameters

of the prior distribution would be a = 121 and b = 81, the posterior mode would
be 0.625, and the posterior mean would be 0.624. In this case both the posterior
mode and mean are much closer to the prior values than to the maximum likelihood
estimate because the prior information is much stronger than the information we can
obtain from the data.

If our data were Poisson, we could use a conjugate prior Gamma distribution
with shape α and scale s and interpret the parameters as α = total counts in previous
observations and 1/s = number of previous observations. Then if we observed C
counts in our data, the posterior would be a Gamma distribution with α′ = α + C,
1/s′ = 1/s + 1.

The conjugate prior for the mean of a normal distribution, if we know the vari-
ance, is also a normal distribution. The posterior mean is an average of the prior
mean and the observed mean, weighted by the precisions—the reciprocals of the
prior and observed variances. The conjugate prior for the precision, if we know the
mean, is the Gamma distribution.

6.2.2.2 GAMMA DISTRIBUTION: MULTIPARAMETER
DISTRIBUTIONS AND NONCONJUGATE PRIORS

Unfortunately simple conjugate priors aren’t always available, and we often have to
resort to numerical integration to evaluate Bayes’ Rule. Just plotting the numerator
of Bayes’ Rule (prior(p) × L(p)) is easy; for anything else, we need to integrate (or
use summation to approximate an integral).

In the absence of much prior information for the myxomatosis parameters a
(shape) and s (scale), I chose a weak, independent prior distribution:

Prior(a) ∼ Gamma(shape = 0.01, scale = 100)

Prior(s) ∼ Gamma(shape = 0.1, scale = 10)

Prior(a, s) = Prior(a) · Prior(s).

Bayesians often use the Gamma as a prior distribution for parameters that must be
positive (although Gelman (2006) has other suggestions). Using a small shape param-
eter gives the distribution a large variance (corresponding to little prior information)
and means that the distribution will be peaked at small values but is likely to be flat
over the range of interest. Finally, the scale is usually set large enough to make the
mean of the parameter (= shape · scale) reasonable. Finally, I made the probabilities
of a and s independent, which keeps the form of the prior simple.

As introduced in Chapter 4, the posterior probability is proportional to the prior
times the likelihood. To compute the actual posterior probability, we need to divide
the numerator Prior(p) × L(p) by its integral to make sure the total area (or volume)
under the probability distribution is 1:

Posterior(a, s) = Prior(a, s) × L(a, s)∫∫
Prior(a, s)L(a, s) da ds

“Bolker” — 1/9/2008 — 15:39 — page 180

−1
0
1

180 • C H A P T E R 6

Shape

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

S
ca

le

mean

mode

0.04 0

20 40 60 80 100

0.00

0.04

Figure 6.4 Bivariate and marginal posterior distributions for the myxomatosis titer data.
Contours are drawn, logarithmically spaced, at probability levels from 0.01 to 10−10. Poste-
rior distributions are weak and independent, Gamma(shape = 0.1, scale = 10) for scale and
Gamma(shape = 0.01, scale = 100) for shape.

Figure 6.4 shows the two-dimensional posterior distribution for the myxomatosis
data. As is typical for reasonably large data sets, the probability density is very
sharp. The contours shown on the plot illustrate a rapid decrease from a probability
density of 0.01 at the mode down to a probability density of 10−10, and most of the
posterior density is even lower than this minimum contour line.

If we want to know the distribution of each parameter individually, we have to
calculate its marginal distribution: that is, what is the probability that a or s falls
within a particular range, independent of the value of the other variable? To calculate
the marginal distribution, we have to integrate (take the expectation) over all possible

“Bolker” — 1/9/2008 — 15:39 — page 181

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 181

values of the other parameter:

Posterior(a) =
∫

Posterior(a, s)s ds

Posterior(s) =
∫

Posterior(a, s)a da
(6.2.7)

Figure 6.4 also shows the marginal distributions of a and s.
What if we want to summarize the results still further and give a single value for

each parameter (a point estimate) representing our conclusions about the virus titer?
Bayesians generally prefer to quote the mean of a parameter (its expected value) rather
than the mode (its most probable value). Neither summary statistic is more correct
than the other—they give different information about the distribution—but they can
lead to radically different inferences about ecological systems (Ludwig, 1996). The
differences will be largest when the posterior distribution is asymmetric (the only time
the mean can differ from the mode) and when uncertainty is large. In Figure 6.4, the
mean and the mode are close together.

To compute mean values for the parameters, we need to compute some
more integrals, finding the weighted average of the parameters over the posterior
distribution:

ā =
∫

Posterior(a) · a da

s̄ =
∫

Posterior(s) · s ds.

(We can also compute these means from the full rather than the marginal distribu-
tions: e.g., ā = ∫∫ Posterior(a, s)a da ds.)∗

R can compute all of these integrals numerically. We can define functions

> prior.as = function(a, s) {
+ dgamma(a, shape = 0.01, scale = 100) * dgamma(s,
+ shape = 0.1, scale = 10)
+ }
> unscaled.posterior = function(a, s) {
+ prior.as(a, s) * exp(-gammaNLL1(shape = a, scale = s))
+ }

and use integrate (for one-dimensional integrals) or adapt (in the adapt package;
for multidimensional integrals) to do the integration. More crudely, we can approxi-
mate the integral by a sum, calculating values of the integrand for discrete values (e.g.,
s = 0, 0.01, . . . , 10) and then calculating

∑
P(s)�s—this is how I created Figure 6.4.

However, integrating probabilities is tricky for two reasons. (1) Prior probabil-
ities and likelihoods are often tiny for some parameter values, leading to roundoff
error; tricks like calculating log probabilities for the prior and likelihood, adding,
and then exponentiating can help. (2) You must pick the number and range of points

∗ The means of the marginal distributions are the same as the mean of the full distribution.
Confusingly, the modes of the marginal distributions are not the same as the mode of the full distribution.

“Bolker” — 1/9/2008 — 15:39 — page 182

−1
0
1

182 • C H A P T E R 6

at which to evaluate the integral carefully. Too coarse a grid leads to approximation
error, which may be severe if the function has sharp peaks. Too small a range, or
the wrong range, can miss important parts of the surface. Large, fine grids are very
slow. The numerical integration functions built into R help—you give them a range
and they try to evaluate the number of points at which to evaluate the integral—but
they can still miss peaks in the function if the initial range is set too large so that
their initial grid fails to pick up the peaks. Integrals over more than two dimensions
make these problem even worse, since you have to compute a huge number of points
to cover a reasonably fine grid. This problem is the first appearance of the curse of
dimensionality (Chapter 7).

In practice, brute-force numerical integration is no longer feasible with models
with more than about two parameters. The only practical alternatives are Markov
chain Monte Carlo approaches, introduced later in this chapter and in more detail
in Chapter 7.

For the myxomatosis data, the posterior mode is (a = 47, s = 0.15), close to the
maximum likelihood estimate of (a = 49.34, s = 0.14) (the differences are probably
caused more by round-off error than by the effects of the prior). The posterior mean
is (a = 45.84, s = 0.16).

6.3 Estimation for More Complex Functions

So far we’ve estimated the parameters of a single distribution (e.g., X ∼ Binomial(p)
or X ∼ Gamma(a, s)). We can easily extend these techniques to more interesting
ecological models like the ones simulated in Chapter 5, where the mean or variance
parameters of the model vary among groups or depend on covariates.

6.3.1 Maximum Likelihood

6.3.1.1 TADPOLE PREDATION

We can combine deterministic and stochastic functions to calculate likelihoods, just
as we did to simulate ecological processes in Chapter 5. For example, suppose tadpole
predators have a Holling type II functional response (predation rate = aN/(1 + ahN)),
meaning that the per capita predation rate of tadpoles decreases hyperbolically with
density (= a/(1 + ahN)). The distribution of the actual number eaten is likely to be
binomial with this probability. If N is the number of tadpoles in a tank,

p = a
1 + ahN

k ∼ Binom(p, N).
(6.3.1)

Since the distribution and density functions in R (such as dbinom) operate on
vectors just as do the random-deviate functions (such as rbinom) used in Chapter 5,

“Bolker” — 1/9/2008 — 15:39 — page 183

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 183

I can translate this model definition directly into R, using a numeric vector p={a, s}
for the parameters:

> binomNLL2 = function(p, N, k) {
+ a = p[1]
+ h = p[2]
+ predprob = a/(1 + a * h * N)
+ -sum(dbinom(k, prob = predprob, size = N, log = TRUE))
+ }

Now we can dig out the data from the functional response experiment of Vonesh
and Bolker (2005), which contains the variables Initial (N) and Killed (k). Plotting
the data (Figure 2.8) and eyeballing the initial slope and asymptote gives us crude
starting estimates of a (initial slope) at around 0.5 and h (1/asymptote) at around
1/80 = 0.0125.

> data(ReedfrogFuncresp)
> attach(ReedfrogFuncresp)
> O2 = optim(fn = binomNLL2, par = c(a = 0.5, h = 0.0125),
+ N = Initial, k = Killed)

This optimization gives us parameters (a = 0.526, h = 0.017)—so our starting
guesses were pretty good.

To use mle2 for this purpose, you would normally have to rewrite the negative
log-likelihood function with the parameters a and h as separate arguments (i.e., func-
tion(a,h,p,N,k)). However, mle2 will let you pass the parameters inside a vector
as long as you use parnames to attach the names of the parameters to the function.

> parnames(binomNLL2) = c("a", "h")
> m2 = mle2(binomNLL2, start = c(a = 0.5, h = 0.0125),
+ data = list(N = Initial, k = Killed))
> m2

Call:
mle2(minuslogl = binomNLL2, start = c(a = 0.5, h = 0.0125),

data = list(N = Initial, k = Killed), vecpar = TRUE)

Coefficients:
a h

0.52630319 0.01664362

Log-likelihood: -46.72

The answers are very slightly different from the optim results (mle2 uses a different
numerical optimizer by default).

As always, we should plot the fit to the data to make sure it is sensible. Figure 6.5a
shows the expected number killed (a Holling type II function) and uses the qbinom
function to plot the 95% confidence intervals of the binomial distribution.∗One point

∗ These confidence limits, sometimes called plug-in estimates, ignore the uncertainty in the
parameters.

“Bolker” — 1/9/2008 — 15:39 — page 184

−1
0
1

184 • C H A P T E R 6

20 40 60 80 100
0

5

10

15

20

25

30

35

Initial density

N
um

be
r

ki
lle

d

1086420

0

2

4

6

8

Day since infection
V

iru
s

tit
er

a b

Figure 6.5 Maximum-likelihood fits to (a) tadpole predation (Holling type II/binomial) and
(b) myxomatosis (Ricker/Gamma) models.

falls outside of the confidence limits; for 16 points, this isn’t surprising (we would
expect 1 point out of 20 to fall outside the limits on average), although this point is
quite low (5/50, compared to an expectation of 18.3/50—the probability of getting
this extreme an outlier is only 2.11 × 10−5).

6.3.1.2 MYXOMATOSIS VIRUS

When we looked at the myxomatosis titer data earlier, we treated it as though it
all came from a single distribution. In reality, titers typically change considerably as
a function of the time since infection. Following Dwyer et al. (1990), we will fit a
Ricker model to the mean titer level. Figure 6.5 shows the data for the grade 1 virus.
The Ricker is a good function for fitting data that start from zero, grow to a peak, and
then decline, although for the grade 1 virus we have only biological common sense,
and the evidence from the other virus grades, to say that the titer would eventually
decrease. Grade 1 is so virulent that rabbits die before titer has a chance to drop
off. We’ll stick with the Gamma distribution for the distribution of titer T at time t,
but parameterize it with shape (s) and mean rather than shape and scale parameters
(i.e., scale = mean/shape):

m = ate−bt

T ∼ Gamma(shape = s, scale = m/a).
(6.3.2)

Translating this into R is straightforward:

> gammaNLL2 = function(a, b, shape) {
+ meantiter = a * myxdat$day * exp(-b * myxdat$day)
+ -sum(dgamma(myxdat$titer, shape = shape,
+ scale = meantiter/shape, log = TRUE))
+ }

“Bolker” — 1/9/2008 — 15:39 — page 185

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 185

We need initial values, which we can guess knowing from Chapter 3 that a is the
initial slope of the Ricker function and 1/b is the x-location of the peak. Figure 6.5
suggests that a ≈ 1, 1/b ≈ 5. I knew from the previous fit that the shape parameter
is large, so I started with shape = 50. When I tried to fit the model with the default
optimization method I got a warning that the optimization had not converged, so I
used an alternative optimization method, the Nelder-Mead simplex (p. 229).

> m4 = mle2(gammaNLL2, start = list(a = 1, b = 0.2,
+ shape = 50), method = "Nelder-Mead")
> m4

Call:
mle2(minuslogl = gammaNLL2, start = list(a = 1, b = 0.2, shape = 50),

method = "Nelder-Mead")

Coefficients:
a b shape

3.5614933 0.1713346 90.6790545

Log-likelihood: -29.51

We could run the same analysis a bit more compactly, without explicitly defining a
negative log-likelihood function, using mle2’s formula interface:

> mle2(titer ˜ dgamma(shape, scale = a * day * exp(-b *
+ day)/shape), start = list(a = 1, b = 0.2, shape = 50),
+ data = myxdat, method = "Nelder-Mead")

Specifying data=myxdat lets us use day and titer in the formula instead of
myxdat$day and myxdat$titer.

6.3.2 Bayesian Analysis

Extending the tools to use a Bayesian approach is straightforward, although the
details are more complicated than maximum likelihood estimation. We can use the
same likelihood models (e.g., (6.3.1) for the tadpole predation data or (6.3.2) for
myxomatosis). All we have to do to complete the model definition for Bayesian anal-
ysis is specify prior probability distributions for the parameters. However, defining
the model is not the end of the story. For the binomial model, which has only two
parameters, we could proceed more or less as in the Gamma distribution example
above (Figure 6.4), calculating the posterior density for many combinations of the
parameters and computing integrals to calculate marginal distributions and means.
To evaluate integrals for the three-parameter myxomatosis model we would have
to integrate the posterior distribution over a three-dimensional grid, which would
quickly become impractical.

Markov chain Monte Carlo (MCMC) is a numerical technique that makes
Bayesian analysis of more complicated models feasible. BUGS is a program that
allows you to run MCMC analyses without doing lots of programming. Here is the

“Bolker” — 1/9/2008 — 15:39 — page 186

−1
0
1

186 • C H A P T E R 6

BUGS code for the myxomatosis example:

1. model {
2. for (i in 1:n) {
3. mean[i] <- a*day[i]*exp(-b*day[i])
4. rate[i] <- mean[i]/shape
5. titer[i] dgamma(shape,rate[i])
6. }
7. ## priors
8. a dgamma(2,0.5)
9. b dgamma(2,0.5)

10. shape dgamma(2,100)
11. }

BUGS’s modeling language is similar but not identical to R. For example, BUGS
requires you to use <- instead of = for assignments.

As you can see, the BUGS model also looks a lot like the likelihood model (6.3.2).
Lines 3–5 specify the model (BUGS uses shape and rate parameters to define the
Gamma distribution rather than shape and scale parameters: differences in param-
eterization are some of the most important differences between the BUGS and R
languages). Lines 8–10 give the prior distributions for the parameters, all Gamma
in this case. The BUGS model is more explicit than (6.3.2)—in particular, you
have to put in an explicit for loop to calculate the expected values for each data
point—but the broad outlines are the same, even up to using a tilde (˜) to mean “is
distributed as.”

You can run BUGS either as a standalone program or from within R, using the
R2WinBUGS package as an interface to the WinBUGS program for running BUGS on
Windows.∗

> library(R2WinBUGS)

You have to specify the names of the data exactly as they are listed in the BUGS
model (given above, but stored in a separate text file myxo1.bug):

> titer = myxdat$titer
> day = myxdat$day
> n = length(titer)

You also have to specify starting points for multiple chains, which should vary among
reasonable values (p. 7.3.2), as a list of lists:

> inits = list(list(a = 4, b = 0.2, shape = 90), list(a = 1,
+ b = 0.1, shape = 50), list(a = 8, b = 0, shape = 150))

(I originally started b at 1.0 for the third chain, but WinBUGS kept giving me
an error saying “cannot bracket slice for node a.” By trial and error—eliminating
chains and changing parameters—I established that the value of b in chain 3 was the
problem.)

∗ WinBUGS runs on Windows and on Intel machines under Linux or MacOS (using Wine or Cross-
over Office). Chapter 7 gives more details.

“Bolker” — 1/9/2008 — 15:39 — page 187

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 187

Now you can run the model through WinBUGS:

> myxo1.bugs = bugs(data = list("titer", "day", "n"),
+ inits, parameters.to.save = c("a", "b", "shape"),
+ model.file = "myxo1.bug", n.chains = length(inits),
+ n.iter = 3000)

As we will see shortly, you can recover lots of information for a Bayesian analysis
from a WinBUGS run—for now, you can use print(myxo1.bugs,digits=4) to see
that the estimates of the means, {a = 3.55, b = 0.17, s = 79.9}, are reassuringly close
to the maximum likelihood estimates (p. 185).

6.4 Likelihood Surfaces, Profiles, and Confidence Intervals

So far, we’ve used R and WinBUGS to find point estimates (maximum likelihood
estimates or posterior means) automatically, without looking very carefully at the
curves and surfaces that describe how the likelihood varies with the parameters. This
approach gives little insight when things go wrong with the fitting (as happens all
too often). Furthermore, point estimates are useless without measures of uncertainty.
We really want to know the uncertainty associated with the parameter estimates,
both individually (univariate confidence intervals) and together (bi- or multivariate
confidence regions). This section will show how to draw and interpret goodness-
of-fit curves (likelihood curves and profiles, Bayesian posterior joint and marginal
distributions) and their connections to confidence intervals.

6.4.1 Frequentist Analysis: Likelihood Curves and Profiles

The most basic tool for understanding how likelihood depends on one or more param-
eters is the likelihood curve or likelihood surface, which is just the likelihood plotted
as a function of parameter values (e.g., Figure 6.1). By convention, we plot the neg-
ative log-likelihood rather than log-likelihood, so the best estimate is a minimum
rather than a maximum. (I sometimes call negative log-likelihood curves badness-of-
fit curves, since higher points indicate a poorer fit to the data.) Figure 6.6a shows the
negative log-likelihood curve (like Figure 6.1 but upside-down and with a different y
axis), indicating the minimum negative log-likelihood (=maximum likelihood) point,
and lines showing the upper and lower 95% confidence limits (we’ll soon see how
these are defined). Every point on a likelihood curve or surface represents a different
fit to the data: Figure 6.6b shows the observed distribution of the binomial data
along with three separate curves corresponding to the lower estimate (p = 0.6), best
fit (p = 0.75), and upper estimate (p = 0.87) of the per capita predation probability.

For models with more than one parameter, we draw likelihood surfaces instead of
curves. Figure 6.7 shows the negative log-likelihood surface of the tadpole predation
data as a function of attack rate a and handling time h. The minimum is where
we found it before, at (a = 0.526, h = 0.017). The likelihood contours are roughly
elliptical and are tilted near a 45 degree angle, which means (as we will see) that
the estimates of the parameters are correlated. Remember that each point on the

“Bolker” — 1/9/2008 — 15:39 — page 188

−1
0
1

188 • C H A P T E R 6

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

30

Predation probability
per capita (p)

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

0.0

0.1

0.2

0.3

0.4

0.5

Tadpoles eaten

P
ro

ba
bi

lit
y

100 2 4 6 8

p=0.6

p=0.75
p=0.87

a b

Figure 6.6 (a) Negative log-likelihood curve and confidence intervals for binomial-distributed
tadpole predation. (b) Comparison of fits to data. Gray vertical bars show proportion of trials
with different outcomes; lines and symbols show fits corresponding to different parameters
indicated on the curve in (a).

likelihood surface corresponds to a fit to the data, which we can (and should) look at
in terms of a curve through the actual data values: Figure 6.8 shows the fit of several
sets of parameters (the ML estimates, and two other less well-fitting a-h pairs) on the
scale of the original data.

If we want to deal with models with more than two parameters, or if we want
to analyze a single parameter at a time, we have to find a way to isolate the effects
of one or more parameters while still accounting for the rest. A simple, but usually
wrong, way of doing this is to calculate a likelihood slice, fixing the values of all but
one parameter (usually at their maximum likelihood estimates) and then calculating
the likelihood for a range of values of the focal parameter. The horizontal line in the
middle of Figure 6.7 shows a likelihood slice for a, with h held constant at its MLE.
Figure 6.9 shows an elevational view, the negative log-likelihood for each value of
a. Slices can be useful for visualizing the geometry of a many-parameter likelihood
surface near its minimum, but they are statistically misleading because they don’t
allow the other parameters to vary and thus they don’t show the minimum negative
log-likelihood achievable for a particular value of the focal parameter.

Instead, we calculate likelihood profiles, which represent “ridgelines” in param-
eter space showing the minimum negative log-likelihood for particular values of a
single parameter. To calculate a likelihood profile for a focal parameter, we have to
set the focal parameter in turn to a range of values, and for each value optimize the
likelihood with respect to all of the other parameters. The likelihood profile for a in
Figure 6.7 runs through the contour lines (such as the confidence regions shown) at
the points where the contours run exactly vertical. Think about looking for the min-
imum along a fixed-a transect (varying h—vertical lines in Figure 6.7); the minimum
will occur at a point where the transect is just touching (tangent to) a contour line.
Slices are always steeper than profiles (e.g., Figure 6.9), because they don’t allow the

“Bolker” — 1/9/2008 — 15:39 — page 189

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 189

0.3 0.4 0.5 0.6 0.7

0.005

0.010

0.015

0.020

0.025

0.030

Attack rate (a)

H
an

dl
in

g
tim

e
(h

)

h

a

univariate

bivariate

slice

Figure 6.7 Likelihood surface for tadpole predation data, showing univariate and bivariate
95% confidence limits and likelihood profiles for a and h. Darker shades of gray represent
higher (i.e., worse) negative log-likelihoods. The solid line shows the 95% bivariate confi-
dence region. Dotted black and gray lines indicate 95% univariate confidence regions. The
dash-dotted line and dashed line show likelihood profiles for h and a. The long-dash gray line
shows the likelihood slice with varying a and constant h. The black dot indicates the maximum
likelihood estimate; the star is an alternate fit along the slice with the same handling time; the
triangle is an alternate fit along the likelihood profile for a.

other parameters to adjust to changes in the focal parameter. Figure 6.8 shows that
the fit corresponding to a point on the profile (triangle/dashed line) has a lower value
of h (handling time, corresponding to a higher asymptote) that compensates for its
enforced lower value of a (attack rate/initial slope), while the equivalent point from
the slice (star/dotted line) has the same handling time as the MLE fit, and hence fits
the data worse—corresponding to the higher negative log-likelihood in Figure 6.9.

6.4.1.1 THE LIKELIHOOD RATIO TEST

On a negative log-likelihood curve or surface, higher points represent worse fits. The
steeper and narrower the valley (i.e., the faster the fit degrades as we move away from
the best fit), the more precisely we can estimate the parameters. Since the negative log-
likelihood for a set of independent observations is the sum of the individual negative
log-likelihoods, adding more data makes likelihood curves steeper. For example,

“Bolker” — 1/9/2008 — 15:39 — page 190

−1
0
1

190 • C H A P T E R 6

Attack rate (a)

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

0.3 0.4 0.5 0.6 0.7

47

50

55

60

65

slice

profile

Figure 6.8 Fits to tadpole predation data corresponding to the parameter values marked in
Figures 6.7 and 6.8.

doubling the number of observations will double the negative log-likelihood curve
across the board—in particular, doubling the slope of the negative log-likelihood
surface.∗

It makes sense to determine confidence limits by setting some upper limit on the
negative log-likelihood and declaring that any parameters that fit the data at least
that well are within the confidence limits. The steeper the likelihood surface, the
faster we reach the limit and the narrower are the confidence limits. Since we care
only about the relative fit of different models and parameters, the limits should be
relative to the maximum log-likelihood (minimum negative log-likelihood).

For example, Edwards (1992) suggested that one could set reasonable confidence
regions by including all parameters within 2 log-likelihood units of the maximum
log-likelihood, corresponding to all fits that gave likelihoods within a factor of
e2 ≈ 7.4 of the maximum. However, this approach lacks a frequentist probabil-
ity interpretation—there is no corresponding p-value. This deficiency may be an
advantage, since it makes dogmatic null-hypothesis testing impossible.

∗ Doubling the sample size also typically doubles the minimum negative log-likelihood as well, which
may seem odd—why would adding more data worsen the fit of the model?—until you remember that we’re
not really interested in the probability of a particular set of data, just the relative likelihood of different
models and parameters. The probability of flipping a fair coin (p = 0.5) twice and getting one head and
one tail is 0.5. The probability of flipping the same coin 1000 times and getting 500 heads and 500 tails
is only 0.025; that doesn’t mean that we should reject the hypothesis that the coin is fair.

“Bolker” — 1/9/2008 — 15:39 — page 191

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 191

20 40 60 80 100

0

5

10

15

20

25

30

35

Initial density

N
um

be
r

ki
lle

d

MLE

profile

slice

Figure 6.9 Likelihood profile and slice for the tadpole data, for the attack rate parameter a.
Gray dashed lines show the negative log-likelihood cutoff and 95% confidence limits for a.
Points correspond to parameter combinations marked in Figure 6.6.

If you insist on p-values, you can also use differences in log-likelihoods (corre-
sponding to ratios of likelihoods) in a frequentist approach called the Likelihood
Ratio Test (LRT). Take some likelihood function L(p1, p2, . . . , pn), and find the over-
all best (maximum likelihood) value, L̂ = L(p̂1, p̂2, . . . , p̂n). Now fix some of the
parameters (say p1 . . . pr) to specific values (p∗

1, . . . , p∗
r), and maximize with respect

to the remaining parameters to get Lr = L(p∗
1, . . . , p∗

r , p̂r+1, . . . , p̂n) (r stands for
“restricted,” sometimes also called a reduced or nested model). The Likelihood Ratio
Test says that twice the negative log of the likelihood ratio, −2 log (Lr/L̂), called
the deviance, is approximately χ2 (“chi-squared”) distributed∗ with r degrees of
freedom.†

∗ You may associate the χ2 distribution with contingency table analysis, chisq.test in R, but it is
a distribution that appears much more broadly in statistics.

† Here’s a heuristic explanation: you can prove that the distribution of the maximum likelihood
estimate is asymptotically normally distributed (i.e., with sufficiently large sample sizes). You can also
show, by Taylor expanding, that the log-likelihood surface is quadratic, with curvature determined by
the variances of the parameters. If we are restricting r parameters, then we are moving away from the
maximum likelihood of the more complex model in r directions, by a normally distributed amount θi

in each direction. Since the log-likelihood surface is quadratic, the drop in the negative log-likelihood is∑r
i=1 θ2

i . Since the θi values (likelihood estimates of each parameter) are each normally distributed, the
sum of squares of r of them is χ2 distributed with r degrees of freedom. This explanation is necessarily
crude; for the real derivation, see Kendall and Stuart (1979).

“Bolker” — 1/9/2008 — 15:39 — page 192

−1
0
1

192 • C H A P T E R 6

Attack rate (a)

∆
N

eg
at

iv
e

lo
g−

lik
el

ih
oo

d

0.4 0.5 0.6 0.7

0

2

4

χ1
2(0.95)

2

χ1
2(0.99)

2

95%

99%

Handling time (h)

∆
N

eg
at

iv
e

lo
g−

lik
el

ih
oo

d

0.005 0.015 0.025

0

2

4

χ1
2(0.95)

2

χ1
2(0.99)

2

95%

99%

a b

Figure 6.10 Likelihood profiles and LRT confidence intervals for tadpole predation data.

The log of the likelihood ratio is the difference in the log-likelihoods, so

2(− log Lr − (− log L̂)) = 2(− Lr − (− L̂)) ∼ χ2
r . (6.4.1)

The definition of the LRT echoes the definition of the likelihood profile, where we
fix one parameter and maximize the likelihood/minimize the negative log-likelihood
with respect to all the other parameters: r = 1 in the definition above. Thus, for
univariate confidence limits we cut off the likelihood profile at (−L̂+ χ2

1 (1 − α)/2),
where α is our chosen type I error level (e.g., 0.05 or 0.01). The cutoff is a one-tailed
test, since interested only in differences in likelihood that are larger than expected
under the null hypothesis. Figure 6.10 shows the likelihood profiles for a and h,
along with the 95% and 99% confidence intervals; you can see how the confidence
intervals on the parameters are drawn as vertical lines through the intersection points
of the (horizontal) likelihood cutoff levels with the profile.

The 99% confidence intervals have a higher cutoff than the 95% confidence
intervals (χ2

1 (0.99)/2 = 3.32 > χ2
1 (0.95)/2 = 1.92), and hence the 99% intervals are

wider. The numbers are given in Table 6.1.
R can compute profiles and profile confidence limits automatically. Given an

mle2 fit m, profile(m) will compute a likelihood profile and confint(m) will com-
pute profile confidence limits. plot(profile(m2)) will plot the profile, square-root
transformed so that a quadratic profile will appear V-shaped (or linear if you spec-
ify absVal=FALSE). This transformation makes it easier to see whether the profile is
quadratic, since it’s easier to see whether a line is straight than it is to see whether
it’s quadratic. Computing the profile can be slow, so if you want to plot the profile
and find confidence limits, or find several different confidence limits, you can save
the profile and then use confint on the profile:

> p2 = profile(m2)
> confint(p2)

“Bolker” — 1/9/2008 — 15:39 — page 193

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 193

TABLE 6.1

α
χ2

1 (α)
2 −L̂ + χ2

1 (α)
2 Variable Lower Upper

0.95 1.92 48.6 a 0.40200 0.6820

h 0.00699 0.0264

0.99 3.32 50.0 a 0.37000 0.7390

h 0.00387 0.0296

It’s also useful to know how to calculate profiles and profile confidence limits
yourself, both to understand them better and for the not-so-rare times when the
automatic procedures break down. Because profiling requires many separate opti-
mizations, it can fail if your likelihood surface has multiple minima (p. 245) or if the
optimization is otherwise finicky. You can try to tune your optimization procedures
using the techniques discussed in Chapter 7, but in difficult cases you may have to
settle for approximate quadratic confidence intervals (Section 6.5).

To compute profiles by hand, you need to write a new negative log-likelihood
function that holds one of the parameters fixed while minimizing the likelihood with
respect to the rest. For example, to compute the profile for a (minimizing with respect
to h for many values of a), you could use the following reduced negative log-likelihood
function (compare this with the full function on p. 3.2.9):

> binomNLL2.a = function(p, N, k, a) {
+ h = p[1]
+ predprob = a/(1 + a * h * N)
+ -sum(dbinom(k, prob = predprob, size = N, log = TRUE))
+ }

Compute the profile likelihood for a range of a values:

> avec = seq(0.3, 0.8, length = 100)
> aprof = numeric(100)
> for (i in 1:100) {
+ aprof[i] = optim(binomNLL2.a, par = 0.02,
+ k = ReedfrogFuncresp$Killed,
+ N = ReedfrogFuncresp$Initial, a = avec[i],
+ method = "BFGS")$value
+ }

The curve drawn by plot(avec,aprof) would look just like the one in Figure 6.10a.
To find the profile confidence limits for a, we have to take one branch of the

profile at a time. Starting with the lower branch, the a values below the maximum
likelihood estimate:

> prof.lower = aprof[1:which.min(aprof)]
> prof.avec = avec[1:which.min(aprof)]

“Bolker” — 1/9/2008 — 15:39 — page 194

−1
0
1

194 • C H A P T E R 6

Finally, use the approx function to calculate the a value for which −L = −L̂+
χ2

1 (0.95)/2:

> approx(prof.lower, prof.avec, xout = -logLik(m2) +
+ qchisq(0.95, 1)/2)

$x

‘log Lik.’ 48.64212 (df=2)

$y

[1] 0.4024598

Now let’s go back and look at the bivariate confidence region in Figure 6.7.
The 95% bivariate confidence region (solid black line) occurs at negative log-
likelihood equal to −L̂+ χ2

2 (0.95)/2 ≈ −L̂+ 3. I’ve also drawn the univariate region
(L̂+ χ2

1 (0.95)/2 contour). That region is not really appropriate for this figure,
because it applies to a single parameter at a time, but it illustrates that univariate
intervals are smaller than the bivariate confidence region, and that the confidence
intervals, like the profiles, are tangent to the univariate confidence region.

The LRT is correct only asymptotically, for large data sets. For small data sets it
is an approximation, although one that people use very freely. The other limitation
of the LRT that frequently arises, although it is often ignored, is that it applies only
when the best estimate of the parameter is away from the edge of its allowable range
(Pinheiro and Bates, 2000). For example, if the MLE of the mean parameter of a
Poisson distribution λ (which must be ≥ 0) is equal to 0, then the LRT estimate for
the upper bound of the confidence limit is not technically correct (see p. 250).

6.4.2 Bayesian Approach: Posterior Distributions
and Marginal Distributions

What about the Bayesians? Instead of drawing likelihood curves, Bayesians draw
the posterior distribution (proportional to prior × L, e.g., Figure 6.4). Instead of
calculating confidence limits using the (frequentist) LRT, they define the credible
interval, which is the region in the center of the distribution containing 95% (or
some other standard proportion) of the probability of the distribution, bounded
by values on either side that have the same probability (or probability density).
Technically, the credible interval is the interval [x1, x2] such that P(x1) = P(x2) and
C(x2) − C(x1) = 1 − α, where P is the probability density and C is the cumulative
density. The credible interval is slightly different from the frequentist confidence inter-
val, which is defined as [x1, x2] such that C(x1) = α/2 and C(x2) = 1 − α/2. For
empirical samples, use quantile to compute confidence intervals and HPDinterval
(“highest posterior density interval”), in the coda package, to compute credible inter-
vals. For theoretical distributions, use the appropriate “q” function (e.g., qnorm) to
compute confidence intervals and tcredint, in the emdbook package, to compute
credible intervals.

Figure 6.11 shows the posterior distribution for the tadpole predation (from
Figure 6.4), along with the 95% credible interval and the lower and upper 2.5% tails

“Bolker” — 1/9/2008 — 15:39 — page 195

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 195

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

1

2

3

4

5

Predation probability
per capita

P
ro

ba
bi

lit
y

de
ns

ity

95%
credible

interval

2.5% tails

Figure 6.11 Bayesian 95% credible interval (gray), and 5% tail areas (hashed), for the tadpole
predation data (weak prior: shape=(1,1)).

for comparison. The credible interval is symmetrical in height; the cutoff value on
either end of the distribution has the same posterior probability density. The extreme
tails are symmetrical in area; the likelihood of extreme values in either direction
is the same. The credible interval’s height symmetry leads to a uniform probability
cutoff: we never include a less probable value on one boundary than on the other.
To a Bayesian, this property makes more sense than insisting (as the frequentists do
in defining confidence intervals) that the probabilities of extremes in either direction
are the same.

For multiparameter models, the likelihood surface is analogous to a bivariate or
multivariate probability distribution (Figure 6.12). The marginal probability density
is the Bayesian analogue of the likelihood profile. Where frequentists use likelihood
profiles to make inferences about a single parameter while taking the effects of the
other parameters into account, Bayesians use the marginal posterior probability den-
sity, the overall probability for a particular value of a focal parameter integrated over
all the other parameters. Figure 6.12 shows the 95% credible intervals for the tadpole
predation analysis, both bivariate and marginal (univariate). In this case, when the
prior is weak and the posterior distribution is reasonably symmetrical, there is little
difference between the bivariate 95% confidence region and the bivariate 95% cred-
ible interval (Figure 6.12), but Bayesian and frequentist conclusions are not always
so similar.

“Bolker” — 1/9/2008 — 15:39 — page 196

−1
0
1

196 • C H A P T E R 6

0.4 0.5 0.6 0.7 0.8

0.00

0.01

0.02

0.03

0.04

Attack rate

H
an

dl
in

g
tim

e

mean

mode

MLE

bivariate credible region
bivariate confidence region

80 0

0.4 0.5 0.6 0.7 0.8
0

6

Figure 6.12 Bayesian credible intervals (bivariate and marginal) for tadpole predation
analysis.

6.5 Confidence Intervals for Complex Models: Quadratic Approximation

The methods I’ve discussed so far (calculating likelihood profiles or marginal likeli-
hoods numerically) work fine when you have only two, or maybe three, parameters,
but they become impractical for models with many parameters. To calculate a like-
lihood profile for n parameters, you have to optimize over n − 1 parameters for
every point in a univariate likelihood profile. If you want to look at the bivari-
ate confidence limits of any two parameters, you can’t just compute a likelihood
surface. To compute a 2D likelihood profile, the analogue of the 1D profiles we
calculated previously, you would have to take every combination of the two param-
eters you’re interested in (e.g., a 50 × 50 grid of parameter values) and maximize
with respect to all the other n − 2 parameters for every point on that surface,
and then use the values you’ve calculated to draw contours. Especially when the
likelihood function itself is hard to calculate, this procedure can be extremely
tedious.

“Bolker” — 1/9/2008 — 15:39 — page 197

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 197

A powerful, general, but approximate shortcut is to examine the second deriva-
tives of the log-likelihood as a function of the parameters. The second derivatives
provide information about the curvature of the surface, which tells us how rapidly
the log-likelihood gets worse, which in turn allows us to estimate the confidence
intervals. This procedure involves a second level of approximation (like the LRT,
becoming more accurate as the number of data points increases), but it can be useful
when you run into numerical difficulties calculating the profile confidence limits, or
when you want to compute bivariate confidence regions for complex models or more
generally explore correlations in high-dimensional parameter spaces.

To motivate this procedure, let’s briefly go back to a one-dimensional normal
distribution and compute an analytical expression for the profile confidence lim-
its. The likelihood of a set of independent samples from a normal distribution is
L =∏n

i=1
1√
2πσ

exp (− (xi − µ)2/(2σ 2)).∗ That means the negative log-likelihood as

a function of µ (assuming we know σ) is

−L(µ) = C + n log σ +
∑

i

(
(xi − µ)2

2σ 2

)
, (6.5.1)

where we’ve lumped the parameter-independent parts of the likelihood into the con-
stant C. We could differentiate this expression with respect to µ and solve for µ when
the derivative is zero to show that µ̂ =∑xi/n. We could then substitute µ = µ̂ into
(6.5.1) to find the minimum negative log-likelihood. Once we have done this we want
to calculate the width of the profile confidence interval c—that is, we want to find
the value of c such that

−L(µ̂ ± c) = −L(µ̂) + χ2
1 (1 − α)/2. (6.5.2)

Some slightly nasty algebra leads to

c =
√

χ2
1 (1 − α) · σ√

n
. (6.5.3)

This expression might look familiar: we’ve just rederived the expression for the
confidence limits of the mean! The term σ/

√
n is the standard error of the mean;

it turns out that the term
√

χ2
1 (1 − α) is the same as the (1 − α)/2 quantile for the

normal distribution.† The test uses the quantile of a normal distribution, rather than
a Student t distribution, because we have assumed the variance is known.

How does this relate to the second derivative? For the normal distribution, the
second derivative of the negative log-likelihood with respect to µ is

D2 = d2 (∑ (xi − µ)2/(2σ 2)
)

dµ2 = n
(σ 2)

. (6.5.4)

∗ The symbol � denotes a product, like
 but for multiplication.
† Try sqrt(qchisq(0.95,1)) and qnorm(0.975) in R to test this idea; use 0.975 instead of 0.95 in

the second expression because this procedure involves a two-tailed test on the normal distribution but a
one-tailed test on the χ2 distribution, because χ2 is the distribution of a squared normal deviate.

“Bolker” — 1/9/2008 — 15:39 — page 198

−1
0
1

198 • C H A P T E R 6

So we can rewrite the term σ/
√

n in (6.5.3) as
√

1/D2; the standard deviation of the
parameter, which determines the width of the confidence interval, is proportional to
the square root of the reciprocal of the curvature (i.e., the second derivative).

While we have derived these conclusions for the normal distribution, they’re true
for any model if the data set is large enough. In general, for a one-parameter model
with parameter p, the width of our confidence region is

N(α)

(
d2(log L)

dp2

)−1/2

, (6.5.5)

where N(α) is the appropriate quantile for the standard normal distribution. This
equation gives us a general recipe for finding the confidence region without doing any
extra computation, if we know the second derivative of the negative log-likelihood at
the maximum likelihood estimate. We can find that second derivative either by calcu-
lating it analytically or, when this is too difficult, by calculating it numerically by finite
differences. Extending the general rule that the derivative df (p)/dp is approximately
(f (p + �p) − f (p))/�p:

d2f
dp2

∣∣∣∣∣
p=p̂

≈ f (p̂ + �p) − 2f (p̂) + f (p̂ − �p)
(�p)2

. (6.5.6)

The hessian=TRUE option in optim tells R to calculate the second derivative in this
way; this option is set automatically in mle2.

The same idea works for multiparameter models, but we have to know a little
bit more about second derivatives to understand it. A multiparameter likelihood
surface has more than one second partial derivative; in fact, it has a matrix of second
partial derivatives, called the Hessian. When calculated for a likelihood surface, the
negative of the expected value of the Hessian is called the Fisher information; when
evaluated at the maximum likelihood estimate, it is the observed information matrix.
The second partial derivatives with respect to the same variable twice (e.g., ∂2L/∂µ2)
represent the curvature of the likelihood surface along a particular axis, while the
cross-derivatives, e.g., ∂2L/(∂µ∂σ), describe how the slope in one direction changes
as you move along another direction. For example, for the log-likelihood L of the
normal distribution with parameters µ and σ , the Hessian is

 ∂2L
∂µ2

∂2L
∂µ∂σ

∂2L
∂µ∂σ

∂2L
∂σ2


 . (6.5.7)

In the simplest case of a one-parameter model, the Hessian reduces to a sin-
gle number (d2L/dp2), the curvature of the likelihood curve at the MLE, and the
estimated standard deviation of the parameter is just (∂2L/∂p2)−1/2, as above.

In some simple two-parameter models such as the normal distribution the
parameters are uncorrelated, and the matrix is diagonal:

 ∂2L
∂µ2 0

0 ∂2L
∂σ2


 . (6.5.8)

“Bolker” — 1/9/2008 — 15:39 — page 199

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 199

Attack rate (a)

H
an

dl
in

g
tim

e
(h

)

0.3 0.4 0.5 0.6 0.7 0.8

0.00

0.01

0.02

0.03

0.04

profile

information

80%

99.5%

Figure 6.13 Likelihood ratio and information-matrix confidence limits on the tadpole preda-
tion model parameters.

The off-diagonal zeros mean that the slope of the surface in one direction doesn’t
change as you move in the other direction, and hence the shapes of the likelihood
surface in the µ direction and the σ direction are unrelated. In this case we can com-
pute the standard deviations of each parameter independently—they’re the inverse
square roots of the second partial derivative with respect to each parameter (i.e.,
(∂2L/∂µ2)−1/2 and (∂2L/∂σ 2)−1/2).

In general, when the off-diagonal elements are different from zero, we have to
invert the matrix numerically, which we can do with solve. For a two-parameter
model with parameters a and b we obtain the variance-covariance matrix

V =
(

σ 2
a σab

σab σ 2
b

)
, (6.5.9)

where σ 2
a and σ 2

b are the variances of a and b and σab is the covariance between them;
the correlation between the parameters is σab/(σaσb).

The approximate 80% and 99.5% confidence ellipses calculated in this way
are reasonably close to the more accurate profile confidence regions for the tadpole
predation data set. The profile region is slightly skewed—it includes more points
where d and r are both larger than the maximum likelihood estimate, and fewer where
both are smaller—while the approximate ellipse is symmetric around the maximum
likelihood estimate.

“Bolker” — 1/9/2008 — 15:39 — page 200

−1
0
1

200 • C H A P T E R 6

This method extends to more than two parameters, although it is difficult to
draw the analogous pictures in multiple dimensions. The information matrix of a
p-parameter model is a p × p matrix. Using solve to invert the information matrix
gives the variance-covariance matrix

V =




σ 2
1 σ12 . . . σ1p

σ21 σ 2
2 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σ 2
p




, (6.5.10)

where σ 2
i is the estimated variance of variable i and σij = σji is the estimated covari-

ance between variables i and j: the correlation between variables i and j is σij/(σiσj).
For an mle2 fit m, vcov(m)will give the approximate variance-covariance matrix com-
puted in this way and cov2cor(vcov(m)) will scale the variance-covariance matrix
by the variances to give a correlation matrix with entries of 1 on the diagonal and
parameter correlations as the off-diagonal elements.

The shape of the likelihood surface contains essentially all of the information
about the model fit and its uncertainty. For example, a large curvature or steep slope
in one direction corresponds to high precision for the estimate of that parameter or
combination of parameters. If the curvature is different in different directions (leading
to ellipses that are longer in one direction than another), then the data provide
unequal amounts of precision for the different estimates. If the contours are oriented
vertically or horizontally, then the estimates of the parameters are independent, but
if they are diagonal, then the parameter estimates are correlated. If the contours are
roughly elliptical (at least near the MLE), then the surface can be described by a
quadratic function.

These characteristics also help determine which methods and approximations
will work well (Figure 6.14). If the parameters are uncorrelated (i.e., the contours
are oriented horizontally and vertically), then you can estimate them separately and
still get the correct confidence intervals: the likelihood slice is the same as the profile
(Figure 6.14a). If they are correlated, on the other hand, you will need to calculate a
profile or invert the information matrix to allow for variation in the other parameters
(Figure 6.14b). If the likelihood contours are elliptical—which happens when the
likelihood surface has a quadratic shape—the information matrix approximation
will work well (Figure 6.14a, b); otherwise, you must use a full profile likelihood to
calculate the confidence intervals accurately (Figure 6.14c, d).

You should usually handle nonquadratic and correlated surfaces by comput-
ing profile confidence limits, but in extreme cases these characteristics may cause
problems for fitting (Chapter 7) and you will have to fall back on the less-accurate
quadratic approximations. All other things being equal, smaller confidence regions
(i.e., for larger and less noisy data sets and for higher α levels) are more ellipti-
cal. Reparameterizing functions can sometimes make the likelihood surface closer to
quadratic and decrease correlation between the parameters. For example, one might
fit the asymptote and half-maximum of a Michaelis-Menten function rather than the
asymptote and initial slope, or fit log-transformed parameters.

“Bolker” — 1/9/2008 — 15:39 — page 201

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 201

quad

profile
slice

quad

profile
slice

quad

profile
slice

conf. region
quadratic
profile

quad

profile
slice

c d

ba

Figure 6.14 Varying shapes of likelihood contours and the associated profile confidence
intervals, approximate information matrix (quadratic) confidence intervals, and slice inter-
vals. (a) Quadratic contours, no correlation. (b) Quadratic contours, positive correlation.
(c) Quadratic contours, no correlation. (d) Nonquadratic contours, positive correlation.

6.6 Comparing Models

The last topic for this chapter, a controversial and important one, is model compar-
ison or model selection. Model comparison and selection are closely related to the
techniques for estimating confidence regions that we just covered.

Dodd and Silvertown did a series of studies on fir (Abies balsamea) in New York
state, exploring the relationships among growth, size, age, competition, and number
of cones produced in a given year (Silvertown and Dodd, 1999; Dodd and Silvertown,
2000); see ?Fir in the emdbook package. Figure 6.15 shows the relationship between
size (diameter at breast height, DBH) and the total fecundity over the study period,
contrasting populations that have experienced wavelike die-offs (“wave”) with those

“Bolker” — 1/9/2008 — 15:39 — page 202

−1
0
1

202 • C H A P T E R 6

4 6 8 12 14 1610

0

50

100

150

200

250

300

Size (DBH)

F
ec

un
di

ty
 (

to
ta

l c
on

es
)

nonwave

wave

combined

Figure 6.15 Fir fecundity as a function of DBH for wave and nonwave populations. Lines
show estimates of the model y = a · DBHb fitted to the populations separately and combined.

that have not (“nonwave”). A power-law (allometric) dependence of expected fecun-
dity on size allows for increasing fecundity with size while preventing the fecundity
from being negative for any parameter values. It also agrees with the general observa-
tion in morphometrics that many traits increase as a power function of size. A negative
binomial distribution in size around the expected fecundity describes discrete count
data with potentially high variance. The resulting model is

µ = a · DBHb

Y ∼ NegBinom(µ, k).
(6.6.1)

We might ask any of these biological/statistical questions:

• Does fir fecundity (total number of cones) change (increase) with size (DBH)?
• Do the confidence intervals (credible intervals) of the allometric parameter b

include zero (no change)? Do they include one (isometry)?
• Is the allometric parameters b significantly different from (greater than) zero?

One?
• Does a model incorporating the allometric parameter fit the data significantly

better than a model without an allometric parameter, or equivalently where
the allometric parameter is set to zero (µ = a) or one (µ = a · DBH)?

• What is the best model to explain, or predict, fir fecundity? Does it include
DBH?

“Bolker” — 1/9/2008 — 15:39 — page 203

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 203

Figure 6.15 shows very clearly that fecundity does increase with size. While we
might want to know how much it increases (based on the estimation and confidence-
limits procedures discussed above), any statistical test of the null hypothesis b = 0
would be pro forma. More interesting questions in this case ask whether and how
the size-fecundity curve differs in wave and nonwave populations. We can extend the
model to allow for differences between the two populations:

µ = ai · DBHbi

Yi ∼ NegBinom(µ, ki)
(6.6.2)

where the subscripts i denote different populations—wave (i = w) or nonwave
(i = n).

Now our questions become:

• Is baseline fecundity the same for small trees in both populations? (Can we
reject the null hypothesis an = aw? Do the confidence intervals of an − aw
include zero? Does a model with an
= aw fit significantly better?)

• Does fecundity increase with DBH at the same rate in both populations? (Can
we reject the null hypothesis bn = bw? Do the confidence intervals of bn − bw
include zero? Does a model with bn
= bw fit significantly better?)

• Is variability around the mean the same in both populations? (Can we reject
the null hypothesis kn = kw? Do the confidence intervals of kn − kw include
zero? Does a model with kn
= kw fit significantly better?)

We can boil any of these questions down to the same basic statistical question:
for any one of a, b, and k, does a simpler model (with a single parameter for both
populations rather than separate parameters for each population) fit adequately?
Does adding extra parameters improve the fit sufficiently to justify the additional
complexity?

As we will see, these questions one can translate into statistical hypotheses and
tests in many ways. While there are stark differences in the assumptions and philoso-
phy behind different statistical approaches, and hot debate over which ones are best,
it’s worth remembering that in many cases they will all give reasonably consistent
answers to the underlying ecological questions. The rest of this introductory section
explores some general ideas about model selection. The following sections describe
the basics of different approaches, and the final section summarizes the pros and cons
of various approaches.

If we ask “does fecundity change with size?” or “do two populations differ?”
we know as ecologists that the answer is “yes”—every ecological factor has some
impact, and all populations differ in some way. The real questions are, given the data
we have, whether we can tell what the differences are, and how we decide which
model best explains the data or predicts new results.

Parsimony (sometimes called “Occam’s razor”) is a general argument for choos-
ing simpler models even though we know the world is complex. All other things being
equal, we should prefer a simpler model to a more complex one—especially when the
data don’t tell a clear story. Model selection approaches typically go beyond parsi-
mony to say that a more complex model must be not just better than, but a specified
amount better than, a simpler model. If the more complex model doesn’t exceed a

“Bolker” — 1/9/2008 — 15:39 — page 204

−1
0
1

204 • C H A P T E R 6

threshold of improvement in fit (we will see below exactly where this threshold comes
from), we typically reject it in favor of the simpler model.

Model complexity also affects our predictive ability. Walters and Ludwig (1981)
simulated fish population dynamics using a complex age-structured model and
showed that when data were realistically sparse and noisy they could best predict
future (simulated) dynamics using a simpler non-age-structured model. In other
words, even though they knew for sure that juveniles and adults had different
mortality rates (because they simulated the data from a model with mortality dif-
ferences), a model that ignored this distinction gave more accurate predictions. This
apparent paradox is an example of the bias-variance trade-off introduced in Chap-
ter 5. As we add more parameters to a model, we necessarily get an increasingly
accurate fit to the particular data we have observed (the bias of our predictions
decreases), but our precision for predicting future observations decreases as well
(the variance of our predictions increases). Data contain a fixed amount of informa-
tion; as we estimate more and more parameters we spread the data thinner and
thinner. Eventually the gain in accuracy from having more details in the model
is outweighed by the loss in precision from estimating the effect of each of those
details more poorly. In Ludwig and Walters’s case, spreading the data out across
age classes meant there was not enough data to estimate each age class’s dynamics
accurately.

Figure 6.16 shows two sets of simulated data generated from a generalized Ricker
model, Y ∼ Normal((a + bx + cx2)e−dx). I fitted the first data set with a constant
model (y equal to the mean of data), a Ricker model (y = ae−bx), and the generalized
Ricker model. Despite being the true model that generated the data, the generalized
Ricker model is overly flexible and adjusts the fit to go through an unusual point at
(1.5,0.24). It fits the first data set better than the Ricker (R2 = 0.55 for the generalized
Ricker vs. R2 = 0.29 for the Ricker). However, the generalized Ricker has overfitted
these data. It does poorly when we try to predict a second data set generated from the
same underlying model. In the new set of data shown in Figure 6.16, the generalized
Ricker fit misses the point near x = 1.5 so badly that it actually fits the data worse
than the constant model and has a negative R2! In 500 new simulations, the Ricker
prediction was closest to the data 83% of the time, while the generalized Ricker
prediction won only 11% of the time; the other 6% of the time, the constant model
was best.

6.6.1 Likelihood Ratio Test: Nested Models

How can we tell when we are overfitting real data? We can use the Likelihood Ratio
Test, which we used before to find confidence intervals and regions, to choose models
in certain cases. A simpler model (with fewer parameters) is nested in another, more
complex, model (with more parameters) if the complex model reduces to the simpler
model by setting some parameters to particular values (often zero). For example,
a constant model, y = a, is nested in the linear model, y = a + bx because setting
b = 0 makes the linear model constant. The linear model is nested in turn in the
quadratic model, y = a + bx + cx2. The linear model is also nested in the Beverton-
Holt model, y = ax/(1 + (a/b)x), for b → ∞. The Beverton-Holt is in turn nested

“Bolker” — 1/9/2008 — 15:39 — page 205

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 205

0.0

0.5

1.0

1.5

2.0
constant
Ricker
gen Ricker
true

0 3 6 0 3 6

a b

Figure 6.16 Fits to simulated “data” generated with y = (0.4 + 0.1 · x + 2 · x2)e−x, plus nor-
mal error with σ = 0.35. Models fitted: constant (y = x̄), Ricker (y = ae−bx), and generalized
Ricker (y = (a + bx + cx2)e−dx). The highlighted point at x ≈ 1.5 drives much of the fit to the
original data, and much of the failure to fit new data sets. (a) Data set 1. (b) Data set 2.

in the Shepherd model, y = ax/(1 + (a/b)xd), for d = 1. (The nesting of the lin-
ear model in the Beverton-Holt model is clearer if we use the parameterization
of the Holling type II model, y = ax/(1 + ahx). The handling time h is equivalent
to 1/b in the Beverton-Holt. When h = 0 predators handle prey instantaneously
and their per capita consumption rate increases linearly forever as prey densities
increase.)

Comparisons among different groups can also be framed as a comparison of
nested models. If the more complex model has the mean of group 1 equal to a1 and
the mean of group 2 equal to a2, then the nested model (both groups equivalent)
applies when a1 = a2. It is also common to parameterize this model as a2 = a1 + δ12,
where δ12 = a2 − a1, so that the simpler model applies when δ12 = 0. This parame-
terization works better for model comparisons since testing the hypothesis that the
more complex model is better becomes a test of the value of one parameter (δ12 = 0?)
rather than a test of the relationship between two parameters (a1 = a2?).∗

∗ We can also interpret these parameterizations geometrically. In (a1,a2) parameter space, we’re
testing to see whether the best fit falls on the line through the origin a1 = a2; in (a1, δ12) parameter space,
we’re testing whether the best fit lies on the line δ12 = 0. To explore further how different parameterizations
relate to testing different hypotheses, look for the topic of contrasts in statistical models (Crawley, 2002;
Venables and Ripley, 2002).

“Bolker” — 1/9/2008 — 15:39 — page 206

−1
0
1

206 • C H A P T E R 6

To prepare to ask these questions with the fir data, we read in the data, drop
NAs, and pull out the variables we want. The fecundity data are not always integers,
but a negative binomial model requires integer responses so we round the data.

> data(FirDBHFec)
> X = na.omit(FirDBHFec[, c("TOTCONES", "DBH", "WAVE_NON")])
> X$TOTCONES = round(X$TOTCONES)

Using mle2’s formula interface is the easiest way to estimate the nested series of
models in R. The reduced model (no variation among populations) is

> nbfit.0 = mle2(TOTCONES ˜ dnbinom(mu = a * DBHˆb,
+ size = k),
+ start = list(a = 1, b = 1, k = 1), data = X)

To fit more complex models, use the parameters argument to specify which
parameters differ among groups. For example, the argument list(a˜WAVE_NON,
b˜WAVE_NON) would allow a and b to have different values for wave and nonwave
populations, corresponding to the hypothesis that the populations differ in both a
and b but not in variability (aw
= an, bw
= bn, kw = kn). The statistical model is
Yi ∼ NegBinom(ai · DBHbi , k), and the R code is

> start.ab = as.list(coef(nbfit.0))
> nbfit.ab = mle2(TOTCONES ˜ dnbinom(mu = a * DBHˆb,
+ size = k),
+ start = start.ab, data = X,
+ parameters = list(a ˜ WAVE_NON, b ˜ WAVE_NON))

Here I have used the best-fit parameters of the simpler model as starting parameters
for the complex model. Using the best available starting parameters avoids many
optimization problems.

mle2’s formula interface automatically expands the starting parameter list (which
includes only a single value for each of a and b) to include the appropriate number of
parameters. mle2 uses default starting parameter values corresponding to equality of
all groups, which for this parameterization means that all of the additional parameters
for groups other than the first are set to zero.

The formula interface is convenient, but as with likelihood profiles you often
encounter situations where you have to know how to do things by hand. Here’s
an explicit negative log-likelihood model for the model with differences in a and b
between groups (we attach the data first for simplicity):

> attach(X)
> nbNLL.ab = function(a.w, b.w, a.n, b.n, k) {
+ wcode = as.numeric(WAVE_NON)
+ a = c(a.n, a.w)[wcode]
+ b = c(b.n, b.w)[wcode]
+ predcones = a * DBHˆb
+ -sum(dnbinom(TOTCONES, mu = predcones, size = k,
+ log = TRUE))
+ }

“Bolker” — 1/9/2008 — 15:39 — page 207

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 207

The first three lines of nbNLL.ab turn the factor WAVE_NON into a numeric code
(1 or 2) and use the resulting code as an index to decide which value of a or b
to use in predicting the value for each individual. To make k differ by group as well,
just change k in the argument list to k.n and k.w and add the line

> k = c(k.n, k.w)[wcode]

To simplify the model by making a or b homogeneous, reduce the argument list and
eliminate the line of code that specifies the value of the parameter by group.

The only difference between this negative log-likelihood function and the one
that mle2 constructs when you use the formula interface is that the mle2-constructed
function uses the parameterization {a1, a1 + δ12}, whereas our hand-coded function
uses {a1, a2} (see p. 205). The former is more convenient for statistical tests, while
the latter is more convenient if you want to know the parameter values for each
group. To tell mle2 to use the latter parameterization, specify parameters=list(a˜
WAVE_NON-1, b˜WAVE_NON-1). The -1 tells mle2 to fit the model without an inter-
cept, which in this case means that the parameters for each group are specified relative
to 0 rather than relative to the parameter value for the first group. When mle2 fills
in default starting values for this parameterization, it sets the starting parameters for
all groups equal.

The anova function∗ performs likelihood ratio tests on a series of nested mle2
fits, automatically calculating the difference in numbers of parameters (denoted by
Df for “degrees of freedom”) and deviance and calculating p values:

> anova(nbfit.0, nbfit.a, nbfit.ab)

Likelihood Ratio Tests
Model 1: nbfit.0, TOTCONES˜dnbinom(mu=a*DBHˆb,size=k)
Model 2: nbfit.a, TOTCONES˜dnbinom(mu=a*DBHˆb,size=k):

a˜WAVE_NON
Model 3: nbfit.ab, TOTCONES˜dnbinom(mu=a*DBHˆb,size=k):

a˜WAVE_NON, b˜WAVE_NON
Tot Df Deviance Chisq Df Pr(>Chisq)
1 3 2272.0
2 4 2271.6 0.4276 1 0.5132
3 5 2271.3 0.2496 1 0.6173

The Likelihood Ratio Test can compare any two nested models, testing whether
the nesting parameters of the more complex model differ significantly from their null
values. Put another way, the LRT tests whether the extra goodness of fit to the data is
worth the added complexity of the additional parameters. To use the LRT to compare
models, compare the difference in deviances (the more complex model should always
have a smaller deviance—if not, check for problems with the optimization) to the
critical value of the χ2 distribution, with degrees of freedom equal to the additional
number of parameters in the more complex model. If the difference in deviances is
greater than χ2

n2−n1
(1 − α), then the more complex model is significantly better at the

p = α level. If not, then the additional complexity is not justified.

∗ Why anova? The corresponding series of tests for a simple linear model with categorical predictors
is an analysis of variance (Chapter 9).

“Bolker” — 1/9/2008 — 15:39 — page 208

−1
0
1

208 • C H A P T E R 6

Choosing among statistical distributions can often be reduced to comparing
among nested models. As a reminder, Figure 4.17 (p. 137) shows some of the relation-
ships among common distributions. The most common use of the LRT in this context
is to see whether we need to use an overdispersed distribution such as the negative
binomial or beta-binomial instead of their lower-variance counterparts (Poisson or
binomial). The Poisson distribution is nested in the negative binomial distribution
when k → ∞. If we fit a model with a and b varying but using a Poisson distribu-
tion instead of a negative binomial, we can then use the LRT to see if adding the
overdispersion parameter is justified:

> poisfit.ab = mle2(TOTCONES ˜ dpois(a * DBHˆb),
+ start = list(a = 1, b = 1), data = X,
+ parameters = list(a ˜ WAVE_NON, b ˜ WAVE_NON))
> anova(poisfit.ab, nbfit.ab)

Likelihood Ratio Tests
Model 1: poisfit.ab, TOTCONES˜dpois(a*DBHˆb): a˜WAVE_NON,

b˜WAVE_NON
Model 2: nbfit.ab, TOTCONES˜dnbinom(mu=a*DBHˆb,size=k):

a˜WAVE_NON, b˜WAVE_NON
Tot Df Deviance Chisq Df Pr(>Chisq)
1 4 6302.7
2 5 2271.4 4031.4 1 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We conclude that negative binomial is clearly justified: the difference in deviance
is greater than 4000, compared to a critical value of 3.84! This analysis ignores
the nonapplicability of the LRT on the boundary of the allowable parameter space
(k → ∞ or 1/k = 0; see p. 250), but the evidence is so overwhelming in this case
that it doesn’t matter.

Models with multiple parameters and multiple groups naturally lead to a web
of nested models. Figure 6.17 shows all of the model comparisons for the fir data—
even for this relatively simple example there are seven possible models and Nine
possible series of nested comparisons. In this case the answer is easy, because none
of the comparisons is significant according to the LRT (i.e., none of the one-step
comparisons differ by more than 3.84). In more complex scenarios deciding which
set of comparisons to do first can be quite hard. Two simple options are forward
selection (try to add parameters one at a time to the simplest model) and backward
selection (try to subtract parameters from the most complex model). Either of these
approaches will work, but for comparisons that are close to the edge of statistical
significance, or where the effects of the parameters are strongly correlated, you’ll
often find that you get different answers. Similar problems arise in multiple regression
(in fact, in any complex modeling exercise). With too large a set of possibilities, this
kind of model selection quickly devolves into data-dredging. You should (1) use
common sense and ecological knowledge to isolate the most important comparisons;
(2) Draw plots of the best candidate fits to try to understand why different models
fit the data approximately equally well; and (3) try to rule out differences in variance

“Bolker” — 1/9/2008 — 15:39 — page 209

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 209

all parameters
equal

D=2272

a w ≠ a n b w ≠ b n
D=2271.5

k w ≠ k n
D=2270.6

a w ≠ a n
b w ≠ b n

D=2271.3

a w ≠ a n
k w ≠ k n

D=2270.3

b w ≠ b n
k w ≠ k n

D=2270.3

different
D=2270

3 parameters

4 parameters

5 parameters

6 parameters

all parameters
equal

D=2272

all parameters
different
D=2270

b ≠ b
D=2271.5

k ≠ k
D=2270.6

a ≠ a
D=2271.6

b ≠ b
k ≠ k

D=2270.3

a ≠ a
k ≠ k

D=2270.3

a ≠ a
b ≠ b

D=2271.3

w
w

w w w

w
ww

w

n nn

n n n
n n n

Figure 6.17 Nested hierarchy of models for the fir data. D-deviance.

parameters (k in this case) first. If you can simplify the model in this way it will
be more comparable with classical models. If not, something interesting may be
happening.

6.6.2 Information Criteria

One way to avoid a plethora of pairwise model comparisons is to select models
based on information criteria, which compare all candidate models at once and do
not require nested alternatives. These relatively recent alternatives to Likelihood
Ratio Tests are based on the expected distance (quantified in a way that comes from
information theory) between a particular model and the “true” model (Burnham
and Anderson, 1998, 2002). In practice, all information-theoretic methods reduce to
finding the model that minimizes some criterion that is the sum of a term based on
the likelihood (usually twice the negative log-likelihood) and a penalty term which
is different for different information criteria.

The Akaike Information Criterion, or AIC, is the most widespread information
criterion, and is defined as

AIC = −2L + 2k (6.6.3)

“Bolker” — 1/9/2008 — 15:39 — page 210

−1
0
1

210 • C H A P T E R 6

where L is the log-likelihood and k is the number of parameters in the model.∗As with
all information criteria, small values represent better overall fits; adding a parameter
with a negligible improvement in fit penalizes the AIC by 2 log-likelihood units.
For small sample sizes (n)—such as when n/k < 40 (Burnham and Anderson, 2004,
p. 66)—you should use a finite-size correction and apply the AICc (“corrected AIC”)
instead:

AICc = AIC + 2k(k + 1)
n − k − 1

. (6.6.4)

As n grows large, the correction term in (6.6.4) vanishes and the AICc matches the
AIC. The AICc was originally derived on the basis of linear models with normally
distributed errors, so it may apply to a smaller range of models than the AIC—but
this is really an open question. Shono (2000) found using simulation studies that
the AICc gave accurate answers for typical fisheries data sets, but Richards (2005)
suggests that AICc might not perform as well for other kinds of ecological data sets.
(I would recommend using AICc for small samples, but being careful with the results
if they disagree with the results based on large-sample AIC.)

The second most common information criterion, the Schwarz or Bayesian infor-
mation criterion (BIC),† uses a penalty term of (log n)k. When n is greater than e2 ≈ 9
observations (so that log n > 2), the BIC is more conservative than the AIC, insisting
on a greater improvement in fit before it will accept a more complex model.

Information criteria do not allow frequentist significance tests based on the esti-
mated probability of getting more extreme results in repeated experiments (some
statisticians would say this is an advantage). With ICs, you cannot say that there is a
statistically significant difference between models; a model with a lower IC is better,
but there is no p-value associated with how much better it is.‡ Instead, there are com-
monly used rules of thumb: models with ICs less than 2 apart (�IC < 2) are more
or less equivalent; those with ICs 4–7 apart are clearly distinguishable; and models
with ICs more than 10 apart are definitely different. Richards (2005) concurs with
these recommendations, but cautions that simply dropping models with �AIC > 2
(as some ecologists do) risks discarding useful models.

∗ Where does the magic penalty term 2k come from? AIC is the expected value of the Kullback-
Leibler distance

∫
f (x) log (f (x)/g(x0)) dx: in words, the K − L distance is the log ratio of between f (x),

the likelihood the true model and parameters, and g(x0), the likelihood of a candidate model evaluated at its
best parameters, averaged over the true distribution of the data. Separating terms and dropping constants
that don’t involve g(x0), we get E[− log g(x0)]. We don’t know the true MLE x0, only the observed MLE x̂,
so we take another expectation: E[E[− log g(x̂)]]. Taylor expanding − log g(x̂) around x0, the expectation
of the linear term drops out, leaving the constant and quadratic terms: E[E[− log g(x̂) − 1

2 (x − x̂)T V(x −
x̂)]]. V is the matrix of second derivatives of the log-likelihood (the information matrix): −V−1 ≈ �, the
variance-covariance matrix of the parameters. By definition, E[(x − x̂)T (x − x̂)] also equals �. After more
math, we get − log g(x̂) + trace(�−1�), where the trace is the sum of the diagonal elements of a matrix.
Since a matrix times its inverse is the identity matrix, this becomes − log g(x̂) + k, where k is the size of
the matrix—which equals the number of parameters. Doubling this expression so that the first term is the
deviance (−2L) gives −2L+ 2k. For more information, see Ripley (2004) or Chapter 7 of Burnham and
Anderson (2002).

† While the BIC is derived from a Bayesian argument, it is not inherently a Bayesian technique. It is
also not how most Bayesians would compare models (Section 6.6.3).

‡ Burnham and Anderson (2002, p. 84) recommend avoiding the word “significant” in conjunction
with AIC-based model selection; no matter how carefully you phrase your conclusions, some readers will
impose a frequentist hypothesis-testing interpretation.

“Bolker” — 1/9/2008 — 15:39 — page 211

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 211

TABLE 6.2

Model k �AIC �AICc �BIC

nbfit.0 3 0.00 0.00 0.00

nbfit.a 4 1.57 1.64 5.06

nbfit.b 4 1.48 1.55 4.97

nbfit.k 4 0.62 0.69 4.11

nbfit.ab 5 3.32 3.48 10.30

nbfit.ak 5 2.24 2.39 9.21

nbfit.bk 5 2.24 2.39 9.21

nbfit.abk 6 3.99 4.25 14.46

One big advantage of IC-based approaches is that they do not require nested mod-
els.∗ You can compare all models to each other simultaneously, rather than stepping
through a sometimes confusing sequence of pairwise tests. In IC-based approaches,
you simply compute the likelihood and IC for all of the candidate models and rank
them in order of increasing IC. The model with the lowest IC is the best fit to the data;
those models with ICs within 10 units of the minimum IC are worth considering. As
with the LRT, the absolute size of the ICs is unimportant—only the differences in ICs
matter.

The AICtab, AICctab, and BICtab commands in the bbmle package will compute
IC tables from lists of mle fits. Use the options delta=TRUE to get a list of the
�IC values, weights=TRUE to get AIC weights (see below), and nobs to specify the
number of observations for BIC or AICc. sort=TRUE to sort models in order of
increasing IC, Table 6.2 gives the results for the fir models. All three approaches
pick the simplest model as the best model (minimum IC). AIC would keep all models
under consideration (�AIC < 4 for all models), while AICc might rule out the most
complex model (�AICc = 4.25), and BIC would definitely rule out complex models
where a and b both change (�BIC > 10).

ICs can also be useful to choose among stochastic models, which are often not
nested. For example, the Gamma, log-normal, and negative binomial models can all
describe skewed data, and they all converge to the normal distribution in some limit
(Figure 4.17), but there is no easy way to nest them. We can fit the same deterministic
model as before (fecundity = ai · DBHb

i) with different probability distributions and
then use AIC to compare the results.

For each distribution I have to modify the parameters slightly. The lognormal’s
parameters are the mean and standard deviation of the distribution on the log scale,
so I set µlog = log (a · DBHb) = log a + b log DBH. The Gamma’s are shape and scale,
with the mean equal to shape · scale, so I set scale = (a · DBHb)/shape. I also added
0.001 to TOTCONES for the lognormal and Gamma fits because zero values are impos-
sible for the lognormal distribution and for the Gamma distribution with shape > 1,

∗ Although some, such as Ripley (2004), disagree.

“Bolker” — 1/9/2008 — 15:39 — page 212

−1
0
1

212 • C H A P T E R 6

TABLE 6.3

AIC df �AIC

Negative binomial 2281.4 5 0.0

Gamma 2288.7 5 7.4

Lognormal 2556.3 5 274.9

Poisson 6310.7 4 4029.4

leading to infinite negative log-likelihoods. This problem warns us that a discrete
distribution like the negative binomial might make more sense, but a better fit to a
continuous distribution might override this concern.

> lnormfit.ab = mle2(TOTCONES + 0.001 ˜ dlnorm(meanlog = b *
+ log(DBH) + log(a), sdlog = sdlog), start = list(a = 1,
+ b = 1, sdlog = 0.1), data = X, parameters = list(a ˜
+ WAVE_NON, b ˜ WAVE_NON), method = "Nelder-Mead")
> gammafit.ab = mle2(TOTCONES + 0.001 ˜ dgamma(scale = a *
+ DBHˆb/shape, shape = shape), start = list(a = 1,
+ b = 1, shape = 2), data = X, parameters = list(a ˜
+ WAVE_NON, b ˜ WAVE_NON))

Table 6.3 shows that the negative binomial is best after all.

6.6.3 Bayesian Analyses

Bayesians generally have little interest in formal methods of model selection. Drop-
ping a parameter from a model is often equivalent to testing a null hypothesis that
the parameter is exactly zero, and Bayesians consider such point null hypotheses
silly. They would describe a parameter’s distribution as being concentrated near zero
rather than saying its value is exactly zero.∗

Nevertheless, Bayesians do compute the relative probability of different mod-
els, in a way that implicitly recognizes the bias-variance trade-off and penalizes more
complex models (Kass and Raftery, 1995). Bayesians prefer to make inferences based
on averages rather than on most-likely values; for example, they generally use the
posterior mean values of parameters rather than the posterior mode. This preference
extends to model selection. The marginal likelihood of a model is the probabil-
ity of observing the data (likelihood), averaged over the prior distribution of the
parameters:

L̄ =
∫

L(x) · Prior(x) dx, (6.6.5)

where x represents a parameter or set of parameters (if a set, then the integral would
be a multiple integral). The marginal likelihood (the average probability of observing
a particular data set exactly) is often very small, and we are really interested in the
relative probability of different models. If two models have marginal likelihoods L̄1

∗ Although they might consider testing a hypothesis about whether a parameter is small (i.e., whether
its absolute value is below some threshold (Gelman and Tuerlinckx, 2000)).

“Bolker” — 1/9/2008 — 15:39 — page 213

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 213

TABLE 6.4

2 log B12 Evidence in Favor of Model 1

0–2 Weak

2–6 Positive

6–10 Strong

> 10 Very strong

From (Jeffreys, 1961, p. 432).

and L̄2, the Bayes factor is the ratio of the marginal likelihoods, B12 = L̄1/L̄2, or the
odds in favor of model 1.∗ If we want to compare several different (not necessarily
nested) models, we can look at the pairwise Bayes factors or compute a set of posterior
probabilities—assuming that all the models have the same prior probability—by
computing the relative values of the marginal likelihoods:

Prob(Mi) = L̄i∑N
j=1 L̄j

. (6.6.6)

Marginal likelihoods and Bayes factors incorporate an implicit penalty for over-
parameterization. When you add more parameters to a model, it can fit better—the
maximum likelihood and the maximum posterior probability increase—but at the
same time the posterior probability distribution spreads out to cover more less-
well-fitting possibilities. Since marginal likelihoods express the mean and not the
maximum posterior probability, they will actually decrease when the model becomes
too complex.

In principle, using Bayes factors to select the better of two models is simple. If we
compare twice the logarithm of the Bayes factors (thus putting them on the deviance
scale), the generally accepted rules of thumb for Bayes factors are seen in Table 6.4.
That these rules of thumb are similar to those quoted for the AIC is no coincidence.
With fairly strong priors, the Bayes factor converges to the AIC instead of the BIC
(Kass and Raftery, 1995).

In practice, computing Bayes factors for a particular set of models can be tricky
(Congdon, 2003), involving either complicated multidimensional integrals or some
kind of stochastic sampling from the prior distribution. One simple approximation is
to calculate the harmonic mean of the likelihoods returned from an MCMC run (the
harmonic mean is 1/(

∑
(1/L)/n)). Another, the analogue of the quadratic approx-

imations to the likelihood profile described above, is the Laplace approximation,
which combines the posterior mode (the maximum value of prior × likelihood)
with information on the curvature of the posterior probability density near the
mode.†

∗ The Bayes factor is based on assuming equal prior probabilities (p1 = p2 = 0.5) for both models.
† The Laplace approximation is

L̄ ≈ (2π)d/2|V|1/2Postmax,

where d is the number of parameters, |V| is the determinant of the variance-covariance matrix estimated
from the Hessian at the posterior mode, and Postmax is the height of the posterior mode.

“Bolker” — 1/9/2008 — 15:39 — page 214

−1
0
1

214 • C H A P T E R 6

TABLE 6.5

Harmonic Mean Laplace BIC

a, b, k all equal 0.0 0.0 0.0

a, b differ 5.2 8.2 10.3

a, b, k differ 24.9 9.5 14.5

Most of these approximations improve as the sample size increases: Kass and
Raftery (1995) suggest that the Laplace approximation requires at least 5 times as
many samples as parameters, and that the other approximations should be reasonable
with 20 times as many samples as parameters. How do these approximations compare
for the fir data set, with 242 data points and up to 6 parameters? Table 6.5 shows that
the different approximations of the Bayes factor do differ considerably, but the only
qualitative difference among them according to the rules of thumb is that the evidence
supporting the null model (all parameters equal) over the model with different a and
b parameters is “positive” according to the harmonic mean and “strong” according
to the Laplace approximation and BIC.

A more recent criterion, conveniently built into WinBUGS, is the DIC, or
deviance information criterion, which was designed particularly for models contain-
ing random effects where even specifying the number of parameters is challenging
(see Chapter 10). To compute DIC, start by calculating D̄, the average of the deviance
over the posterior distribution (as contrasted with the marginal likelihood, which is
the average over the prior distribution), and D̂, which is the deviance calculated at
the posterior mean parameters. Then use these two values to estimate an effective
number of parameters pD = D̄ − D̂; the more spread out the posterior distribution,
the bigger the difference between the deviance of the mean parameters and the mean
deviance, and the larger the effective number of parameters. Finally, as with AIC and
BIC, use this effective number of parameters as a penalty term on the goodness of fit
(defined in this case as the deviance at the mean parameters D̂): DIC=D̂ + 2pD. As
with all information criteria, lower values of DIC indicate a better model. The rules
of thumb are similar too: differences in DIC from 5 to 10 indicate that one model is
clearly better, whereas models with difference in DIC > 10 probably don’t need to
be considered further (Spiegelhalter et al., 2002).

Two important cautions about the DIC are:

• If the model contains random effects (see Chapter 9), the DIC focuses on the
random effects. In the fir tree case, because of a peculiarity of BUGS, we had to
parameterize the negative binomial model by assuming that each tree’s fecun-
dity is a Poisson variable with a different, Gamma-distributed rate. Since DIC
focuses on random effects, it reports the effective number of parameters as
> 200 (it takes a lot of information to describe the variation in rates), and the
effective number of parameters for the most complex model is actually slightly
smaller than for the simpler model, because the variation in the rates is slightly
lower. This drop in effective model size gives the most complex model the low-
est DIC. However, the range of DICs is very small—from 1709.2 to 1710.9—so
the DIC is really telling us that the models can’t be well distinguished.

“Bolker” — 1/9/2008 — 15:39 — page 215

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 215

• DIC is convenient, and so it is likely to become established as the standard
“canned” method of model comparison in Bayesian statistics. It has already
begun to appear in ecological journals (Jonsen et al., 2003; McCarthy and
Parris, 2004; Morales et al., 2004; Okuyama and Bolker, 2005; Parris,
2006; Vesk, 2006), but statisticians continue to debate its exact meaning and
appropriateness (both Spiegelhalter et al. (2002) and Celeux et al. (2006) are
accompanied by lively discussions).

The bottom line on Bayesian model selection is that, despite the conceptual
simplicity of the Bayes factor (giving the “average” quality of fit to the data, and
automatically incorporating a penalty for overfitting), it is difficult to calculate and
so is likely to be superseded by the convenient DIC. You should exercise the same
care with DIC as you would with any canned model selection procedure.

6.6.4 Model Weighting and Averaging

Bayesians themselves would say that you should not simply select one model. Taking
the best model and ignoring the rest is equivalent to assigning a probability of 1.0
to the best and 0.0 to the rest. Model averaging methods take the average of the
predictions of different models, weighted by the probability of the models or by
some other index.

Bayesian model averaging simply takes the probabilities based on the marginal
likelihoods or the BIC: the posterior probabilities of a set of models, if they all
have equal prior probabilities, are the marginal likelihoods (or BICs) divided by
the sum of the marginal likelihoods (or BICs).∗ If a set of models have BIC values,
relative to the best one, of �Bi (where �Bi = BICi − min (BIC)), then the approxi-
mate posterior probabilities of the models, assuming all the prior probabilities are
equal, are

pi = e−�Bi/2∑n
j=1 e−�Bj/2 . (6.6.7)

To make a weighted prediction, use the posterior probabilities to combine the predic-
tions of the different models (say C1, C2, . . . , Cn):

Ĉ =
n∑

i=1

piCi. (6.6.8)

Of course, you can do the same with marginal likelihoods.
Burnham and Anderson (1998, 2002) have also promoted model averaging, in

their case based on AIC weights. The AIC weights are analogous to the probabilities
calculated from the relative BIC values, but with AIC values substituted for BIC

∗ Equal prior probabilities for all the models usually makes sense, although one does face some of
the questions about equal priors raised in Chapter 4; for example, should all of the models incorporating
differences between groups in the fir example be treated as subsets of a single model?

“Bolker” — 1/9/2008 — 15:39 — page 216

−1
0
1

216 • C H A P T E R 6

values in (6.6.7). AIC weights have no probability interpretation, but they can be
used in model averaging.∗

Even if you don’t do formal model averaging, AIC or BIC weights are a useful
way of getting a feel for the relative goodness-of-fit of different models.

6.6.5 Model Criticism and Goodness-of-Fit Tests

If the best model is a poor fit to the data, then none of the machinery of model
selection and averaging makes sense. You should always check that your model
gives a reasonable fit to the data. Goodness-of-fit testing may remind you of the
classical Pearson chi-square statistic, adding up ((expected − observed)2/expected)
for all of your data to test whether the variance around the model predictions is
greater than expected. However, the chi-square test works only for simple count data
where the answers fall in discrete groups. If your data are continuous, or if you are
using an overdispersed distribution such as the negative binomial, then your model
contains a parameter describing the variance and the chi-square test is no longer
useful.†

In practice, model criticism (a more generic term than goodness-of-fit testing) is
simply common sense. Are the predictions reasonable? Are there consistent devia-
tions from the estimates or unexplained outliers? Start with a simple graph of the
predictions of the model (Figure 6.15), to see whether the deterministic component
of the model works well.

Plots of predicted vs. actual data (Figure 6.18), or of the residuals (actual −
predicted from a model can sometimes be useful. You have already had to figure
out how to calculate the predicted values in order to write a likelihood function.
Take these values and plot them against the corresponding data points, then use
abline(a=0,b=1) to add a predicted = actual line to the plot. However, while the
predicted-vs.-actual plot can identify outliers, it really gives a consistency check rather
than providing any new information. Ideally, the scatter around the predicted =
actual line will be small—in which case the deterministic component of the model
explains most of the variation in the data, so that the model is precise as well as
accurate—and therefore useful for prediction. Remember, though, that a reasonable
amount of unexplained variability does not necessarily mean that the model fits badly
or is not useful; it just means it can’t make precise predictions.‡ Model criticism is

∗ Akaike weights are widely and incorrectly presented as “the probability that model i is the best
model for the observed data, given the candidate set of models” (Mazerolle, 2004; Johnson and Omland,
2004). Burnham and Anderson (2004) are more careful: they say that the AIC weights “are interpreted
as probabilities . . .” (emphasis added), but it is clearly a slippery slope. Taking AIC weights as actual
probabilities is trying to have one’s cake and eat it too; the only rigorous way to compute such probabilities
of models is to use Bayesian inference, with its associated complexities (Link and Barker, 2006).

† Much of the protocol that Burnham and Anderson (2002) have developed for working with AIC
concerns testing and correcting for overdispersion—ĉ in their notation. These overdispersion corrections
are relevant only when your model uses a simple count distribution such as binomial or Poisson.

‡ People who are familiar with classical statistical approaches would often like to compute an
R2 statistic (proportion variance explained) for a model. Unfortunately, “despite various analogs for
categorical response models, no proposed measure is as widely useful as R and R2” (Agresti, 2002,
p. 390).

“Bolker” — 1/9/2008 — 15:39 — page 217

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 217

10 20 50 200100

10

20

50

100

200

Predicted cones

A
ct

ua
l c

on
es

nonwave

wave

Figure 6.18 Predicted vs. actual cones for the fir data, on a logarithmic scale.

more concerned with systematic deviations that suggest that the form of the model
itself is wrong.

Examining the goodness of fit of the stochastic part of a model is harder. If the
model contains only discrete groups (factors), you can divide the data into those
groups and overlay the observed distribution (described by a histogram or density
plot) with the predicted distribution. If it contains continuous covariates, you may
have to break the data up into discrete subsets in order to compare the predicted and
observed distributions (Figure 6.19).

6.6.6 Model Selection: Comparisons and Conclusions

Deciding what models to use and how to use them is fundamentally difficult. In one
form or another, this debate goes all the way back to the early Bayesian/frequentist
divide. While statisticians have come a long way in exploring the possible approaches
and (to some extent) in providing practical recipes for applying them, we still do not
have—and never will have—a single best method.

• Hypothesis testing based on the likelihood ratio test is well-established, widely
used, and simple to implement. At times when we really do want a yes-or-no
answer about whether some ecological factor is affecting the system in a way
that is distinguishable from randomness, the LRT is appropriate. The LRT
becomes unwieldy when there are many possibly interacting factors—one has

“Bolker” — 1/9/2008 — 15:39 — page 218

−1
0
1

218 • C H A P T E R 6

TOTCONES

D
en

si
ty

0.01

0.02

0.03

50 150 250

dbh
n

dbh
n

50 150 250

dbh
n

dbh
n

dbh
w

50 150 250

dbh
w

dbh
w

50 150 250

0.01

0.02

0.03

dbh
w

Figure 6.19 Goodness-of-fit checking for the fir model. Panels break data up by wave/
non-wave (rows) and DBH (columns) and plot the density of points for each category along
with the predicted negative binomial distribution (gray) for the mean DBH value in the
category.

to choose a path through the nested hierarchy of factors (Figure 6.17). Analo-
gous problems in multiple regression analysis led to stepwise model-building
approaches, which are widely used by researchers but widely dismissed by
statisticians because they encourage data-dredging and because the results
depend on the exact thresholds used to include or exclude factors from the
model (Whittingham et al., 2006).

If you do find yourself with seemingly inconsistent results from an LRT
analysis (e.g., if some parameters are significant only when other parameters
are included in the model; Lindsey (1999b) calls these incompatible results),
examine your data carefully to understand how the fit changes with different
sets of parameters. If two parameters explain essentially the same patterns in
the data (e.g., if you are using strongly correlated predictors like soil moisture

“Bolker” — 1/9/2008 — 15:39 — page 219

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 219

and precipitation), then whichever enters the model first will be selected. On
the other hand, the effects of nitrogen availability might be visible only after
the effects of soil moisture are accounted for—in this case, nitrogen would
be significant only if soil moisture were in the model already. These kinds of
interactions are challenging, but handled properly they tell you more about
what’s going on in your data.

• Information theoretic (AIC-based) approaches are also well-established and
practical. They neatly avoid the problem of pairwise testing, the need for
nested models, and the philosophical issues associated with null hypothesis
testing—rather than asking about the probability of a more extreme outcome,
they simply try to identify the model with the best predictive ability. They can
be used for model averaging, taking the predictions of all reasonable models
into account, as well as for model testing. However, AIC-based approaches
can also be abused (Guthery et al., 2005). Precisely because of their ease of use,
they have led some ecologists down the path of data-dredging and thoughtless
model selection (against the warnings of Burnham and Anderson, AIC’s main
proponents in ecology).

AIC-based analyses make decisions based on rules of thumb about �AIC
values or AIC weights, which are in turn based on extensive simulation
analysis. The results do not have probabilistic or “statistical significance” inter-
pretations (which may be a good thing). In some theoretical situations (i.e.,
when sample sizes grow large but the set of candidate models remains fixed),
AIC is known to “overfit” data by choosing an inappropriately complex model.
Researchers hotly debate the practical relevance of this issue (Spiegelhalter
et al., 2002; Burnham and Anderson, 2004; Link and Barker, 2006).

• Bayesian (marginal likelihood, BIC, DIC) approaches are philosophically sat-
isfying since they allow us to state results in terms of posterior probabilities
of different models. The selection criteria (posterior probabilities) depend on
the number of the parameters and on the sample size, which seems sensible.
However, Bayesian approaches are also challenging to apply. Marginal like-
lihood is hard to calculate in a stable way; BIC is an approximation to the
marginal likelihood that applies when sample sizes are large and the priors
are vague (AIC is similarly an approximation to a marginal likelihood with
a fairly strongly informative prior). For reasonable sample sizes, BIC will be
more conservative than AIC; whether this conservatism is appropriate is still
a matter of deep contention. Some researchers cannot accept a method that
gives the wrong answer in the limit of large amounts of data, while others
are more concerned with the performance of the method in the more realistic,
data-limited case.∗

DIC is promising but continues to be controversial among statisticians.
According to Spiegelhalter et al. (2002, p. 613), it is “a Bayesian analogue of
AIC, with a similar justification but wider applicability.” It is similar to AIC in
its large-sample behavior. DIC is likely to become increasingly popular among
ecologists since it is implemented in WinBUGS. Bayesian approaches are also

∗ Lindsey (1999b) suggests an adjustable penalty term that depends on the sample size and may fall
somewhere between the AIC and BIC criteria, but he gives little guidance on choosing such a penalty.

“Bolker” — 1/9/2008 — 15:39 — page 220

−1
0
1

220 • C H A P T E R 6

sensitive to the priors used: one may not be able to get away with the common
practice of setting a vague prior and forgetting about it.

Should we use formal rules to do model selection (or averaging) at all? Most
Bayesians would say that all possible model components really exist in the world, and
we ought not throw components away just because they fall below some arbitrary
threshold criterion. Gelman et al., (1996) prefer to formulate selection problems
as estimating a continuous parameter rather than selecting from discrete choices.
Bayesians do recognize the fundamental trade-off between bias and variance, but in
general they use less formal methods (such as checking whether the marginal posterior
distribution has a peak, indicating that the model component is not just adding noise
to the model) to decide what components to include.

A second, more intuitive argument usually comes from biologists, who are
unhappy when their favorite bit of biology is dropped from a model even though
they know that mechanism operates in nature. If you want to evaluate the effects of
age structure (or spatial structure, or genetic structure) on population dynamics, you
have to include it in the model even if a formal model selection procedure tells you to
leave it out (Hilborn and Mangel, 1997, p. 261). What the model selection criterion
is warning you, however, is that you may be basing your conclusions on dangerously
little information.

A third argument often comes from conservationists who are concerned that
adding a biologically relevant but statistically insignificant term to the model changes
the predicted dynamics of a species, often for the worse. This is a real problem, but
it is also sometimes used dishonestly. Adding complexity to a model often makes its
dynamics less stable, and if you’re looking to bolster an argument that a species is
in trouble and needs to be protected, you’ll favor results that show the species is in
trouble. How often do we see conservationists arguing for more realistic biological
models that suggest that a species is in no real danger and needs no protection? (On
the flip side, how often do we see developers arguing that we should sample more
thoroughly to make absolutely sure that there are no endangered species on a tract
of land before starting construction?)

There are rules of thumb and procedures for model selection, but they don’t
settle the fundamental questions of model selection. Is parsimony really the most
important thing? Is it OK to add more complexity to the model if you’re interested in
a particular biological mechanism, even if the data don’t appear to support it? In the
end you have to learn all the rules, but also know when to bend them—and when you
do bend them, give a clear justification. The variety of model selection approaches
opens a new avenue for data-dredging, by trying many different procedures and
choosing the one that gives you the answers you want.

6.7 Conclusion

This chapter has covered an enormous amount of material, starting from the basic
ideas of likelihood and maximum likelihood estimation, discussing various ways
of estimating confidence intervals, and tackling the contentious issue of hypothesis

“Bolker” — 1/9/2008 — 15:39 — page 221

−1
0
1

L I K E L I H O O D A N D A L L T H A T • 221

testing and model selection. The two big ideas to take away are: (1) The geometry of
the likelihood surface or posterior probability distribution—where it peaks and how
the distribution falls off around the peak—contains essentially all the information
you need to estimate parameters and confidence intervals. (2) Deciding which models
to use for inference is challenging and cannot be reduced to a simple recipe. Different
approaches correspond to different questions about the data.

“Bolker” — 1/9/2008 — 15:39 — page 222

−1
0
1

7 Optimization and All That

This chapter explores the technical methods required to find the quantities discussed
in the previous chapter (maximum likelihood estimates, posterior means, and profile
confidence limits). The first section covers methods of numerical optimization for
finding MLEs and Bayesian posterior modes, the second section introduces Markov
chain Monte Carlo, a general algorithm for finding posterior means and credible
intervals, and the third section discusses methods for finding confidence intervals for
quantities that are not parameters of a given model.

7.1 Introduction

Now we can think about the nitty-gritty details of fitting models to data. Remem-
ber that we’re trying to find the parameters that give the maximum likelihood for
the comparison between the fitted model(s) and the data. (From now on I will discuss
the problem in terms of finding the minimum negative log-likelihood, although all the
methods apply to finding maxima as well.) The first section focuses on methods for
finding minima of curves and surfaces. These methods apply whether we are looking
for maximum likelihood estimates, profile confidence limits, or Bayesian posterior
modes (which are an important starting point in Bayesian analyses (Gelman et al.,
1996)). I will discuss the basic properties of a few common numerical minimiza-
tion algorithms (most of which are built into R), and their strengths and weaknesses.
Many of these methods are discussed in more detail by Press et al. (1994). The second
section introduces Markov chain Monte Carlo methods, which are the foundation
of modern Bayesian analysis. MCMC methods feel a little bit like magic, but they
follow simple rules that are not too hard to understand. The last section tackles
a more specific but very common problem, that of finding confidence limits on a
quantity that is not a parameter of the model being fitted. There are many different
ways to tackle this problem, varying in accuracy and difficulty. Having several of
these techniques in your toolbox is useful, and learning about them also helps you
gain a deeper understanding of the shapes of likelihood and posterior probability
surfaces.

“Bolker” — 1/9/2008 — 15:39 — page 223

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 223

7.2 Fitting Methods

7.2.1 Brute Force/Direct Search

The simplest way to find a maximum (minimum) is to evaluate the function for
a wide range of parameter values and see which one gives the best answer. In R,
you would make up a vector of parameter values to try (perhaps a vector for each
of several parameters); use sapply (for a single parameter) or for loops to calcu-
late and save the negative log-likelihood (or posterior log-likelihood) for each value;
then use which(x==min(x)) (or which.min(x)) to see which parameter values gave
the minimum. (You may be able to use outer to evaluate a matrix of all combina-
tions of two parameters, but you have to be careful to use a vectorized likelihood
function.)

The big problem with direct search is speed, or lack of it: the resolution of your
answer is limited by the resolution (grid size) and range of your search, and the time
needed is the product of the resolution and the range. Suppose you try all values
between plower and pupper with a resolution �p (e.g., from 0 to 10 by steps of 0.1).
Figure 7.1 shows a made-up example—somewhat pathological, but not much worse
than some real likelihood surfaces I’ve tried to fit. Obviously, the point you’re looking
for must fall in the range you’re sampling: sampling grid 2 in the figure misses the
real minimum by looking at too small a range.

You can also miss a sharp, narrow minimum, even if you sample the right range,
by using too large a �p—sampling grid 3 in Figure 7.1. There are no simple rules for
determining the range and �p to use. You must know the ecological meaning of your
parameters well enough that you can guess at an appropriate order of magnitude to
start with. For small numbers of parameters you can draw curves or contours of your
results to double-check that nothing looks funny, but for larger models it’s difficult
to draw the appropriate surfaces.

Furthermore, even if you use an appropriate sampling grid, you will know the
answer only to within �p. If you use a smaller �p, you multiply the number of
values you have to evaluate. A good general strategy for direct search is to start with
a fairly coarse grid (although not as coarse as sampling grid 3 in Figure 7.1), find the
subregion that contains the minimum, and then “zoom in” on that region by making
both the range and �p smaller, as in sampling grid 4. You can often achieve fairly
good results this way, but almost always less efficiently than with one of the more
sophisticated approaches covered in the rest of the chapter.

The advantages of direct search are (1) it’s simple and (2) it’s so dumb that it’s hard
to fool: provided you use a reasonable range and �p, it won’t be led astray by features
like multiple minima or discontinuities that will confuse other, more sophisticated
approaches. The real problem with direct search is that it’s slow because it takes
no advantage of the geometry of the surface. If it takes more than a few seconds
to evaluate the likelihood for a particular set of parameters, or if you have many
parameters (which leads to many many combinations of parameters to evaluate),
direct search is not be feasible.

For example, to do direct search on the parameters of the Gamma-distributed
myxomatosis data, we need to set the range and grid size for shape and scale. In

“Bolker” — 1/9/2008 — 15:39 — page 224

−1
0
1

224 • C H A P T E R 7

sampling grid 4

sampling grid 3

sampling grid 2

sampling grid 1

plower
pupper

∆ p

Figure 7.1 Direct search grids for a hypothetical negative log-likelihood function. Grids 1
and 4 will eventually find the correct minimum (open point). Grids 2 and 3 will miss it, finding
the false minimum (closed point) instead. Grid 2 misses because its range is too small; grid 3
misses because its resolution is too small.

Chapter 6, we used the method of moments to determine starting values of shape
(53.9) and scale (0.13). We’ll try shape parameters from 10 to 100 with � shape = 1,
and scale parameters from 0.01 to 0.3 with � scale = 0.01.

> shapevec = 10:100
> scalevec = seq(0.01, 0.3, by = 0.01)

Using the gammaNLL1 negative log-likelihood function from p. 175:

> surf = matrix(nrow = length(shapevec),
+ ncol = length(scalevec))
> for (i in 1:length(shapevec)) {
+ for (j in 1:length(scalevec)) {
+ surf[i, j] = gammaNLL1(shapevec[i], scalevec[j])
+ }
+ }

Draw the contour plot:

> contour(shapevec, scalevec, log10(surf))

“Bolker” — 1/9/2008 — 15:39 — page 225

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 225

Or you can do this more automatically with the curve3d function from the
emdbook package:

> curve3d(log10(gammaNLL1(x, y)), from = c(10, 0.01),
+ to = c(100, 0.3), n = c(91, 30), sys3d = "contour")

The gridsearch2d function (also in emdbook) will let you zoom in on a negative
log-likelihood surface:

> gridsearch2d(gammaNLL1, v1min = 10, v2min = 0.01,
+ v1max = 100, v2max = 0.3, logz = TRUE)

7.2.2 Derivative-Based Methods

The opposite extreme from direct search is to make strong assumptions about the
geometry of the likelihood surface: typically, that it is smooth (continuous with
continuous first and second derivatives) and has only one minimum. At this minimum
point the gradient, the vector of the derivatives of the surface with respect to each
parameter, is a vector of all zeros. Most numerical optimization methods other than
direct search use some variant of the criterion that the derivative must be close to zero
at the minimum in order to decide when to stop. So-called derivative-based methods
also use information about the first and second derivatives to move quickly to the
minimum.

The simplest derivative-based method is Newton’s method, also called the
Newton-Raphson method. Newton’s method is a general algorithm for discover-
ing the places where a function crosses zero, called its roots. In general, if we have
a function f (x) and a starting guess x0, we calculate the value f (x0) and the value
of the derivative at x0, f ′(x0). Then we extrapolate linearly to try to find the root:
x1 = x0 − f (x0)/f ′(x0) (Figure 7.2). We iterate this process until we reach a point
where the absolute value of the function is “small enough”—typically 10−6 or smaller.

Although calculating the derivatives of the objective function analytically is
the most efficient procedure, approximating the derivatives numerically using finite
differences is often convenient and is sometimes necessary:

df (x)
dx

= lim
�x→0

�f (x)
�x

≈ f (x + �x) − f (x)
�x

, for small �x. (7.2.9)

R’s optim function uses finite differences by default, but it sometimes runs into
trouble with both speed (calculating finite differences for an n-parameter model
requires an additional n function evaluations for each step) and stability. Calcu-
lating finite differences requires you to pick a �x; optim uses �x = 0.001 by default,
but you can change this with control=list(ndeps=c(...)) within an optim or
mle2 call, where the dots stand for a vector of �x values, one for each parameter.
You can also change the effective value of �x by changing the parameter scale, con-
trol=list(parscale=c(...)); �xi is defined relative to the parameter scale, as
parscale[i]*ndeps[i]. If �x is too large, the finite difference approximation will
be poor; if it is too small, round-off error will lower its accuracy.

In minimization problems, we actually want to find the root of the derivative
of the objective function, which means that Newton’s method will use the second

“Bolker” — 1/9/2008 — 15:39 — page 226

−1
0
1

226 • C H A P T E R 7

′

f(x)

f(x)
f (x)

x x

f (x)

0
0

0

0

0

1 ′

Figure 7.2 Newton’s method: schematic.

derivative of the objective function. That is, instead of taking f (x) and calculat-
ing f ′(x) by differentiation or finite differencing to figure out the slope and project
our next guess, Newton’s method for minima takes f ′(x) and calculates f ′′(x) (the
curvature) to approximate where f ′(x) = 0.

Using the binomial seed predation data from the last chapter and starting with
a guess of p = 0.6, Figure 7.3 and Table 7.1 show how Newton’s method converges
quickly to p = 0.75 (for clarity, the figure shows only the first four steps of the
process). Newton’s method is simple and converges quickly. The precision of the
answer rapidly increases with additional iterations. It also generalizes easily to mul-
tiple parameters: just calculate the first and second partial derivatives with respect
to all the parameters and use linear extrapolation to look for the root. However,
if the initial guess is poor or if the likelihood surface is oddly shaped, Newton’s
method can misbehave—overshooting the right answer or oscillating around it. Var-
ious modifications of Newton’s method mitigate some of these problems (Press et al.,
1994), and similar methods called “quasi-Newton” methods use the general idea
of calculating derivatives to iteratively approximate the root of the derivatives. The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm built into R’s optim code is
probably the most widespread quasi-Newton method.

Use BFGS whenever you have a relatively well-behaved (i.e., smooth) likelihood
surface, you can find reasonable starting conditions, and efficiency is important.
If you can calculate an analytical formula for the derivatives, write an R function
to compute it for a particular parameter vector, and supply it to optim via the gr
argument (see the examples in ?gr), you will avoid the finite difference calculations
and get a faster and more stable solution.

“Bolker” — 1/9/2008 — 15:39 — page 227

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 227

D
er

iv
at

iv
e

of
 −

L

1

2

3

−20

−10

0

10

start

p (probability of success per trial)

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

0.60 0.65 0.70 0.75 0.80

7

8

9

10

1

23

a

b

Figure 7.3 Newton’s method: Top: numbered circles represent sequential guesses for the
parameter p (starting from guess 1 at 0.6); a dotted gray line joins the current guess with
the value of the derivative for that value of the parameter; solid lines “shoot” over to the
horizontal axis to find the next guess for p. Bottom: likelihood curve.

As with all optimization methods, you must be able to estimate reasonable start-
ing parameter values. Sometimes a likelihood surface will become flat for really bad
fits—once the parameters are sufficiently far off the correct answer, changing them
may make little difference in the goodness of fit. Since the log-likelihood will be
nearly constant, its derivative will be nearly zero. Derivative-based methods that
start from implausible values (or any optimization procedure that uses a “flatness”

“Bolker” — 1/9/2008 — 15:39 — page 228

−1
0
1

228 • C H A P T E R 7

TABLE 7.1

Guess (x) f ′(x) f ′′(x)

1 0.600000 −25.000 145.833

2 0.771429 4.861 241.818

3 0.751326 0.284 214.856

4 0.750005 0.001 213.339

5 0.750000 0.000 213.333

criterion to decide when to stop, including most of those built into optim) may find
this worst-case scenario instead of the minimum you sought.

More often, specifying ridiculous starting values will give infinite or NA values,
which R’s optimization routines will choke on. Although most of the optimization
routines can handle occasional NAs, the negative log-likelihood must be finite for the
starting values. You should always test your negative log-likelihood functions at the
proposed starting conditions to make sure they give finite answers; also try tweaking
the parameters in the direction you think might be toward a better fit, and see if the
negative log-likelihood decreases. If you get nonfinite values (Inf, NA, or NaN), check
that your parameters are really sensible. If you think they should be OK, check for NAs
in your data, or see if you have made any numerical mistakes like dividing by zero,
taking logarithms of zero or negative numbers, or exponentiating large numbers (R
thinks exp(x) is infinite for any x > 710). Exponentiating negative numbers of large
magnitude is not necessarily a problem, but if they “underflow” and become zero (R
thinks exp(x) is 0 for any x < −746), you may get errors if you divide by them or
calculate a likelihood of a data value that has zero probability. Some log-likelihood
functions contain terms like x log (x), which we can recognize should be zero when
x = 0 but R treats as NaN. You can use if or ifelse in your likelihood functions to
work around special cases, for example, ifelse(x==0,0,x*log(x)). If you have to,
break down the sum in your negative log-likelihood function and see which particular
data points are causing the problem (e.g., if L is a vector of negative log-likelihoods,
try which(!is.finite(L))).

If your surface is not smooth—if it has discontinuities or if round-off error or
noise makes it “bumpy”—then derivative-based methods will work badly, partic-
ularly with finite differencing. When derivative-based methods hit a bump in the
likelihood surface, they often project the next guess to be very far away, sometimes
so far away that the negative log-likelihood calculation makes no sense (e.g., nega-
tive parameter values). In this case, you will need to try an optimization method that
avoids derivatives.

7.2.3 Derivative-Free Methods

Between the brute force of direct search and the sometimes delicate derivative-based
methods are derivative-free methods, which use some information about the surface
but do not rely on smoothness.

“Bolker” — 1/9/2008 — 15:39 — page 229

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 229

7.2.3.1 ONE-DIMENSIONAL ALGORITHMS

One-dimensional minimization is easy because once you have bracketed a minimum
(i.e., you can find two parameter values, one of which is above and one of which
is below the parameter value that gives the minimum negative log-likelihood) you
can always find the minimum by interpolation. R’s optimize function is a one-
dimensional search algorithm that uses Brent’s method, which is a combination
of golden-section search and parabolic interpolation (Press et al., 1994). Golden-
section search attempts to “sandwich” the minimum, based on the heights (negative
log-likelihoods) of a few points; parabolic interpolation fits a quadratic function (a
parabola) to three points at a time and extrapolates to the minimum of the parabola.
If you have a one-dimensional problem (i.e., a one-parameter model), optimize can
usually solve it quickly and precisely. The only potential drawback is that optimize,
like optim, can’t easily calculate confidence intervals. If you need confidence inter-
vals, first fit the model with optimize and then use the answer as a starting valve for
mle2.∗

7.2.3.2 NELDER-MEAD SIMPLEX

The simplest and probably most widely used derivative-free minimization algorithm
that works in multiple dimensions (it’s optim’s default) is the Nelder-Mead simplex,
devised by Nelder and Mead in 1965.†

Rather than starting with a single parameter combination (which you can think
of as a point in n-dimensional parameter space) Nelder-Mead picks n + 1 parameter
combinations that form the vertices of an initial simplex—the simplest shape possible
in n dimensions.‡ In two dimensions, a simplex is three points (each of which repre-
sents a pair of parameter values) forming a triangle; in three dimensions, a simplex
is four points (each of which is a triplet of parameter values) forming a pyramid or
tetrahedron; in higher dimensions, it’s n + 1 points, which we call an n-dimensional
simplex. The Nelder-Mead algorithm then evaluates the likelihood at each vertex,
which is the “height” of the surface at that point, and moves the worst point in the
simplex according to a simple set of rules (Figure 7.4):

• Start by going in what seems to the best direction by reflecting the high (worst)
point in the simplex through the face opposite it.

• If the goodness-of-fit at the new point is better than the best (lowest) other
point in the simplex, double the length of the jump in that direction.

• If this jump was bad—the height at the new point is worse than the second-
worst point in the simplex—then try a point that’s only half as far out as the
initial try.

• If this second try, closer to the original, is also bad, then contract the simplex
around the current best (lowest) point.

∗ mle and mle2 use method="BFGS" by default. Nelder-Mead optimization (see below) is unreliable
in one dimension and R will warn you if you try to use it to optimize a single parameter.

† The Nelder-Mead simplex is completely unrelated to the simplex method in linear programming,
which is a method for solving high-dimensional linear optimization problems with constraints.

‡ However, you need to specify only a single starting point; R automatically creates a simplex around
your starting value.

“Bolker” — 1/9/2008 — 15:39 — page 230

−1
0
1

230 • C H A P T E R 7

beginning of step

reflection

reflection & expansion

contraction

low

high

Figure 7.4 Graphical illustration (after Press et al. (1994)) of the Nelder-Mead simplex rules
applied to a tetrahedron (a three-dimensional simplex, used for a three-parameter model).

The Nelder-Mead algorithm works well in a wide variety of situations, although it’s
not foolproof (nothing is) and it’s not particularly efficient.

When we use the Nelder-Mead algorithm to fit a Gamma distribution to the
myxomatosis data (Figure 7.5), the algorithm starts with a series of steps alternating
between simple reflection and expanded reflection, moving rapidly downhill across
the contour lines and increasing both shape and scale parameters. Eventually it finds
that it has gone too far, alternating reflections and contractions to “turn the corner.”
Once it has turned, it proceeds very rapidly down the contour line, alternating reflec-
tions again; after a total of 50 cycles the surface is flat enough for the algorithm to
conclude that it has reached a minimum.

Nelder-Mead can be considerably slower than derivative-based methods, but it
is less sensitive to discontinuities or noise in the likelihood surface, since it doesn’t
try to use fine-scale derivative information to navigate across the likelihood surface.

7.2.4 Stochastic Global Optimization: Simulated Annealing

Stochastic global optimizers are a final class of optimization techniques, even more
robust than the Nelder-Mead simplex and even slower. They are global because
unlike most other optimization methods they may be able to find the right answer
even when the likelihood surface has more than one local minimum (Figure 7.1).

“Bolker” — 1/9/2008 — 15:39 — page 231

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 231

sc
al

e

20 30 40 50 60

0.05

0.10

0.15

0.20

0.25

0.30

shape

start

end

reflection
reflect+expand
contract

Figure 7.5 Track of Nelder-Mead simplex for the Gamma model of the myxomatosis titer
data. Triangles indicating some moves are obscured by subsequent moves.

They are stochastic because they rely on adding random noise to the surface as a way
of avoiding being trapped at one particular minimum.

The classic stochastic optimization algorithm is the Metropolis algorithm, or
simulated annealing (Kirkpatrick et al., 1983; Press et al., 1994). The physical anal-
ogy behind simulated annealing is that gradually cooling a molten metal or crystal
allows it to form a solid with few defects. Starting with a crude (“hot”) solution to
a problem and gradually refining the solution allows us to find the global minimum
of a surface even when it has multiple minima.

The rules of simulated annealing are:

• Pick a starting point (set of parameters) and calculate the negative log-
likelihood for those parameters.

• Until your answer is good enough or you run out of time:

– A. pick a new point (set of parameters) at random, somewhere near your
old point.

– Calculate the value of the negative log-likelihood there.
– If the new value is better than the old negative log-likelihood, accept it and

start again at A.
– If it’s worse than the old value, calculate the difference in negative log-

likelihood �(− L) = −Lnew − (− Lold). Pick a random number between 0
and 1 and accept the new value if the random number is less than e−�(−L)/k,
where k is a constant called the temperature. Otherwise, go back to the

“Bolker” — 1/9/2008 — 15:39 — page 232

−1
0
1

232 • C H A P T E R 7

previous value. The higher the temperature and the smaller �(− L) (i.e.,
the less bad the new fit), the more likely you are to accept the new value.
In mathematical terms, the acceptance rule is

Prob(accept) =

e− �(−L)

k if �(− L) > 0

1 if �(− L) < 0.
(7.2.10)

– Return to A and repeat.

• Periodically (e.g., every 100 steps) lower the value of k to make it harder and
harder to accept bad moves.

One variant of simulated annealing is available in R as the SANN method for
optim or mle2.

Another variant of the Metropolis algorithm (Metropolis-Szymura-Barton, MSB,
metropSB in emdbook; Szymura and Barton, 1986)) varies the size of the change in
parameters (the scale of the candidate distribution or jump size) rather than the
temperature, and changes the jump size adaptively rather than according to a fixed
schedule. Every successful jump increases the jump size, while every unsuccessful
jump decreases the jump size. This makes the algorithm good at exploring lots of
local minima (every time it gets into a valley, it starts trying to get out) but bad at
refining estimates (it has a hard time getting all the way to the bottom of a valley).

To run MSB on the myxomatosis data:

> MSBfit = metropSB(fn = gammaNLL2, start = c(20, 0.05),
+ nmax = 2500)

Figure 7.6 shows a snapshot of where the MSB algorithm goes on our now-
familiar likelihood surface for the myxomatosis Gamma model, with unsuccessful
jumps marked in gray and successful jumps marked in black. The MSB algorithm
quickly moves “downhill” from its starting point to the central valley, but then drifts
aimlessly back and forth along the central valley. It does find a point close to the
minimum. After 376 steps, it finds a minimum of 37.66717, equal for all practical
purposes to the Nelder-Mead simplex value of 37.66714—but Nelder-Mead took
only 70 function evaluations to get there. Since MSB increases its jump scale when
it is successful, and since it is willing to take small uphill steps, it doesn’t stay near
the minimum. While it always remembers the best point it has found so far, it will
wander indefinitely looking for a better solution. In this case it didn’t find anything
better by the time I stopped it at 2500 iterations.

Figure 7.7 shows some statistics on MSB algorithm performance as the number of
iterations increases. The top two panels show the values of the two parameters (shape
and scale), and the best-fit parameters so far. Both of the parameters adjust quickly in
the first 500 iterations, but from there they wander around without improving the fit.
The third panel shows a scaled version of the jump-width parameter, which increases
initially and then varies around 1.0, and the running average of the fraction of jumps
accepted, which rapidly converges to a value around 0.5. The fourth and final panel
shows the achieved value of the negative log-likelihood: almost all of the gains occur
early. The MSB algorithm is inefficient for this problem, but it can be a lifesaver when
your likelihood surface is complex and you have the patience to use brute force.

“Bolker” — 1/9/2008 — 15:39 — page 233

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 233

shape

20 30 40 50 60 70

0.05

0.10

0.15

0.20

0.25

0.30
sc

al
e

1

100

150 300

1000

1500

2000

2500

Figure 7.6 Track of Metropolis-Szymura-Barton evaluations. The MSB algorithm starts at
(20,0.05) (step 1), and moves quickly up to the central valley, but then wanders aimlessly back
and forth along the valley.

There are many other stochastic global optimization algorithms. For example,
Press et al. (1994) suggest a hybrid of simulated annealing and the Nelder-Mead
simplex where the vertices of the simplex are perturbed randomly but with decreasing
amplitudes of noise over time. Other researchers suggest using a stochastic algorithm
to find the right peak and finishing with a local algorithm (Nelder-Mead or derivative-
based) to get a more precise answer. Various adaptive stochastic algorithms (e.g.,
Ingber, 1996) attempt to “tune” either the temperature or the jump size and distribu-
tion for better results. Methods like genetic algorithms or differential evolution use
many points moving around the likelihood surface in parallel, rather than a single
point as in simulated annealing. If you need stochastic global optimization, you will
probably need a lot of computer time (many function evaluations are required) and
you will almost certainly need to tune the parameters of whatever algorithm you
choose rather than using the default values.

7.3 Markov Chain Monte Carlo

Bayesians are normally interested in finding the means of the posterior distribution
rather than the maximum likelihood value (or analogously the mode of the posterior
distribution). Previous chapters suggested that you can use WinBUGS to compute
posterior distributions but gave few details. Markov chain Monte Carlo (MCMC)
is an extremely clever, general approach that uses stochastic jumps in parameter

“Bolker” — 1/9/2008 — 15:39 — page 234

−1
0
1

234 • C H A P T E R 7

20

30

40

50

60

70 shape

0.05

0.10

0.15

0.20

0.25
scale

Iterations

0 1000 2000

0.0

0.5

1.0

relative
jump size

fraction
accepted

Iterations

0 1000 2000

negative
log likelihood

a

c d

b

Figure 7.7 History of MSB evaluations: parameters (shape and scale), relative jump size and
fraction of jumps accepted, and current and minimum negative log-likelihood. The minimum
negative log-likelihood is achieved after 376 steps; thereafter the algorithm remembers its best
previous achievement (horizontal dotted line) but fails to improve on it.

space to find the distribution. MCMC is similar to simulated annealing in the way it
picks new parameter values sequentially but randomly. The main difference is that
MCMC’s goal is not to find the best parameter combination (posterior mode or MLE)
but to sample from the posterior distribution.

Like simulated annealing, many variants of MCMC use different rules for pick-
ing new parameter values (i.e., different candidate distributions) and for deciding
whether to accept the new choice. However, all variants of MCMC must satisfy the
fundamental rule that the ratio of successful jump probabilities (Pjump × Paccept) is
proportional to the ratio of the posterior probabilities:

Post(A)
Post(B)

= P(jumpB → A)P(acceptA|B)
P(jump A → B)P(acceptB|A)

. (7.3.1)

“Bolker” — 1/9/2008 — 15:39 — page 235

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 235

If we follow this rule (and if other technical criteria are satisfied,∗) the long run the
chain will spend a lot of time occupying areas with high probability and will visit (but
not spend much time in) areas with low probability, so that the long-term distribution
of the sampled points will match the posterior probability distribution.

7.3.1 Metropolis-Hastings

The Metropolis-Hastings MCMC updating rule is very similar to the simulated
annealing rules discussed above, except that the temperature does not decrease over
time to make the algorithm increasingly picky about accepting uphill moves. The
Metropolis updating rule defined above for simulated annealing (p. 230) can use any
symmetric candidate distribution (i.e., P(jumpB → A) = P(jumpA → B)). For exam-
ple, the MSB algorithm (p. 232) picks values in a uniform distribution around the
current set of parameters, while most MCMC algorithms use normal distributions.
The critical part of the Metropolis algorithm is the acceptance rule, which is the
simulated annealing rule (7.2.10) with the temperature parameter k set to 1 and the
posterior probability substituted for the likelihood.† The Metropolis-Hastings rule
generalizes the Metropolis algorithm by multiplying the acceptance probability by the
ratio of the jump probabilities in each direction, P(jump B → A)/P(jump A → B):

P(accept B|A) = min

(
1,

Post(B)
Post(A)

· P(jumpB → A)
P(jumpA → B)

)
(7.3.2)

This equation reduces to the Metropolis rule for symmetric distributions but allows
for asymmetric candidate distributions, which is particularly useful when you need
to adjust candidate distributions so that a parameter does not become negative.

As in simulated annealing, if a new set of parameters has a higher posterior prob-
ability than the previous parameters (weighted by the asymmetry in the probability
of moving between the parameter sets), then the ratio in (7.3.2) is greater than 1 and
we accept the new parameters with probability 1. If the new set has a lower poste-
rior probability (weighted by jump probabilities), we accept them with a probability
equal to the weighted ratio. If you work this out for P(accept A|B) in a similar way,
you’ll see that the rule fits the basic MCMC criterion (7.3.1). In fact, in the MSB
example above the acceptance probability was set equal to the ratio of the likelihoods
of the new and old parameter values (the scale parameter in optimMSB was left at
its default value of 1), so that analysis also satisfied the Metropolis-Hasting rule
(7.3.2). Since it used negative log-likelihoods rather than multiplying by an explicit
prior probability to compute posterior probabilities, it assumed a completely flat
prior (which can be dangerous, leading to unstable estimates or slow convergence,
but seems to have been OK in this case).

The MCMCpack package provides another way to run a Metropolis-Hastings
chain in R. Given a function that computes the log posterior density (if the prior

∗ The chain must be irreducible (it must be possible eventually to move from any point in parameter
space to any other) and aperiodic (it should be impossible for it to get stuck in a loop).

† In the simulated annealing rule we exponentiated −k times the log-likelihood difference, which
gave us the likelihood ratio raised to the power −k; if we set k = 1, then we have Lold/Lnew, which
corresponds to Post(A)/Post(B).

“Bolker” — 1/9/2008 — 15:39 — page 236

−1
0
1

236 • C H A P T E R 7

is completely flat, this is just the (positive) log-likelihood function), the MCM-
Cmetrop1R function first uses optim to find the posterior mode, then uses the
approximate variance-covariance matrix at the mode to scale a multivariate nor-
mal candidate distribution, then runs a Metropolis-Hastings chain based on this
candidate distribution.

For example:

> gammaNLL2B = function(p) {
+ sum(dgamma(myxdat$titer, shape = p[1], scale = p[2],
+ log = TRUE))
+ }
> m3 <- MCMCmetrop1R(gammaNLL2B, theta.init = c(shape = 20,
+ scale = 0.05), thin = 30, mcmc = 30000,
+ optim.lower = rep(0.004, 2),
+ optim.method = "L-BFGS-B", tune = 3)

When I initially ran this analysis with the default value of tune=1 and used
plot(m3) to view the results, I saw that the chain took long excursions to extreme
values. Inspecting the contour plot of the surface, and slices (using calcslice from
the emdbook package), didn’t suggest that there was another minimum that the chain
was visiting during these excursions. The authors of the package suggested that MCM-
Cmetrop1R was having trouble because of the banana shape of the posterior density
(Figure 7.6), and that increasing the tune parameter, which increases the scale of the
candidate distribution, would help.∗ Setting tune=3 seems to be enough to make the
chains behave better. (Increasing tune still more would make the Metropolis sampling
less efficient.) Another option, which might take more thinking, would be to trans-
form the parameters to make the likelihood surface closer to quadratic, which would
make a multivariate normal candidate distribution a better fit. Since the likelihood
contours approximately follow lines of constant mean (shape · scale; Figure 7.5),
changing the parameterization from {shape, scale} to {mean, variance} makes the
surface approximately quadratic and should make MCMCmetrop1R behave better.

Using colnames(m3) = c("shape","scale") to set the parameter names is
helpful when looking at summary(m3) or plot(m3) since MCMCmetrop1R doesn’t set
the names itself.

7.3.2 Burn-In and Convergence

Metropolis-Hastings updating, and any other MCMC rule that satisfies (7.3.1), is
guaranteed to reach the posterior distribution eventually, but we usually have to

∗ They specifically suggested:

1. Set the tuning parameter much larger than normal so that the acceptance rate is actually below
the usual 20–25% rule of thumb. This will fatten and lengthen the proposal distribution so that
one can jump from one tail to the other.

2. Forgo the proposal distribution based on the large sample var-cov matrix. Set the V parameter in
MCMCmetrop1R to something that will work reasonably well over the entire parameter space.

3. Use an MCMC algorithm other than the random walk Metropolis algorithm. You’ll need to use
something other than MCMCmetrop1R to do this, but this option will be the most computationally
efficient.

“Bolker” — 1/9/2008 — 15:39 — page 237

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 237

discard the iterations from a burn-in period before the distribution converges to the
posterior distribution. For example, during the first 300 steps in the MSB optimiza-
tion above (Figures 7.6 and 7.7), the algorithm approaches the minimum from its
starting points and bounces around the minimum thereafter. Treating this analysis as
an MCMC, we would drop the first 300 steps (or 500 to be safe) and focus on the
rest of the data set.

Assessing convergence is simple for such a simple model but can be difficult in
general. Bayesian analysts have developed many convergence diagnostics, but you
need to know about only a few.

The Raftery-Lewis (RL) diagnostic (?, raftery.diag in the coda package) takes
a pilot run of an MCMC and estimates, based on the variability in the parameters,
how long the burn-in period should be and how many samples you need to estimate
the parameters to within a certain accuracy. The parameters for the Raftery-Lewis
diagnostic are the quantile that you want to estimate (2.5% by default, i.e., the
standard two-sided tails of the posterior distribution), the accuracy with which you
want to estimate the quantile (±0.005 by default), and the desired probability that
the quantile is in the desired range (default 0.95). For the MSB/myxomatosis example
above, running the Raftery-Lewis diagnostic with the default accuracy of r = 0.005
said the pilot run of 2500 was not even long enough to estimate how long the chain
should be, so I relaxed the accuracy to r = 0.01:

Quantile (q) = 0.025
Accuracy (r) = +/- 0.01
Probability (s) = 0.95

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

p1 44 10100 937 10.8
p2 211 29839 937 31.8

The first column gives the estimated burn-in time for each parameter—take the max-
imum of these values as your burn-in time. The next two columns give the required
total sample size and the sample size that would be required if the chain were uncor-
related. The final column gives the dependence factor, which essentially says how
many steps the chain takes until it has “forgotten” about its previous value. In this
case, RL says that we would need to run the chain for about 30,000 samples to get a
sufficiently good estimate of the quantiles for the scale parameter, but that (because
the dependency factor is close to 30) we could take every 30th step in the chain and
not lose any important information.

Another way of assessing convergence is to run multiple chains that start from
widely separated (overdispersed) points and see whether they have run long enough
to overlap (which is a good indication that they have converged). The starting points
should be far enough apart to give a good sample of the surface, but they should
be sufficiently reasonable to give finite posterior probabilities. The Gelman-Rubin
(G-R, gelman.diag in the coda package; Gelman et al., 1996) diagnostic takes this
approach. G-R provides a potential scale reduction factor (PRSF), estimating how
much the between-chain variance could be reduced if the chains were run longer. The
closer to 1 the PRSFs are, the better. The rule of thumb is that they should be less
than 1.2.

“Bolker” — 1/9/2008 — 15:39 — page 238

−1
0
1

238 • C H A P T E R 7

Running a second chain (m2) for the myxomatosis data starting from (shape = 70,
scale = 0.2) instead of (shape = 20, scale = 0.05) and running G-R diagnostics on
the two chains gives

> gelman.diag(mcmc.list(m1, m2))

Potential scale reduction factors:

Point est. 97.5% quantile
p1 1.15 1.48
p2 1.31 2.36

Multivariate psrf

1.28

The upper confidence limit for the PRSF for parameter 1 (shape) and the esti-
mated value for parameter 2 (scale) are both greater than 1.2. Apparently we need
to run the chains longer.

7.3.3 Gibbs Sampling

The major alternative to Metropolis-Hastings sampling is Gibbs sampling (or the
Gibbs sampler), which works for models where we can figure out the posterior
probability distribution of one parameter (and pick a random sample from it), con-
ditional on the values of all the other parameters in the model. For example, to
estimate the mean and variance of normally distributed data we can cycle back and
forth between picking a random value from the posterior distribution for the mean,
assuming a particular value of the variance, and picking a random value from the
posterior distribution for the variance, assuming a particular value of the mean. The
Gibbs sampler obeys the MCMC criterion (7.3.1) because the candidate distribution
is the posterior distribution, so the jump probability (P(jump B → A)) is equal to
the posterior distribution of A. Therefore, the Gibbs sampler can always accept the
jump paccept = 1 and still satisfy

Post(A)
Post(B)

= P(jumpB → A)
P(jumpA → B)

. (7.3.3)

Gibbs sampling works particularly well for hierarchical models (Chapter 10).
Whether we can do Gibbs sampling or not, we can do block sampling by breaking the
posterior probability up into a series of conditional probabilities. A complicated pos-
terior distribution Post(p1, p2, . . . , pn|y) = L(y(p1, p2, . . . , pn)Prior(p1, p2, . . . , pn),
which is hard to compute in general, can be broken down in terms of the marginal
posterior distribution of a single parameter (p1 in this case), assuming all the other
parameters are known:

Post(p1|p2, . . . , pn, y)

= L(y|p1, p2, . . . , pn) · P(p1|p2, . . . , pn) · Prior(p1, p2, . . . , pn). (7.3.4)

This decomposition allows us to sample parameters one at a time, either by Gibbs
sampling or by Metropolis-Hastings. The advantage is that the posterior distribution
of a single parameter, conditional on the rest, may be simple enough so that we can
sample directly from the posterior.

“Bolker” — 1/9/2008 — 15:39 — page 239

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 239

BUGS (Bayesian inference Using Gibbs Sampling) is an amazing piece of software
that takes a description of a statistical model and automatically generates a Gibbs
sampling algorithm.∗ WinBUGS is the Windows version, and R2WinBUGS is the R
interface for WinBUGS.

Some BUGS models have already appeared in Chapter 6. BUGS’s syntax closely
resembles R’s, with the following important differences:

• BUGS is not vectorized. Definitions of vectors of probabilities must be specified
using a for loop.

• R uses the = symbol to assign values. BUGS uses <- (a stylized left-arrow, e.g.,
a <- b+1 instead of a=b+1).

• BUGS uses a tilde (˜) to mean “is distributed as.” For example, to say that
x comes from a standard normal distribution (with mean 0 and variance 1:
x ∼ N(0, 1)) tell BUGS x˜dnorm(0,1).

• While many statistical distributions have the same names as in R (e.g.,
normal = dnorm, Gamma = dgamma), watch out! BUGS often uses a differ-
ent parameterization. For example, where R uses dnorm(x,mean,sd), BUGS
uses x˜dnorm(mean,prec) where prec is the precision—the reciprocal of the
variance. Also note that x is included in the dnorm command in R, whereas in
BUGS it is on the left side of the ˜ operator. Read the BUGS documentation
(included in WinBUGS) to make sure you understand BUGS’s definitions.

The model definition for BUGS should include the priors as well as the likelihoods.
Here’s a very simple input file, which defines a model for the posterior of the
myxomatosis titer data:

model {
for (i in 1:n) {

titer[i] ˜ dgamma(shape,rate)
}
shape ˜ dunif(0,150)
rate ˜ dunif(0,20)

}

After making sure that this file is saved as a text file called myxogamma.bu in your
working directory (use a text editor such as Wordpad or Tinn-R to edit BUGS files),
you can run this model in BUGS by way of R2WinBUGS as follows:

> library(R2WinBUGS)

> titer <- myxdat$titer
> n <- length(titer)
> inits <- list(list(shape = 100, rate = 3),
+ list(shape = 20, rate = 10))

∗ I will focus on a text file description, and on the R interface to WinBUGS implemented in the
R2WinBUGS package, but many different variants of automatic Gibbs samplers are springing up. These
vary in interface, degree of polish, and supported platforms. (1) WinBUGS runs on Windows, under
WINE on Linux, and maybe soon on Intel Macs; models can be defined either graphically or as text files;
R2WinBUGS is the Rinterface. (2) OpenBUGS (http://mathstat.helsinki.fi/openbugs/) is an new
version of WinBUGS that runs on Windows and Linux (as LinBUGS). OpenBUGS has an R interface,
BRugs, but so far it runs only on Windows. (3) JAGS is an alternative automatic sampler that runs on
Linux and MacOS (but may be challenging to set up) and has an R interface.

“Bolker” — 1/9/2008 — 15:39 — page 240

−1
0
1

240 • C H A P T E R 7

> testmyxo.bugs <- bugs(data = list("titer", "n"),
+ inits, parameters.to.save = c("shape", "rate"),
+ model.file = "myxogamma.bug", n.chains =
+ length(inits), n.iter = 5000)

Printing out the value of testmyxo.bugs gives a summary including the mean,
standard deviation, quantiles, and the Gelman-Rubin statistic (Rhat) for each vari-
able. It also gives a DIC estimate for the model. By default this summary uses a
precision of only 0.1, but you can use the digits argument to get more precision,
e.g., print(testmyxo.bugs,digits=2).

> testmyxo.bugs

Inference for Bugs model at "myxogamma.bug", fit using winbugs,
2 chains, each with 5000 iterations (first 2500 discarded),
n.thin = 5 n.sims = 1000 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
shape 54.6 16.9 28.5 43.0 51.7 63.9 92.8 1.1 41
rate 7.9 2.5 4.1 6.2 7.5 9.3 13.5 1.1 42
deviance 77.7 2.3 75.4 76.0 76.9 78.7 83.8 1.1 18

pD = 2.3 and DIC = 80.0 (using the rule, pD = Dbar-Dhat) DIC is an
estimate of expected predictive error (lower deviance is better).

The standard diagnostic plot for a WinBUGS run (plot.bugs(testmyxo.bugs))
shows the mean and credible intervals for each variable in each chain, as well as the
Gelman-Rubin statistics for each variable.

You can get slightly different information by turning the result into a coda object:

> testmyxo.coda <- as.mcmc(testmyxo.bugs)

summary(testmyxo.coda) gives similar information as printing testmyxo.bugs.
HPDinterval gives the credible interval for each variable computed from MCMC
output.

Plotting testmyxo.coda gives trace plots (similar to Figure 7.7) and density
plots of the posterior density (Figure 7.8). Other diagnostic plots are available; see
especially densityplot.mcmc.

This information should be enough to get you started using WinBUGS. A growing
number of papers—some in ecology, but largely focused in conservation and man-
agement (especially in fisheries) provide example models for specific systems (Millar
and Meyer, 2000; Jonsen et al., 2003; Morales et al., 2004; McCarthy and Parris,
2004; Clarke et al., 2006).∗

In summary, the basic procedure for fitting a model via MCMC (using MCM-
Cpack, WinBUGS, or rolling your own) is: (1) design and code your model; (2)
enter the data; (3) pick priors for parameters; (4) initialize the parameter values
for several chains (overdispersed, or by a random draw from priors); (5) run the
chains for “a long time” (R2WinBUGS’s default is 2000 steps); (6) check con-
vergence; (7) run longer if necessary; (8) discard burn-in and thin the chains; (8)

∗ In a few years this list of citations will probably be too long to include!

“Bolker” — 1/9/2008 — 15:39 — page 241

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 241

0 500 1000 1500 2000 2500

20
60

10
0

Iterations

Trace of shape

20 40 60 80 100 1200.
00

0
0.

01
5

N = 500 Bandwidth = 4.164

Density of shape

0 500 1000 1500 2000 2500

4
8

12
16

Iterations

Trace of rate
0.

00
0.

10

N = 500 Bandwidth = 0.6253

Density of rate

0 500 1000 1500 2000 2500

76
82

88

Iterations

Trace of deviance

75

5 10 15

80 85 90

0.
00

0.
15

N = 500 Bandwidth = 0.5494

Density of deviance

Figure 7.8 WinBUGS output plot: default coda plot, showing trace plots (left) and density
plots (right).

compute means, 95% intervals, correlations among parameters, and other values of
interest.

7.4 Fitting Challenges

Now that we’ve reviewed the basic techniques for maximum likelihood and Bayesian
estimation, I’ll go over some of the special characteristics of problems that make
fitting harder.

“Bolker” — 1/9/2008 — 15:39 — page 242

−1
0
1

242 • C H A P T E R 7

7.4.1 High Dimensional/Many-Parameter Models

Finding the MLE for a one-parameter model means finding the minimum of the
likelihood curve; finding the MLE for a two-parameter model means finding the
minimum of a 2D surface; finding the MLE for models with more parameters means
finding the minimum on a multidimensional “surface.” Models with more than a
few parameters suffer from the curse of dimensionality: the number of parameter
combinations, or derivatives, or directions you have to consider increases as a power
law of the sampling resolution. For example, if you want find the MLE for a five-
parameter model (a pretty simple model) by direct search and you want to subdivide
the range of each parameter into 10 intervals (which is quite coarse), you already
need 105 parameter combinations. Combine this with function evaluations that take
more than a fraction of a second and you’re into the better part of a day to do a
single optimization run. Direct search is usually just not practical for models with
more than two or three parameters.

If you need to visualize a high-dimensional likelihood surface (e.g., examining the
region around a putative MLE to see if the algorithm has found a reasonable answer),
you’ll probably need to look at 2D slices (varying two parameters at a time over
reasonable ranges, calculating the objective function for each combination of values
while holding all the other parameters constant) or profiles (varying two parameters
at a time over reasonable ranges and optimizing over all the other parameters for each
combination of values). You are more likely to have to fall back on the information
matrix–based approach described in the previous chapter for finding approximate
variances and covariances (or correlations) of the parameter estimates; this approach
is more approximate and gives you less information than fitting profiles, but extends
very simply to any number of parameters.

MCMC fitting adapts well to large models. You can easily get univariate (using
HPDinterval from coda for credible intervals or summary for quantiles) and bivariate
confidence intervals (using HPDregionplot from emdbook).

7.4.2 Slow Function Evaluations

Since they require many function evaluations, high-dimensional problems also
increase the importance of speed in the likelihood calculations. Many of the models
you’ll deal with take only microseconds to calculate a likelihood, so running tens
of thousands of function evaluations can still be relatively quick. However, fitting a
high-dimensional model using simulated annealing or other stochastic optimization
approaches, or finding confidence limits for such models, can sometimes require mil-
lions of evaluations and hours or days to fit. In other cases, you might have to run
a complicated population dynamics model for each set of parameters and so each
likelihood function evaluation could take minutes or longer (Moorcroft et al., 2006).

Some possible solutions to this problem:

• Use more efficient optimization algorithms, such as derivative-based algo-
rithms instead of Nelder-Mead, if you can.

• Derive an analytical expression for the derivatives and write a function to
compute it. optim and mle2 can use this function (via the gr argument) instead
of computing finite differences.

“Bolker” — 1/9/2008 — 15:39 — page 243

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 243

• Rewrite the code that computes the objective function more efficiently in R.
Vectorized operations are almost always faster than for loops. For exam-
ple, filling a 1000 × 2000 matrix with normally distributed values one at
a time takes 30 seconds, whereas picking 2 million values and then refor-
matting them into a matrix takes only 0.75 second. Calculating the column
sums of the matrix by looping over rows and columns takes 20.5 seconds;
using apply(m,1,sum) takes 0.13 second; and using colSums(m) takes 0.005
second.

• If you can program in C or FORTRAN, or have a friend who can, write your
objective function in one of these faster, lower-level languages and link it to R
(see the R Extensions Manual for details).

• For really big problems, you may need to use tools beyond R. One such tool is
AD Model Builder, which uses automatic differentiation—a very sophisticated
algorithm for computing derivatives efficiently—which can speed up compu-
tation a lot (R has a very simple form of automatic differentiation built into
its deriv function).

• Compromise by allowing a lower precision for your fits, increasing the reltol
parameter in optim. Do you really need to know the parameters within a factor
of 10−8, or would 10−3 do, especially if you know your confidence limits are
likely to be much larger? (Be careful: increasing the tolerance in this way may
also allow algorithms to stop prematurely at a flat spot on the way to the true
minimum.)

• Find a faster computer, or break the problem up and run it on several
computers at once, or wait longer for the answers.

7.4.3 Discontinuities and Thresholds

Models with sudden changes in the log-likelihood (discontinuities) or derivatives of
the log-likelihood, or perfectly flat regions, can cause real trouble for general-purpose
optimization algorithms.∗ Discontinuities in the log-likelihood or its derivative can
make derivative-based extrapolations wildly wrong. Flat or almost-flat regions can
make most methods (including Nelder-Mead) falsely conclude that they’ve reached
a minimum.

Flat regions are often the result of threshold models, which in turn can be motiv-
ated on simple phenomenological grounds or as the result (e.g.) of some optimal-
foraging theories (Chapter 3). Figure 7.9 shows simulated “data” and a likelihood
curve/slice for a very simple threshold model. The likelihood profile for the threshold
model has discontinuities at the x value of each data point. These breaks occur
because the likelihood changes only when the threshold parameter is changed from
just below an observed value of x to just above it; adjusting the threshold parameter
anywhere in the range between two observed x values has no effect on the likelihood.

The logistic profile, in addition to being smooth rather than choppy, is lower
(representing a better fit to the data) for extreme values because the logistic function
can become essentially linear for intermediate values, while the threshold function is
flat. For optimum values of the threshold parameter, the logistic and threshold models

∗ Specialized algorithms, such as those included in the segmented package on CRAN, can handle
certain classes of piecewise models (Muggeo, 2003).

“Bolker” — 1/9/2008 — 15:39 — page 244

−1
0
1

244 • C H A P T E R 7

y

1

2

3

4

5

6

10

0 1 2 3 4 5

20

30

40

50

x

N
eg

at
iv

e
lo

g
lik

el
ih

oo
d

threshold

logistic

a

b

Figure 7.9 Threshold and logistic models. (a) Data, showing the data (generated from a
threshold model) and the best threshold and logistic fits to the data. (b) Likelihood profiles.

give essentially the same answer. Since the logistic is slightly more flexible (having
an additional parameter governing steepness), it gives marginally better fits—but
these would not be significantly better according to the likelihood ratio test or any
other model selection criterion. Both profiles become flat for extreme values (the fit
doesn’t get any worse for ridiculous values of the threshold parameter), which could
cause trouble with an optimization method that is looking for flat regions of the
profile.

“Bolker” — 1/9/2008 — 15:39 — page 245

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 245

Some ways to deal with thresholds:

• If you know a priori where the threshold is, you can fit different models on
either side of the threshold.

• If the threshold occurs for a single parameter, you can compute a log-likelihood
profile for that parameter. For example, in Figure 7.9 only the parameter
for the location of the threshold causes a problem, while the parameters for
the values before and after the threshold are well-behaved. This procedure
reduces to direct search for the threshold parameter while still searching auto-
matically for all the other parameters (Barrowman and Myers, 2000). This
kind of profiling is also useful when a parameter needs to be restricted to
integer values or is otherwise difficult to fit by a continuous optimization
routine.

• You can adjust the model, replacing the sharp threshold by some smoother
behavior. Figure 7.9 shows the likelihood profile of a logistic model fitted to
the same data. Many fitting procedures for threshold models replace the sharp
threshold with a smooth transition that preserves most of the behavior of the
model but alleviates fitting difficulties (Bacon and Watts, 1974; Barrowman
and Myers, 2000).

7.4.4 Multiple Minima

Even if a function is smooth, it may have multiple minima (e.g., Figure 7.1): alterna-
tive sets of parameters that each represent better fits to the data than any nearby
parameters. Multiple minima may occur in either smooth or jagged likelihood
surfaces.

Multiple minima are a challenging problem, and they are particularly scary
because they’re not always obvious—especially in high-dimensional problems.
Figure 7.10 shows a slice through parameter space connecting two minima that
occur in the negative log-likelihood surface of the modified logistic function that
Vonesh and Bolker (2005) used to fit data on tadpole predation as a function of size
(the function calcslice in the emdbook package will compute such a slice). Such a
pattern strongly suggests, although it does not guarantee, that the two points really
are local minima. When we wrote the paper, we were aware only of the left-hand
minimum, which seemed to fit the data reasonably well. In preparing this chapter, I
reanalyzed the data using BFGS instead of Nelder-Mead optimization and discovered
the right-hand fit, which is actually slightly better (−L = 11.77 compared to 12.15
for the original fit). Since they use different rules, the Nelder-Mead and BFGS algo-
rithms found their way to different minima despite starting at the same point. This
is alarming. While the log-likelihood difference (0.38) is not large enough to reject
the first set of parameters, and while the fit corresponding to those parameters still
seems more biologically plausible (a gradual increase in predation risk followed by
a slightly slower decrease, rather than a very sharp increase and gradual decrease),
we had no idea that the second minimum existed. Etienne et al., (2006b) pointed
out a similar issue affecting a paper by Latimer et al., (2005) about diversification
patterns in the South African fynbos: some estimates of extremely high speciation
rates turned out to be spurious minima in the model’s likelihood surface (although
the basic conclusions of the original paper still held).

“Bolker” — 1/9/2008 — 15:39 — page 246

−1
0
1

246 • C H A P T E R 7

0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

200

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

size

ki
lle

d

size

ki
lle

d

Figure 7.10 Likelihood slice connecting two negative log-likelihood minima for the modified
logistic model of Vonesh and Bolker (2005). The x axis is on an arbitrary scale where x = 0
and x = 1 represent the locations of the two minima. Subplots show the fits of the curves to
the frog predation data for the parameters at each minimum; the right-hand minimum is a
slightly better fit (−L = 11.77 (right) vs. 12.15 (left)). The horizontal solid and dashed lines
show the minimum negative log-likelihood and the 95% confidence cutoff (−L + χ2

1 (0.95)/2).
The 95% confidence region includes small regions around both x = 0 and x = 1.

No algorithm can promise to deal with the pathological case of a very narrow,
isolated minimum as in Figure 7.1. To guard against multiple-minimum problems,
try to fit your model with several different reasonable starting points, and check to
make sure that your answers are reasonable.

If your results suggest that you have multiple minima—that is, you get different
answers from different starting points or from different optimization algorithms—
check the following:

• Did both fits really converge properly? The fits returned by mle2 from the
bbmle package will warn you if the optimization did not converge; for optim
results you need to check the $convergence term of results (it will be zero
if there were no problems). Try restarting the optimizations from both of
the points where the optimizations ended up, possibly resetting parscale to
the absolute value of the fitted parameters. (If O1 is your first optim fit, run the
second fit with control=list(parscale=abs(O1$par)). If O1 is an mle2 fit,
use control=list(parscale=abs(coef(O1))).) Try different optimization
methods (BFGS if you used Nelder-Mead, and vice versa). Calculate slices or
profiles around the optima to make sure they really look like local minima.

“Bolker” — 1/9/2008 — 15:39 — page 247

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 247

• Use calcslice to compute a likelihood slice between the two putative fits to
make sure that the surface is really higher between them.

If your surface contains several minima, the simplest solution may be to use
a simple, fast method (like BFGS) but to start it from many different places. This
will work if the surface is smooth, but with two (or many) valleys of approximately
the same depth.∗You will need to decide how to assign starting values (randomly
or on a grid? along some transect?), and how many starting values you can afford
to try. You may need to tune the optimization parameters so that each individual
optimization runs as fast and smoothly as possible. Researchers have also developed
hybrid approaches based on multiple starts (Tucci, 2002).

When multiple minima occur it is possible, although unusual, for the 95% confi-
dence limits to be discontinuous—that is, for there to be separate regions around each
minimum that are supported by the data. This does happen in Figure 7.10, although
on the scale of that figure the confidence intervals in the regions around x = 0 and
x = 1 would be almost too small to see. More frequently, either one minimum will be
a lot deeper than the other so that only the region around one minimum is included
in the confidence region, or the minima will be about the same height but the two
valleys will join at the height of the 95% cutoff so that the 95% confidence interval
is continuous.

If the surface is jagged instead of smooth, or if you have a sort of fractal surface—
valleys within valleys, of many different depths—a stochastic global method such as
simulated annealing is your best bet. Markov chain Monte Carlo can in principle
deal with multiple modes, but convergence can be slow—you need to start chains at
different modes and allow enough time for each chain to wander to all of the different
modes (see Mossel and Vigoda, 2006; Ronquist et al., 2006, for a related example
in phylogenetics).

7.4.5 Constraints

The last technical detail covered here is the problem of constraining parameter values
within a particular range. Constraints occur for many reasons, but the most common
constraints in ecological models are that some parameters make sense only when they
have positive values (e.g., predation or growth rates) or values between 0 and 1 (e.g.,
probabilities). The three important characteristics of constraints concern:

1. Equality vs. inequality: Must a parameter or set of parameters be exactly equal
to some value, or just within specified boundaries? Constraints on individ-
ual parameters are always inequality constraints (e.g., 0 < p < 1). The most
common equality constraint is that probabilities must sum to 1 (

∑N
i=1 pi = 1).

2. Individual parameters vs. combinations: Are parameters subject to indepen-
dent constraints, or do they interact? Inequality constraints on individual
parameters (a1 < p1 < b1, a2 < p2 < b2) are called box constraints. Con-
straints on linear combinations of parameters (a1p1 + a2p2 < c) are called
linear constraints.

∗ The many-valley case, or rather its inverse the many-peaks case (if we are maximizing rather than
minimizing), is sometimes known as a “fakir’s bed” problem after the practice of sitting on a board full
of nails (Swartz, 2003).

“Bolker” — 1/9/2008 — 15:39 — page 248

−1
0
1

248 • C H A P T E R 7

3. Solving constraint equations: Can the constraint equations can be solved ana-
lytically in terms of one of the parameters? For example, you can restate the
constraint p1p2 = C as p1 = C/p2.

In Chapter 8 of the Ecological Detective, Hilborn and Mangel constrain the equilib-
rium of a complex wildebeest population model to have a particular value. This is
the most difficult kind of constraint; it’s an equality constraint, a nonlinear function
of the parameters, and there’s no way to solve the constraint equation analytically.

The simplest approach to inequality constraints is to ignore them completely and
hope that your optimizing routine will find a minimum that satisfies the constraint
without running into trouble. You can often get away with this if your minimum is
far from the boundary, although you may get warning messages that look something
like NaNs produced in: dnbinom(x, size, prob, log). If your answers make
sense, you can often ignore the warnings, but you should definitely test the results
by restarting the optimizer from near its ending point to verify that it still finds the
same solution. You may also want to try some of the other constrained approaches
listed below to double-check.

The next simplest approach to optimization constraints is to find a canned opti-
mization algorithm that can incorporate constraints in its problem definition. The
optim function (and its mle2 wrapper) can accommodate box constraints if you use
the L-BFGS-B method. So can nlminb, which was introduced to R more recently
and uses a different algorithm. R also provides a constrOptim function that can
handle linear constraints. Algorithms that can fit models with general nonlinear
equality and inequality constraints do exist, but they have not been implemented
in R: they are typically large FORTRAN programs that cost hundreds or thousands
of dollars to license (see below for the cheapskate ecologist’s approach to nonlinear
constraints).

Constrained optimization is finicky, so it’s useful to have additional options when
one method fails. In my experience, constrained algorithms are less robust than
their unconstrained counterparts. For example, L-BFGS-B, the constrained version
of BFGS, is (1) more likely to crash than BFGS; (2) worse at handling NAs or infinite
values than BFGS; and (3) will sometimes try parameter values that violate the con-
straints by a little bit when it’s calculating finite differences. You can work around
the last problem by reducing ndeps and setting boundaries that are a little bit tighter
than the theoretical limits, for example, a lower bound of 0.002 instead of 0.

The third approach to constraint problems is to add a penalty to the negative log-
likelihood that increases as parameter values stray farther outside the allowed region.
Instead of minimizing the negative log-likelihood −L, try minimizing −L + P × |C −
C(p)|n where P is a penalty multiplier, n is a penalty exponent, C is the desired value of
the constraint, and C(p) is the value of the constraint at the current parameter values
(Hilborn and Mangel, 1997). For example, if you were using P = 1000 and n = 2 (a
quadratic penalty, the most common type) and the sum of probabilities for a set of
parameters was 1.2 instead of the desired value of 1.0, you would add a penalty term
of 1000(1 − 1.2)2 = 40 to the negative log-likelihood. The penalty term will tend to
push minimizers back into the allowed region. However, you need to implement such
penalties carefully. For example, if your likelihood calculation is nonsensical outside
the allowed region (e.g., if some parameters lead to negative probabilities), you may
need to use the value of the negative log-likelihood at the closest boundary rather

“Bolker” — 1/9/2008 — 15:39 — page 249

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 249

than trying to compute −L for parameters outside the boundary. If your penalties
make the surface nonsmooth at the boundary, derivative-based minimizers are likely
to fail. You will often need to tune the penalty multiplier and exponent, especially
for equality constraints.

The fourth, often most robust, approach is to transform your parameters to
avoid the constraints entirely. For example, if you have a rate or density parameter
λ that must be positive, rewrite your function and minimize with respect to x =
log λ instead. Every value of x between −∞ and ∞ translates to a positive value
of λ; negative values of x correspond to values of λ < 1. As x approaches −∞, λ

approaches zero; as x approaches ∞, λ also approaches ∞.
Similarly, if you have a parameter p that must be between 0 and 1 (such as

a parameter representing a probability), the logit transformation of p, q = log (p/

(1 − p)), will be unconstrained (its value can be anywhere between −∞ and ∞). You
can use qlogis in R to calculate the logit. The inverse transformation is the logistic
transformation, exp (q)/(1 + exp (q)) (plogis).

The log and logit transformations are by far the most common transforma-
tions. Many classical statistical methods use them to ensure that parameters are well
defined; for example, logistic regression fits probabilities on a logit scale. Another
less common but still useful transformation is the additive log ratio transforma-
tion (Aitchison, 1986; Billheimer et al., 1998; Okuyama and Bolker, 2005). When
you’re modeling proportions, you often have a set of parameters p1, . . . , pn repre-
senting the probabilities or proportions of a variety of outcomes (e.g., predation
by different predator types). Each pi must be between 0 and 1, and

∑
pi = 1. The

sum-to-one constraint means that the constraints are not box constraints (which
would apply to each parameter separately), and even though it is linear, it is an
equality constraint rather than a inequality constraint—so constrOptim can’t han-
dle it. The additive log ratio transformation takes care of the problem: the vector
y = (log (p1/pn), log (p2/pn), . . . , log (pn−1/pn)) is a set of n − 1 unconstrained values
from which the original values of pi can be computed. There is one fewer additive
log-ratio-transformed parameter because if we know n − 1 of the values, then the nth
is determined by the summation constraint. The inverse transformation (the additive
logistic) is pi = exp (yi)/(1 +∑ exp (yi)) for i < n, pn = 1 −∑n−1

i pi.
The major problem with transforming constraints this way is that sometimes the

best estimates of the parameters, or the null values you want to test against, actually
lie on the boundary—in mixture or composition problems, for example, the best fit
may set the contribution from some components equal to zero. For example, the best
estimate of the contribution of some turtle nesting beaches (rookeries) to a mixed
foraging-ground population may be exactly zero (Okuyama and Bolker, 2005). If
you logit-transform the proportional contributions from different nesting beaches,
you will move the lower boundary from 0 to −∞. Any optimizer that tries to reach
the boundary will have a hard time, resulting in warnings about convergence and/or
large negative estimates that differ depending on starting conditions. One option is
simply to set the relevant parameters to zero (i.e., construct a reduced model that
eliminates all nesting beaches that seem to have minimal contributions), estimate the
minimum negative log-likelihood, and compare it to the best fit that the optimizer
could achieve. If the negative log-likelihood is smaller with the contributions set to
zero (e.g., the negative log-likelihood for contribution = 0 is 12.5, compared to a
best-achieved value of 12.7 when the log-transformed contribution is −20), then you

“Bolker” — 1/9/2008 — 15:39 — page 250

−1
0
1

250 • C H A P T E R 7

can conclude that zero is really the best fit. You can also compute a profile (negative
log-)likelihood on one particular contribution with values ranging upward from zero
and see that the minimum really is at zero. However, going to all this trouble every
time you have a parameter or set of parameters that appear to have their best fit on
the boundary is quite tedious.

One final issue with parameters on the boundary is that the standard model
selection machinery discussed in Chapter 6 (Likelihood Ratio Test, AIC, etc.) always
assumes that the null (or nested) values of parameters do not lie on the boundary of
their feasible range. This issue is well-known but still problematic in a wide range of
statistical applications, for example, in deciding whether to set a variance parameter
to zero. For the specific case of linear mixed-effect models (i.e., models with linear
responses and normally distributed random variables), the problem is relatively well
studied. Pinheiro and Bates (2000) suggest the following approaches (listed in order
of increasing sophistication):

• Simply ignore the problem, and treat the parameter as though it were not on the
boundary—i.e., use a likelihood ratio test with 1 degree of freedom. Analyses
of linear mixed-effect models (Self and Liang, 1987; Stram and Lee, 1994)
suggest that this procedure is conservative; it will reject the null hypothesis
less often (sometimes much less often) than the nominal type I error rate α.∗

• Some analyses of mixed-effect models suggest that the distribution of the
log-likelihood ratio under the null hypothesis when n parameters are on the
boundary is a mixture of χ2

n and χ2
n−1 distributions rather than a χ2

n distri-
bution. If you are testing a single parameter, as is most often the case, then
n = 1 and χ2

n−1 is χ2
0 —defined as a spike at zero with area 1. For most mod-

els, the distribution is a 50/50 mixture of χ2
n and χ2

n−1, which Goldman and
Whelan (2000) call the χ̄2

n distribution. For n = 1, χ̄2
1 (1 − α) = χ2

1 (1 − 2α).
In this case the 95% critical value for the likelihood ratio test would thus
be χ2

1 (0.95)/2 = qchisq(0.9,1)/2=1.35 instead of the usual value of 1.92.
The qchibarsq function in the emdbook package will compute critical values
for χ̄2

n .
• The distribution of deviances may not be an equal mixture of χ2

n and χ2
n−1

(Pinheiro and Bates, 2000). The “gold standard” is to simulate the null hypoth-
esis and determine the distribution of the log-likelihood ratio under the null
hypothesis; see Section 7.6.1 for a worked example.

7.5 Estimating Confidence Limits of Functions of Parameters

Quite often, you estimate a set of parameters from data, but you actually want to say
something about a value that is not a parameter (e.g., about the predicted population
size some time in the future). It’s easy to get the point estimate—you just feed the
parameter estimates into the population model and see what comes out. But how do
you estimate the confidence limits on that prediction?

∗ Whether this is a good idea or not, it is the standard approach—as far as I can tell it is always what
is done in ecological analyses, although some evolutionary analyses are more sophisticated.

“Bolker” — 1/9/2008 — 15:39 — page 251

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 251

There are many possibilities, ranging in accuracy, sophistication, and difficulty.
The data for an extended example come from J. Wilson’s observations of “death”
(actually disappearance, which may also represent emigration) times of juvenile reef
gobies in a variety of experimental treatments. The gobies’ times of death, assumed
to follow a Weibull distribution, are

f (t) = a
b

(
t
b

)a−1

e−(t/b)a . (7.5.1)

The Weibull distribution, common in survival analysis, has essentially the same range
of shape possibilities as the Gamma distribution, from L-shaped like the exponential
to humped like the normal, and it allows for a per capita mortality rate that either
increases or decreases with time. The Weibull (dweibull in R) has two parameters,
shape (a above) and scale (b above); when shape = 1 it reduces to an exponential.
It’s easy enough to calculate the univariate or bivariate confidence limits of the shape
and scale parameters, but what if we want to calculate the confidence interval of the
mean survival time, which is likely to be more meaningful to the average ecologist
or manager?

First, pull in the data and take a useful subset:

> library(emdbookx)
> data(GobySurvival)
> dat = subset(GobySurvival, exper == 1 &
+ density == 9 & qual > median(qual))

Define the death time as the midpoint between the last time the fish was observed
(d1) and the first time it was not observed (d2):∗

> time = (dat$d1 + dat$d2)/2

Set up a simple likelihood function:

> weiblikfun = function(shape, scale) {
+ -sum(dweibull(time, shape = shape, scale = scale,
+ log = TRUE))
+ }

Fit the model starting from an exponential distribution (if scale = a = 1, the
distribution is an exponential with rate 1/b and mean b):

> w1 <- mle2(weiblikfun, start = list(shape = 1,
+ scale = mean(time)))

∗ Survival analyses usually assume that the time of death is known exactly. With these data, as is
common in ecological studies, we have a range of days during which the fish disappeared. To handle this
so-called interval censoring properly in the likelihood function, we would have to find the probability
of dying after day d1 but before day d2, which is (probability of dying before d2 − probability of dying
before d1). In R the negative log-likelihood function would be

> weiblikfun <- function(shape, scale) {
+ -sum(log(pweibull(dat$d2, shape, scale) - pweibull(dat$d1,
+ shape, scale)))
+ }

For this example, I’ve used the cruder, simpler approach of averaging d1 and d2.

“Bolker” — 1/9/2008 — 15:39 — page 252

−1
0
1

252 • C H A P T E R 7

Shape

S
ca

le

0.5 0.7 0.9 1.1

5

10

15

20

25

22

18
0.8

0.9

0.99

26
34

0.95

14

10

6

Figure 7.11 Geometry of confidence intervals on mean survival time. Gray contours: univariate
(80%, 90%, 95%, 99%) confidence intervals for shape and scale. Black contours: mean
survival time. Dotted line: likelihood profile for mean survival time.

The parameter estimates (coef(w1)) are shape = 0.921 and scale = 14.378; the
estimate of the mean survival time (using meanfun and plugging in the parameter
estimates) is 14.945.

7.5.1 Profile Likelihood

Now we’d like confidence intervals for the mean that take variability in both shape
and scale into account. The most rigorous way to estimate confidence limits on a
nonparameter is to calculate the profile likelihood for the value and find the 95% con-
fidence limits, using almost the same procedure as if you were finding the univariate
confidence limits of one of the parameters.

Figure 7.11 illustrates the basic geometry of this problem: the underlying con-
tours of the height of the surface (contours at 80%, 90%, 95%, and 99% univariate
confidence levels) are shown in gray. The black contours show the lines on the plot
that correspond to different constant values of the mean survival time. The dotted
line is the likelihood profile for the mean, which passes through the minimum neg-
ative log-likelihood point on each mean contour, the point where the mean contour
is tangent to a likelihood contour line. We want to find the intersections of the Like-
lihood Ratio Test contour lines with the likelihood profile for the mean; looking at
the 95% line, we can see that the confidence intervals of the mean are approximately
9 to 27.

“Bolker” — 1/9/2008 — 15:39 — page 253

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 253

7.5.1.1 THE VALUE CAN BE EXPRESSED IN TERMS
OF OTHER PARAMETERS

When the value for which you want to estimate confidence limits has a formula that
you can solve in terms of one of the parameters, calculating its confidence limits is
easy.

For the Weibull distribution the mean µ is given by

µ = scale · �(1 + 1/shape), (7.5.2)

or, translating to R,

> meanfun = function(shape, scale) {
+ scale * gamma(1 + 1/shape)
+ }

How do we actually calculate the profile for the mean? We can solve (7.5.2) for
one of the parameters:

scale = µ/�(1 + 1/shape). (7.5.3)

Therefore, we can find the likelihood profile for the mean in almost the same way
we would for one of the parameters. Fix the value of µ; then, for each value of the
shape that R tries on its way to estimating the parameter, it will calculate the value
of the scale that must apply if the mean is to be fixed at µ. The constraint means
that, even though the model has two parameters (shape and scale), we are really
doing a one-dimensional search, which just happens to be a search along a specified
constant-mean contour.

To calculate the confidence interval on the mean, we have to rewrite the likelihood
function in terms of the mean:

> weiblikfun2 = function(shape, mu) {
+ scale = mu/gamma(1 + 1/shape)
+ -sum(dweibull(time, shape = shape, scale = scale,
+ log = TRUE))
+ }

Find the maximum again, and calculate the confidence intervals—this time for
the shape and the mean.

> w2 = mle2(weiblikfun2, start = list(shape = 1,
+ mu = mean(time)))
> confint(w2)

2.5 % 97.5 %
shape 0.6248955 1.281101
mu 9.1826049 27.038785

We could also draw the univariate likelihood profile, the minimum negative log-
likelihood achievable for each value of the mean, and find the 95% confidence limits
in the same way as before by creating a likelihood profile for µ. We would use 1 degree
of freedom to establish the critical value for the LRT because we are varying only
one value, even though it represents a combination of two parameters.

“Bolker” — 1/9/2008 — 15:39 — page 254

−1
0
1

254 • C H A P T E R 7

7.5.1.2 CONSTRAINED/PENALIZED LIKELIHOOD

What if we can’t solve for one of the parameters (e.g., scale) in terms of the value
we are interested in (e.g., mean), but still want to calculate a likelihood profile and
profile confidence limits for the mean? We can use a penalized likelihood function
to constrain the mean to a particular value, as described above in the section on
constraints.

While this approach is conceptually the same as the one we took in the pre-
vious section—we are calculating the profile by sliding along each mean contour
to find the minimum negative log-likelihood on that contour, then finding the
values of the mean for which the minimum negative log-likelihood equals the LRT
cutoff—the problem is much fussier numerically. (The complicated code is presented
on p. 259.) To use penalties effectively we usually have to play around with the
strength of the penalty. Too strong, and our optimizations will get stuck somewhere
far away from the real minimum. Too weak, and our optimizations will wander off
the line we are trying to constrain them to. I tried a variety of penalty coefficients
C in this case (penalty = C × (deviation of mean survival from target value)2) from
0.1 to 106. The results were essentially identical for penalties ranging from 1 to
104 but varied for weaker or stronger penalties. One might be able to tweak the
optimization settings some more to make the answers better, but there’s no simple
recipe—you just have to keep returning to the pictures to see if your answers make
sense.

7.5.2 The Delta Method

The delta method provides an easy approximation for the confidence limits on values
that are not parameters of the model. To use it you must have a formula for µ = f (a, b)
that you can differentiate with respect to a and b. Unlike the first likelihood profile
method, you don’t have to be able to solve the equation for one of the parameters.

The formula for the delta method comes from a Taylor expansion of the for-
mula for µ, combined with the definitions of the variance (V(a) = E[(a − ā)2]) and
covariance (C(a, b) = E[(a − ā)(b − b̄)]):

V(f (a, b)) ≈ V(a)
(

∂f
∂a

)2

+ V(b)
(

∂f
∂b

)2

+ 2C(a, b)
∂f
∂a

∂f
∂b

. (7.5.4)

See the appendix or Lyons (1991) for details.
We can obtain approximate variances and covariances of the parameters by

taking the inverse of the information matrix: vcov does this automatically for mle2
fits.

We also need the derivatives of the function with respect to the parameters. In
this example these are the derivatives of µ = b�(1 + 1/a) with respect to shape = a
and scale = b. The derivative with respect to b is easy—∂µ/∂b = �(1 + 1/a)—but
∂µ/∂a is harder. By the chain rule

∂(�(1 + 1/a))
∂a

= ∂(�(1 + 1/a))
∂(1 + 1/a)

· ∂(1 + 1/a)
∂a

= ∂(�(1 + 1/a))
∂(1 + 1/a)

· − 1
a2 , (7.5.5)

“Bolker” — 1/9/2008 — 15:39 — page 255

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 255

but in order to finish this calculation you need to know that d�(x)/dx = �(x) ·
digamma(x), where digamma is a special function (defined as the derivative of
the log-gamma function). The good news is that R knows how to compute this
function, so

> shape.deriv <- -1shapeˆ2 * gamma(1 + 1/shape) * digamma
+ (1 + 1/shape)

will give you the right numeric answer. The emdbook package has a built-in deltavar
function that uses the delta method to compute the variance of a function:

> dvar <- deltavar(fun = scale * gamma(1 + 1/shape),
+ meanval = coef(w1), Sigma = vcov(w1))

Once you find the variance of the mean survival time, you can take the square root to
get the standard deviation σ and calculate the approximate confidence limits µ ± 2
(use meanfun, defined on p. 454, to compute the value of µ).

> sdapprox <- sqrt(dvar)
> mlmean <- meanfun(coef(w1)["shape"], coef(w1)["scale"])
> ci.delta <- mlmean + c(-2, 2) * sdapprox

If you can’t compute the derivatives manually, R’s numericDeriv function will
compute them numerically (p. 261).

7.5.3 Population Prediction Intervals (PPIs)

Another simple procedure for calculating confidence limits is to draw random samples
from the estimated sampling distribution (approximated by the information matrix)
of the parameters. In the approximate limit where the information matrix approach is
valid, the distribution of the parameters will be multivariate normal with a variance-
covariance matrix given by the inverse of the information matrix. The MASS package
in R has a function, mvrnorm,∗for selecting multivariate normal random deviates.
With the mle2 fit w1 from above,

> vmat = mvrnorm(1000, mu = coef(w1), Sigma = vcov(w1))

will select 1000 sets of parameters drawn from the appropriate distribution (if
there are n parameters, the answer is a 1000 × n matrix). (If you have used optim
instead of mle2—suppose opt1 is your result—then use opt1$par for the mean and
solve(opt1$hessian) for the variance.) You can then use this matrix to calculate the
estimated value of the mean for each of the sets of parameters, treat this distribution
as a distribution of means, and find its lower and upper 95% quantiles (Figure 7.12).
In the context of population viability analysis, Lande et al., (2003) refer to confidence
intervals computed this way as “population prediction intervals.”

This procedure is easy to implement in R, as follows:

> dist = numeric(1000)

∗ mvrnorm should really be called rmvnorm for consistency with R’s other distribution functions, but
S-PLUS already has a built-in function called rmvnorm, so the MASS package had to use a different name.

“Bolker” — 1/9/2008 — 15:39 — page 256

−1
0
1

256 • C H A P T E R 7

D
en

si
ty

0.00

0.05

0.10

1050 15 20 25 30

Mean survival time

PP interval

Bayes credible

Figure 7.12 Population prediction distribution and Bayesian posterior distribution of mean
survival time, with confidence and credible intervals.

> for (i in 1:1000) {
+ dist[i] = meanfun(vmat[i, 1], vmat[i, 2])
+ }
> quantile(dist, c(0.025, 0.975))

2.5% 97.5%
6.830397 24.526036

Calculating population prediction intervals in this way has two disadvantages:

• It blurs the line between frequentist and Bayesian approaches. Several papers
(including some of mine, e.g., Vonesh and Bolker (2005)) used this approach,
but I have yet to see a solidly grounded justification for propagating the
sampling distributions of the parameters in this way.

• Since it uses the asymptotic estimate of the parameter variance-covariance
matrix, it inherits whatever inaccuracies that approximation introduces. It
makes one fewer assumption than the delta method (it doesn’t assume the
variance is so small that the functions are close to linear), but it may not be
much more accurate.

“Bolker” — 1/9/2008 — 15:39 — page 257

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 257

7.5.4 Bayesian analysis

Finally, you can use a real Bayesian method: construct either an exact Bayesian model
or, more likely, a Markov chain Monte Carlo analysis for the parameters. Then you
can calculate the posterior distribution of any function of the parameters (such as the
mean survival time) from the posterior samples of the parameters, and get the 95%
credible interval.

The hardest part of this analysis is converting between R and WinBUGS versions
of the Weibull distribution: where R uses f (t) = (a/b)(t/b)a−1 exp (− (t/b)a), Win-
BUGS uses f (t) = νλtν−1 exp (− λtν). Matching up terms and doing some algebra
shows that ν = a and λ = b−a or b = λ−1/a.

The BUGS model is

model {
for (i in 1:n) {

time[i] ˜ dweib(shape,lambda)
}
scale <- pow(lambda,-1/shape)
mean <- scale*exp(loggam(1+1/shape))
priors
shape ˜ dunif(0,5)
lambda ˜ dunif(0,1)

}

Other differences between R and WinBUGS are that BUGS uses pow(x,y) instead
of xˆy and has only a log-gamma function loggam instead of R’s gamma and lgamma
functions. The model includes code to convert from WinBUGS to R parameters (i.e.,
calculating scale as a function of lambda) and to calculate the mean survival time,
but you could also calculate these values in R.

Set up three chains that start from different, overdispersed values of shape
and λ:

> lval <- coef(w1)["scale"]ˆ(-coef(w1)["shape"])
> n <- length(time)
> inits <- list(list(shape = 0.8, lambda = lval),
+ list(shape = 0.4, lambda = lval * 2),
+ list(shape = 1.2, lambda = lval/2))

Run the chains assuming that the model is stored in a file called reefgobysurv.bug:

> reefgoby.bugs <- bugs(data = list("time", "n"), inits,
+ parameters.to.save = c("shape", "scale", "lambda",
+ "mean"), model.file = "reefgobysurv.bug",
+ n.chains = length(inits), n.iter = 5000)

Finally, use HPDinterval or summary to extract credible intervals or quantiles
from the MCMC output. Figure 7.12 compares the marginal posterior density of
the mean and the credible intervals computed from it with the distribution of the
mean derived from the sampling distribution of the parameters and the population
prediction intervals (Section 7.5.3).

“Bolker” — 1/9/2008 — 15:39 — page 258

−1
0
1

258 • C H A P T E R 7

TABLE 7.2

Method Lower Upper

Exact profile 9.183 27.039

Profile:penalty 9.180 27.025

Delta method 7.446 22.445

PPI 6.830 24.526

Bayes credible 9.086 25.750

7.5.5 Confidence Interval Comparison

Table 7.2 presents a head-to-head comparison of all the methods we’ve applied so
far. All methods give approximately the same answers. Despite answering a different
question, the Bayes credible interval is in the same range as the other confidence inter-
vals. The point to take away from this comparison is that all methods for estimating
confidence limits use approximations, some cruder than others. Use the most accurate
feasible approach, but don’t expect estimates of confidence limits to be very precise.
To paraphrase a comment of Press et al. (1994), if the difference between confidence-
interval approximations ever matters to you, “then you are probably up to no
good anyway—e.g., trying to substantiate a questionable hypothesis with marginal
data.”∗

7.6 R Supplement

7.6.1 Testing Hypotheses on Boundaries by Simulating
the Null Hypothesis

Suppose you want to test the hypothesis that the data set

> x = c(0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2,
+ 2, 2, 3, 4, 5)

comes from a negative binomial distribution against the null hypothesis that it is
Poisson distributed with λ = x̄ = 1.35.

A negative binomial fit (fit.nb=fitdistr(x,"negative binomial")) gives
a negative log-likelihood (-logLik(fit.nb)) of 31.38, while a Poisson fit
(fit.pois=fitdistr(x,"Poisson")) gives a negative log-likelihood of 32.12. The
Likelihood Ratio Test

> devdiff = 2 * (logLik(fit.nb) - logLik(fit.pois))
> pchisq(devdiff, df = 1, lower.tail = FALSE)

∗ Their original statement referred to whether to divide by n or n − 1 when estimating a variance.

“Bolker” — 1/9/2008 — 15:39 — page 259

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 259

says that the p-value is 0.22, but the corrected (χ̄2
1) test (pchibarsq(devdiff,df=1,

lower.tail=FALSE)) says that p is only 0.12—still not significant at p < 0.05 but
stronger evidence.

To evaluate the hypothesis more thoroughly by simulation, we will set up a
function with no arguments that (1) simulates Poisson-distributed values with the
appropriate mean; (2) fits a negative binomial and Poisson distributions (returning
NA if the negative binomial fit should happen to crash); and (3) returns the deviance
(twice the log-likelihood ratio):

> simulated.dev = function() {
+ simx = rpois(length(x), lambda = mean(x))
+ simfitnb = try(fitdistr(simx, "negative binomial"))
+ if (inherits(simfitnb, "try-error"))
+ return(NA)
+ simfitpois = fitdistr(simx, "Poisson")
+ dev = c(2 * (logLik(simfitnb) - logLik(simfitpois)))
+ }

Now simulate 3000 such values, throw out the NAs, and count the number of
replicates remaining:

> set.seed(1001)
> devdist = replicate(3000, simulated.dev())
> devdist = na.omit(devdist)
> nreps = length(devdist)

Calculate the proportion of simulated values that exceed the observed deviance: this
is the best estimate of the “true” p-value we can get.

> obs.dev = 2 * (logLik(fit.nb) - logLik(fit.pois))
> sum(devdist >= obs.dev)/nreps

[1] 0.06247912

So, in this case where we have two reasons—small sample size and a boundary
condition—to doubt the assumptions of Likelihood Ratio Test, the classical LRT
turns out to be nearly four times too conservative, while the boundary-corrected
version (χ̄2) is only twice as conservative as it should be.

7.6.2 Nonlinear Constraints by Penalization

Using penalties to implement an equality constraint or a nonlinear constraint (neither
of which can be done with built-in functions in R) is reasonably straightforward:
just add a penalty term to the negative log-likelihood. For best results, the penalty
should start small and increase with increasing violation of the constraint, to avoid
a discontinuity in the negative log-likelihood surface.

For example, to find the best shape and scale parameters for the fish survival data
while constraining the mean to equal a particular value target.mu (use the fixed=
argument in mle2 to specify the target value):

“Bolker” — 1/9/2008 — 15:39 — page 260

−1
0
1

260 • C H A P T E R 7

> weiblikfun3 = function(shape, scale, target.mu,
+ penalty = 1000) {
+ mu = meanfun(shape, scale)
+ NLL = -sum(dweibull(time, shape = shape, scale = scale,
+ log = TRUE))
+ pen = penalty * (mu - target.mu)ˆ2
+ NLL + pen
+ }
> w3 = mle2(weiblikfun3, start = list(shape = 0.9,
+ scale = 13), fixed = list(target.mu = 13))

If you have a problem where the function behaves badly (generates infinite or
NaN values) when the constraint is violated, then you don’t want to calculate the
likelihood for values outside the constraints. For example, if we had to restrict shape
to be greater than zero, we could use the following code snippet:

> if (shape > 0) {
+ NLL = -sum(dweibull(time, shape = shape, scale = scale,
+ log = TRUE))
+ pen = 0
+ } else {
+ NLL = -sum(dweibull(time, shape = 1e-04, scale = scale,
+ log = TRUE))
+ pen = penalty * shapeˆ2
+ }
> NLL + pen

In other words, if the shape parameter is beyond the constraints, then use the
likelihood value at the boundary of the feasible region and then add the penalty.

To use this constrained likelihood function to calculate confidence limits on the
mean, first calculate the critical value of the negative log-likelihood:

> critval = -logLik(w1) + qchisq(0.95, 1)/2

Second, define a function that finds the best fit for a specified value of the mean
and returns the distance above the critical value (use the data= argument in mle2 so
that you can try out different values of the penalty):

> pcritfun = function(target.mu, penalty = 1000) {
+ mfit = mle2(weiblikfun3, start = list(shape = 0.85,
+ scale = 12.4), fixed = list(target.mu = target.mu),
+ data = list(penalty = penalty))
+ lval = -logLik(mfit)
+ lval - critval
+ }

Third, define the range of mean values in which you think the lower confidence
limit lies and use uniroot to search within this range for the point where the negative
log-likelihood is exactly equal to the critical value:

> lowx = c(5, 13)
> penlower = uniroot(pcritfun, lowx)$root

“Bolker” — 1/9/2008 — 15:39 — page 261

−1
0
1

O P T I M I Z A T I O N A N D A L L T H A T • 261

Do the same for the upper confidence limit:

> upx = c(14, 30)
> penupper = uniroot(pcritfun, upx)$root

Try with a different value of the penalty:

> uniroot(pcritfun, lowx, penalty = 1e+06)$root

7.6.3 Numeric Derivatives

Analytical derivatives are always faster and more numerically stable, but R can com-
pute numeric derivatives for you. For example, to compute the derivatives of the
mean survival time at the maximum likelihood estimate:

> shape = coef(w1)["shape"]
> scale = coef(w1)["scale"]
> n1 = numericDeriv(quote(scale * gamma(1 + 1/shape)),
+ c("scale", "shape"))

attr(n1,"gradient")

(The quote inside the numericDeriv command prevents R from evaluating the
expression prematurely.) Of course, you can always do the same thing yourself by
hand:

> dshape = 1e-04
> x2 = scale * gamma(1 + 1/(shape + dshape))
> x1 = scale * gamma(1 + 1/shape)
> (x2 - x1)/dshape

7.6.4 Extracting Information from BUGS and CODA Output

R2WinBUGS returns its results as a bugs object, which can be plotted or printed. The
as.mcmc function in the emdbook package will turn this object into an mcmc.list
object for a multichain run or an mcmc object for a single-chain run. read.bugs in
the R2WinBUGS package does the same thing, but it requires an extra step. The mcmc
and mcmc.list objects are more flexible—they can be plotted and summarized in a
variety of ways (summary, HPDinterval, densityplot …; see the help for the coda
package). Once you ensure that the chains in a multichain R2WinBUGS run have
converged, you can use lump.mcmc.list in the emdbook package to collapse the
mcmc.list object so you can draw inferences from the combined chains.

Using the reefgoby.bugs object derived from the WinBUGS run on p. 257,
calculate the Bayesian credible interval:

> reefgoby.coda = as.mcmc(reefgoby.bugs)
> reefgoby.coda = lump.mcmc.list(reefgoby.coda)
> ci.bayes = HPDinterval(reefgoby.coda)["mean",]

“Bolker” — 1/9/2008 — 15:39 — page 262

−1
0
1

262 • C H A P T E R 7

Appendix: Trouble-Shooting Optimization

• Make sure you understand the model you’re fitting.
• Check starting conditions.
• Check convergence conditions.
• Adjust parscale/restart from previous best fit.
• Switch from constraints to transformed parameters.
• Adjust finite-difference tolerances (ndeps).
• Switch to more robust methods (Nelder-Mead, SANN), or even just alternate

methods.
• Stop with NAs: debug objective function, constrain parameters, put if clauses

in objective function.
• Results depend on starting conditions: check slices between and around

answers: multiple minima or just convergence problems?
• Convergence problems: try restarting from previous stopping point, resetting

parscale.
• Examine profile likelihoods.

“Bolker” — 1/9/2008 — 15:39 — page 263

−1
0
1

8 Likelihood Examples

This chapter combines all the methods we’ve considered so far to carry out more
complete analyses of some of the example data sets, specifically the data of Vonesh
and Bolker (2005) on tadpole predation, Wilson (2004) on goby survival, and
Duncan and Duncan (2000) on seed predation.

8.1 Tadpole Predation Experiments

8.1.1 Introduction

The goal of Vonesh and Bolker’s (2005) tadpole predation study was to quantify the
effects of prey size and density on predation rate, and to use the results along with
data on growth rates to understand the trade-offs between growth and survival. The
response variable in all of the data we will consider here is the number of tadpoles
killed by a given number or density of predators in a specified amount of time; the
covariates are changing (initial) number of tadpoles (which gives rise to a functional
response curve) and the size of tadpoles (estimating the presence of a “size refuge”).

The binomial distribution is an obvious choice as a stochastic model for predation
data, because the data are a discrete sample with a fixed upper limit. The challenge for
the frog predation data is to decide on deterministic models that adequately describe
the changes in predation probability with tadpole size and density.

8.1.2 Fitting the Size-Predation Curve

Vonesh and Bolker (2005) used the function

γ (S) = eε(φ−S)

1 + eβε(φ−S) (8.1.1)

to represent the dependence of predation probability γ (S) on prey size S (Figure 8.1).
The location parameter φ represents a baseline prey size at which 50% of tadpoles

are eaten; ε is the rate of change of mortality with size, controlling the steepness of
the curve; and β determines the asymmetry of the curve—the extent to which prey

“Bolker” — 1/9/2008 — 15:39 — page 264

−1
0
1

264 • C H A P T E R 8

403530252015105

0.0

0.2

0.4

0.6

0.8

1.0

Prey size

P
re

da
tio

n
ris

k

β = 1, ε = 1

β = 1.1, ε = 1

β = 1.1, ε = 5

β = 3 , ε = 1

Figure 8.1 Modified logistic function from Vonesh and Bolker (2005) (eq. 8.1.1). Location
parameter φ = 20 for all curves.

escape predation at both small and large sizes. If β = 1, then (8.1.1) describes a
logistic predation function that decreases (if β > 0) or increases (if β < 0) with size.

Some slightly tedious calculus establishes that the most vulnerable size is Ŝ =
φ + log (β − 1)/(εβ), which gives a predation probability

(β − 1)(−1/β)/(1 + 1/β − 1).

The peak predation probability depends only on β. If β < 1, then the function is
monotonically decreasing, with no peak. (To find Ŝ, solve dγ /dS = 0 for S, using
the quotient and chain rules to calculate the derivative, and remembering that in this
case you only need to find where the numerator is zero. Then plug Ŝ back into γ (S)
to find the predation probability.)

A more traditional function to describe a humped (unimodal) dependence of
predation on size is the generalized Ricker function (Persson et al., 1998),

y = b
(

S
a

exp

(
1 − S

a

))α

. (8.1.2)

“Bolker” — 1/9/2008 — 15:39 — page 265

−1
0
1

L I K E L I H O O D E X A M P L E S • 265

This function is basically a reparameterization of the Ricker function (y = axe−bx)
with an added power parameter α that can broaden or narrow the peak. When α = 1,
the generalized Ricker reduces to the standard Ricker function.

A third possibility is another modification of the Ricker, which I will call the
truncated Ricker: this function shifts the Ricker’s origin away from zero by a distance
t, and sets the function to zero below t so that it doesn’t become negative:

y =




0 if S < t

b
(

S−t
a e

1−
(

S−t
a

))
if S ≥ t.

(8.1.3)

All of these functions are phenomenological rather than mechanistic: while ecol-
ogists have ideas about the mechanisms leading to low predation at small size (poor
detectability and being of little value to the predator) and large size (escape speed
and predator gape limitation), they don’t know enough about these mechanisms to
guess at an appropriate functional form.

Load the data and attach it:

> data(ReedfrogSizepred)
> attach(ReedfrogSizepred)

Define the functions (modlogist for the modified logistic, powricker and tricker
for the generalized (power) and truncated Ricker):

> modlogist = function(x, eps, beta, phi) {
+ exp(eps * (phi - x))/(1 + exp(beta * eps * (phi -
+ x)))
+ }
> powricker = function(x, a, b, alpha) {
+ b * (x/a * exp(1 - x/a))ˆalpha
+ }
> tricker = function(x, a, b, t, min = 1e-04) {
+ ifelse(x < t, min, b * ((x - t)/a * exp(1 - (x -
+ t)/a)))
+ }

Set up negative log-likelihood functions for each model, including one for the
modified logistic that uses a beta-binomial distribution (p. 126) of numbers killed
(NLL.modlogist.bb, with overdispersion parameter θ) instead of a binomial in order
to account for possible overdispersion.∗

> NLL.modlogist = function(eps, beta, phi) {
+ p.pred = modlogist(TBL, eps, beta, phi)

∗ A quick and dirty way to check for overdispersion is to compute the residual deviance, which is −2×
the log-likelihood for the most complex model you fit. For sufficiently large data sets the scaled residual
deviance should be χ2 distributed with degrees of freedom equal to the residual degrees of freedom.
However, Venables and Ripley (2002, p. 208) warn that this estimate can be misleading for moderate-size
data sets (e.g., expected Poisson means less than 5 or expected number of successes in a binomial trial
(Np) less than 10). For this data set, the quick and dirty approach suggests that there is overdispersion,
but the likelihood fit below shows more accurately that there isn’t.

“Bolker” — 1/9/2008 — 15:39 — page 266

−1
0
1

266 • C H A P T E R 8

+ -sum(dbinom(Kill, size = 10, prob = p.pred,
+ log = TRUE))
+ }
> NLL.modlogist.bb = function(eps, beta, phi, theta) {
+ p.pred = modlogist(TBL, eps, beta, phi)
+ -sum(dbetabinom(Kill, size = 10, prob = p.pred,
+ theta = theta, log = TRUE))
+ }
> NLL.powricker = function(a, b, alpha) {
+ p.pred = powricker(TBL, a, b, alpha)
+ -sum(dbinom(Kill, size = 10, prob = p.pred,
+ log = TRUE))
+ }
> NLL.tricker = function(a, b, t) {
+ p.pred = tricker(TBL, a, b, t)
+ -sum(dbinom(Kill, size = 10, prob = p.pred,
+ log = TRUE))
+ }

Eyeballing the data (Figure 8.2) gives approximate starting parameters for the
modified logistic of {φ = 15, β = 1.1, ε = 5} (compare Figure 8.1, and use φ to
shift the peak to approximately S = 15). I’ll start the beta-binomial version at the
best-fit parameters for the binomial model and add θ = 1000 (representing very
little overdispersion—the beta-binomial becomes binomial as θ → ∞), setting the
parscale control option to let R know that we expect this parameter to be larger
than the others. (In an initial exploration with worse starting parameter guesses, I
also played around with options like method="Nelder-Mead" and setting the maxit
control parameter larger in order to get the optimization to work.)

> FSP.modlogist = mle2(NLL.modlogist, start = list(eps = 5,
+ beta = 1.1, phi = 15))
> FSP.modlogist.bb = mle2(NLL.modlogist.bb, start = as.list
+ (c(coef(FSP.modlogist), list(theta = 1000))),
+ control = list(parscale = c(1, 1, 1, 1000)))

The beta-binomial fit estimates θ = 6865, evidence that the beta-binomial model is
not really necessary; the decrease in negative log-likelihood is only 0.003.

We hardly need to run the likelihood ratio test (anova(FSP.modlogist,FSP.
modlogist.bb)) or the AIC calculation (AICtab(FSP.modlogist,FSP.modlogist.
bb)). Even dividing the p-value for the Likelihood Ratio Test by 2 to account
for the fact that the null hypothesis is on the boundary (i.e., the beta-binomial
model reduces to the binomial model when θ → ∞) makes no difference to the
conclusions.

If we try to get confidence limits on θ , however, we run into trouble:

> confint(FSP.modlogist.bb, which = "theta")

Profiling has found a better solution, so original
fit had not converged:
New minimum= 12.13806

“Bolker” — 1/9/2008 — 15:39 — page 267

−1
0
1

L I K E L I H O O D E X A M P L E S • 267

0

0 10 20 30 40

2

4

6

8

Tadpole size
(total body length in mm)

N
um

be
r

ki
lle

d

modified logistic

generalized Ricker

truncated Ricker

modified logistic #2

Figure 8.2 Size-predation relationship for Hyperolius spinigularis tadpoles: modified logistic,
generalized and truncated Ricker fits.

Parameter values:
eps beta.beta phi theta

0.3577257 8.9873023 9.7457033 3405.1429647
Error in onestep(step) : try restarting fit from values above

Refitting the parameters from this new starting point (using modlogist instead
of modlogist.bb, and extending the maximum number of iterations):

> FSP.modlogist2 = mle2(NLL.modlogist, start = list
+ (eps = 0.357, beta = 8.99, phi = 9.75),
+ control = list(maxit = 1000))

The parameters of this fit are quite different:

> rbind(coef(FSP.modlogist), coef(FSP.modlogist2))

eps beta phi
[1,] 0.4042309 2.470003 12.908932
[2,] 0.3045399 67.080841 9.109064

and the negative log-likelihood is slightly lower (11.77 vs. 12.15). You can
use plot(calcslice(FSP.modlogist,FSP.modlogist2)) to calculate and plot the

“Bolker” — 1/9/2008 — 15:39 — page 268

−1
0
1

268 • C H A P T E R 8

TABLE 8.1

AIC df Weight

Modified logistic (fit 2) 29.5 3 0.350

Truncated Ricker 29.9 3 0.297

Modified logistic (fit 1) 30.3 3 0.238

Generalized Ricker 31.8 3 0.115

negative log-likelihoods along a “slice” through parameter space, showing that the
two different fits probably do represent distinct local minima (Figure 7.10).

However, despite fitting the data a little better the fit seems unrealistic, spiking
up abruptly to a high predation rate and then dropping exponentially (Figure 8.2).

Fitting the generalized and truncated Ricker models:

> FSP.powricker = mle2(NLL.powricker, start = list(a = 0.4,
+ b = 0.3, alpha = 1))
> FSP.tricker = mle2(NLL.tricker, start = list(a = 0.4,
+ b = 0.3, t = 8))

The confidence limits on α for the generalized Ricker (confint(FSP.powricker,
parm="alpha")) are {7.18, 31.69}—the standard Ricker (α = 1) is clearly not
competitive.

Calculating AIC values with AICtab, we get the results presented in Table 8.1.
None of the models is nested (indeed, all have the same number of parameters),
and all the fits are (almost) within 2 log-likelihood units of each other. Burnham
and Anderson would recommend using the weighted predictions of all the models
in subsequent analyses, but in this case (where we are just trying to gain qualitative
insights into life-history trade-offs) this extra complication feels unnecessary. In this
case, I would be willing to override the narrow definition of “best fit” and discard
the first two models because I believe that predation risk is going to increase sharply
as tadpoles grow bigger than 9 mm, as suggested by the truncated Ricker or by the
second fit to the modified logistic. I might even choose the generalized Ricker, the
worst-fitting model, over the first fit of the modified logistic, because the generalized
Ricker is better established in the literature. The lesson here is that the sparser the
data, the more you have to use your judgment in selecting a model—whether or not
you are explicitly Bayesian.

8.1.3 Fitting the Functional Response Curve

The other data set we will examine from Vonesh and Bolker (2005) is the functional
response experiment, which varied the density of tadpoles (with total body length
≈ 12.8 mm). As many as 67% (10/15) of the tadpoles in an experiment were eaten,
suggesting that we should allow for the effect of depletion over the course of the
experiment. The standard model for saturating functional responses is the Holling
type II response, N = aPTN0/(1 + ahN0), where N is the number eaten, N0 is the

“Bolker” — 1/9/2008 — 15:39 — page 269

−1
0
1

L I K E L I H O O D E X A M P L E S • 269

starting number/density, a and h are baseline attack rate and handling time, P is the
predator number or density, and T is the total exposure time.∗ The Rogers random-
predator equation, which allows for depletion, is

N = N0(1 − ea(Nh−PT)) (8.1.4)

where P is the number of predators, and T is the total time of exposure. (The predator-
exposure factor PT would just be multiplied by the Holling equation.)

The Rogers random-predator equation (8.1.4) contains N on both the left- and
right-hand sides of the equation; traditionally, one has had to use iterative numerical
methods to compute the function (Vonesh and Bolker, 2005). However, the Lam-
bert W function (Corless et al., 1996), which gives the solution to the equation
W(x)eW(x) = x, can be used to compute the Rogers equation efficiently: in terms of
the Lambert W the Rogers equation is

N = N0 − W(ahN0e−a(PT−hN0))
ah

. (8.1.5)

Implement this equation (using the lambertW function in the emdbook package) in R,
as well as the Holling type II function for comparison:

> rogers.pred = function(N0, a, h, P, T) {
+ N0 - lambertW(a * h * N0 * exp(-a * (P * T -
+ h * N0)))/(a * h)
+ }
> holling2.pred = function(N0, a, h, P, T) {
+ a * N0 * P * T/(1 + a * h * N0)
+ }

Load and attach the data:

> data(ReedfrogFuncresp)
> attach(ReedfrogFuncresp)

Write the likelihood functions:

> NLL.rogers = function(a, h, T, P) {
+ if (a < 0 || h < 0)
+ return(NA)
+ prop.exp = rogers.pred(Initial, a, h, P, T)/Initial
+ -sum(dbinom(Killed, prob = prop.exp, size = Initial,
+ log = TRUE))
+ }
> NLL.holling2 = function(a, h, P = 1, T = 1) {
+ -sum(dbinom(Killed, prob = a * T * P/(1 + a *
+ h * Initial), size = Initial, log = TRUE))
+ }

∗ P and T are usually ignored in the Holling equation, giving the function units of “number eaten
per predator per unit time,” but we include them here for consistency with the Rogers equation.

“Bolker” — 1/9/2008 — 15:39 — page 270

−1
0
1

270 • C H A P T E R 8

In the Rogers likelihood function I constrained the range of the function by simply
returning NA if a < 0 or h < 0, rather than using constrained optimization; if you are
not using L-BFGS-B, this shortcut sometimes works.

What about initial values? Eyeballing the data (Figure 8.3), we see the ini-
tial slope of the functional response curve is about 0.5 (50% of tadpoles are
killed at low densities) and the asymptote is about 50. These values correspond
to aPT = 0.5 or a = 0.5/(PT) ≈ 0.012 and PT/h = 50 or h ≈ 0.84. These values
will be overestimates, but still usable, as starting points for the Rogers estimation as
well:

> FFR.rogers = mle2(NLL.rogers, start = list(a = 0.012,
+ h = 0.84), data = list(T = 14, P = 3))
> FFR.holling2 = mle2(NLL.holling2, start = list(a = 0.012,
+ h = 0.84), data = list(T = 14, P = 3))

Running AICtab(FFR.rogers,FFR.holling2,weights=TRUE) shows that the
Holling type II is a marginally better fit (0.3 log-likelihood unit difference):

AIC df Weight

Holling type II 97.4 2 0.536
Rogers 97.7 2 0.464

The best-fit Holling and Rogers curves are practically indistinguishable in the plot
(Figure 8.3) as well: However, we strongly prefer the Rogers curve on biological
grounds, because we know that predators are depleting tadpole prey significantly
over the course of the experiment. The “Rogers (no depletion)” curve in Figure 8.3
shows that depletion decreases the effect of predation by about two tadpoles across
the board—as much as a 40% effect at low numbers. It will be important to take
depletion into account when we compare experiments with different exposure times
and predator densities below.

a h

Rogers 0.0171 0.814
Holling type II 0.0126 0.704

Taking depletion into account leads to a 36% increase in the estimated attack rate
and a 16% increase in the estimated handling time.

8.1.4 Combined Effects of Size and Density

Vonesh and Bolker (2005) combined the effects of size and density by algebraically
combining the parameters of the separate size and density fits. Here, we will instead
combine all the data in a single likelihood function, estimating the functional response
parameter (h) and the size-dependent attack rate parameters (α, β, and ε) at the same
time.∗The only thing we need to sort out is that the experiments were run in different
volumes, as well as with different numbers of predators and for different lengths of
time. The functional response experiments were run in 300-L tanks (1.2 × 0.8 × 0.4 m

∗ It would be realistic to make the handling time vary as a function of size as well (Persson et al.,
1998), but unfortunately we don’t have enough data.

“Bolker” — 1/9/2008 — 15:39 — page 271

−1
0
1

L I K E L I H O O D E X A M P L E S • 271

806040200 100

0

5

10

15

20

25

30

35

Initial

K
ill

ed

Rogers

Rogers (no depletion)

Holling

Figure 8.3 Functional response fit to frog predation data. Both Holling type II and Rogers
random-predator fits are shown, but are barely distinguishable. “Rogers (no depletion)” curve
plots the expected functional response from the estimated Rogers parameters in the absence
of depletion.

high) filled to 220 L; the size experiments were run in 35-L plastic tubs (0.32 m in
diameter) filled to 25 L. Based on the way that predators foraged, Vonesh and Bolker
(2005) assumed that predation success depended on the area of the foraging arena
(1.2 · 0.8 = 0.96 m2 vs. π ((0.32)/2)2 = 0.080 m2) rather than its volume. To make
the predation probabilities match, we have to divide the predator numbers by area.∗It
is convenient to collect the auxiliary parameters for each experiment (number of
predators, area, exposure time, etc.) in a couple of lists:

> xpars.Funcresp = list(T = 14, P = 3, vol = 220,
+ area = 1.2 * 0.8, size = 12.8)
> xpars.Sizepred = list(T = 3, P = 2, vol = 25, area = pi *
+ 0.16ˆ2, initprey = 10)

Put together a combined data set representing the initial numbers, size, number
killed, predator density, and exposure time for both experiments, using rep to repeat
values where necessary:

> n.Funcresp = nrow(ReedfrogFuncresp)
> n.Sizepred = nrow(ReedfrogSizepred)

∗ But not the prey numbers—figuring this out reminded me of an old riddle, “If a hen and a half lays
an egg and a half in a day a half, how many eggs can one hen lay in a day?”

“Bolker” — 1/9/2008 — 15:39 — page 272

−1
0
1

272 • C H A P T E R 8

> combInit = c(ReedfrogFuncresp$Initial,
+ rep(xpars.Sizepred$initprey, n.Sizepred))
> combSize = c(rep(xpars.Funcresp$size, n.Funcresp),
+ ReedfrogSizepred$TBL)
> combKilled = c(ReedfrogFuncresp$Killed,
+ ReedfrogSizepred$Kill)
> combP = rep(c(xpars.Funcresp$P/xpars.Funcresp$area,
+ xpars.Sizepred$P/xpars.Sizepred$area), c(n.Funcresp,
+ n.Sizepred))
> combT = rep(c(xpars.Funcresp$T, xpars.Sizepred$T),
+ c(n.Funcresp, n.Sizepred))

Write a combined function for the expected proportion eaten, computing the
attack rate a from the parameters ε, β, and φ and combining it with the handling
time h:

> prop.eaten = function(N0, S, h, P, T, eps, beta,
+ phi, minprop = .Machine$double.eps) {
+ a = modlogist(S, eps = eps, beta = beta, phi = phi)
+ N.eaten = rogers.pred(N0, a = a, h = h, P = P,
+ T = T)
+ prop = N.eaten/N0
+ prop[prop <= 0] = minprop
+ prop[prop >= 1] = 1 - minprop
+ prop
+ }

The value .Machine$double.eps is a built-in constant corresponding to the smallest
difference between numeric values your computer can keep track of without rounding
(it is 2.22 × 10−16 on the machine I am using). Using minprop to adjust values that
are ≤ 0 or ≥ 1 takes care of the cases where the rogers.pred function returns an
expected proportion eaten slightly less than zero, or exactly equal to 1 (which causes
an infinite negative log-likelihood if no tadpoles are eaten); these minor errors happen
because of round-off error.

A negative log-likelihood function incorporating the proportion eaten:

> NLL.rogerscomb = function(a, h, eps, beta, phi, T = combT,
+ P = combP) {
+ if (h < 0)
+ return(NA)
+ prob = prop.eaten(combInit, combSize, h, P, T,
+ eps, beta, phi)
+ dprob = dbinom(combKilled, prob = prob, size =
+ combInit, log = TRUE)
+ -sum(dprob)
+ }

Set the starting values by combining h from the Rogers fit (which has to be put
inside its own list) with the attack rates from the size-dependence fit (which will be
a slight underestimate since they don’t incorporate the effects of handling time):

“Bolker” — 1/9/2008 — 15:39 — page 273

−1
0
1

L I K E L I H O O D E X A M P L E S • 273

> startvals = c(list(h = coef(FFR.rogers)["h"]),
+ as.list(coef(FSP.modlogist)))

Finding the optimum, avoiding the alternate fit (fit 2 above) when profiling,
and avoiding overflow errors is quite finicky in this case. The easiest way to avoid
the alternate fit is to restrict β, but using the L-BFGS-B optimizer leads to lots
of headaches with NAs being produced in the Lambert W function. I used a two-
stage method—first, optimizing with method="Nelder-Mead" and using confint
(FPcomb,method="quad") to get approximate confidence limits:

> FPcomb = mle2(NLL.rogerscomb, start = startvals,
+ method = "Nelder-Mead")
> confint(FPcomb, method = "quad")

Then I used slightly larger values for the upper and lower bounds to refit the model
and get more precise confidence limits (confint must use the same optimization rules
that were used in the original fit). Getting this to work took some frustrating trial
and error, including incorporating debugging statements like

> cat(h, eps, beta, phi, "\n")

or

> if (any(!is.finite(prob))) cat("NAs:", h, eps, beta,
+ phi, "\n")

or

> if (any(!is.finite(dprob))) {
+ browser()
+ }

into the NLL.rogerscomb function to track down where the problems were occur-
ring in order to set bounds that would prevent NAs. cat prints a list of variables to
the screen in the middle of a function evaluation (“\n” specifies a new line), while
browser stops the function and lets you examine the values of different variables. In
the course of this exploration I also went back and incorporated the minimum and
maximum bounds in prop.eaten, which I had initially left out.

> FPcomb = mle2(NLL.rogerscomb, start = startvals,
+ method = "L-BFGS-B", lower = c(0.7, 0.5, 1, 14),
+ upper = c(1.8, 2.25, 2, 20), control = list(parscale =
+ c(1, 1, 1, 10)))
> FPcomb.ci = confint(FPcomb)

What is the combined estimate of the proportion eaten under the conditions of the
size-predation experiment (12.8 mm body length, 2 predators in an area of 0.08 m2

for 3 days)? How well does it match the estimate based only on the size-predation
experiment? (That is, does combining the data change the baseline estimate from the
size-predation experiment?)

Figure 8.4 is mildly alarming at first sight, showing that the estimate of the size
refuge changes markedly when we incorporate the data from the functional response
experiment. This suggests a major difference between the two experiments. A closer

“Bolker” — 1/9/2008 — 15:39 — page 274

−1
0
1

274 • C H A P T E R 8

10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

Total body length

P
ro

po
rt

io
n

ea
te

n
size−pred.

combined

Figure 8.4 Observed number eaten as a function of size; predicted values from size-predation
experiment only and from all data combined.

look, however, shows that the major difference between the results falls in a region
where we have no data, between 12.8 and 21 mm body length. The slightly higher
predation rate in the functional response experiment (even corrected for predator
exposure) pulls the curve up.

How would we go about quantifying the uncertainty in the two curves and
convincing ourselves that they’re not (statistically) significantly different?

Calculating the estimates of the proportion eaten at size 12.8 mm from the size-
predation fit alone:

> c1 = coef(FSP.modlogist)
> FSP.expprop.mean = modlogist(12.8, c1["eps"], c1["beta"],
+ c1["phi"])

and from the combined fit:

> c2 = coef(FPcomb)
> FP.expprop.mean = prop.eaten(N0 = 10, S = 12.8, c2["h"],
+ P = 2/0.08, T = 3, eps = c2["eps"], beta = c2["beta"],
+ phi = c2["phi"])

The estimated predation proportions are 0.49 for the size-predation experiment alone
and 0.7 for the combined data—a difference that certainly might be biologically
significant, if it were statistically significant.

As discussed in Chapter 7, population projection intervals are a simple way to
calculate the confidence intervals of a quantity of interest that is not a parameter in

“Bolker” — 1/9/2008 — 15:39 — page 275

−1
0
1

L I K E L I H O O D E X A M P L E S • 275

the model. Using mvrnorm to generate 5000 values from the sampling distribution
of the parameters and calculating the 95% population projection intervals of the
size-predation data:

> set.seed(1001)
> FSP.expprop.pars = mvrnorm(5000, mu = c1,
+ Sigma = vcov(FSP.modlogist))
> FSP.expprop.val = numeric(5000)
> for (i in 1:5000) {
+ FSP.expprop.val[i] = modlogist(12.8, FSP.expprop.pars
+ [i, 1], FSP.expprop.pars[i, 2], FSP.expprop.pars
+ [i, 3])
+ }
> FSP.expprop.ppi = quantile(FSP.expprop.val, c(0.025,
+ 0.975))

Doing the same thing for the combined fit:

> FP.expprop.pars = mvrnorm(5000, mu = c2,
+ Sigma = vcov(FPcomb))
> FP.expprop.val = numeric(5000)
> for (i in 1:5000) {
+ FP.expprop.val[i] = prop.eaten(N0 = 10, S = 12.8,
+ P = 2/0.08, T = 3, h = FP.expprop.pars[i,
+ "h"], eps = FP.expprop.pars[i, "eps"],
+ beta = FP.expprop.pars[i, "beta"],
+ phi = FP.expprop.pars[i, "phi"])
+ }
> FP.expprop.ppi = quantile(FP.expprop.val, c(0.025,
+ 0.975))

Mean Low High

Size-predation 0.494 0.397 0.852
Combined 0.702 0.641 0.992

The results show that the uncertainty in the estimates is large enough that at least the
confidence limits of the size-predation estimates (0.4, 0.85) overlap with the estimate
from the combined data (0.7), if not vice versa.

Vonesh and Bolker (2005) took results like these (although they did not try fitting
the combined data as we have done here) and used them together with size-dependent
growth rate estimates from a growth experiment to simulate the survival of tadpoles
hatching at different sizes. They found that because smaller-starting tadpoles grew
faster through the window of vulnerability between 10 and 20 mm, their overall
survival was comparable to tadpoles that hatched at a larger size.

This analysis suggests several more questions:

• Because it must compromise between two sets of data with slightly different
survival rates, the fit of the combined curve to the size-predation data is slightly
worse than the fit of the size-predation curve itself (Figure 8.4). We initially
rejected the need for a beta-binomial model to account for overdispersion, but
the larger deviations suggest that it might be worth testing again.

“Bolker” — 1/9/2008 — 15:39 — page 276

−1
0
1

276 • C H A P T E R 8

• Following Vonesh and Bolker (2005), we assumed that predator efficiency
scaled with area, not volume; this approach may have understated the predator
threat in the functional response experiment, leading to an inflation of the
expected proportion eaten per unit of exposure. The total predator exposure
(P × T) in the functional response experiment was 14 × 3 = 42 predator-days,
in contrast to 3 × 2 = 6 predator-days for the size-predation experiment. If
we calculate PT/area for each experiment and take the ratio, we get a relative
risk of 43.8/74.6 = 0.6; overall predator pressure per unit area was lower in
the functional response experiment. On the other hand, repeating the same
calculation but scaling by volume instead gives a risk ratio of 0.19/0.24 =
0.8—less difference, leading to less inflation of the per-predator risk in the
functional response. We could adjust the model by adding a scaling factor to
account for the differences between the experiments, and tentatively interpret
it in terms of the geometry of the foraging arena (Petersen et al., 1999). While
we clearly don’t have enough data to make a decision just from these two
experiments, the discrepancy between the results of the two experiments does
open up some interesting questions.

8.2 Goby Survival Analysis

Next, we will take a look at the effects of density and “quality” (spatial variation
in habitat quality correlated with natural rates of immigration) on the survival of
the small marine gobies Elacatinus evelynae and E. prochilos in field experiments
(Wilson, 2004).

The questions here are straightforward: How fast do fish die (or disappear) at
different levels of density and quality? Do quality, density, or their interaction (i.e.,
an effect of quality on the density-dependent mortality rate) have significant effects
on mortality?

As a reminder, the data contain information on the survival of marine gobies in
experiments where ambient density was manipulated on coral heads with different
background settlement rates. Settlement rates were suspected to be correlated with
some unknown aspect of environmental quality, such as flow patterns or availabil-
ity of refuges (Wilson and Osenberg, 2002), which revealed itself through lower
mortality rates (Figure 8.6).

8.2.1 Preliminaries

Load and attach the data:

> library(emdbookx)
> data(GobySurvival)
> attach(GobySurvival)

In the data, time starts from day 1 (the day the fish were put on the reef) and runs
until day 12; any fish that survived past the end of the experiment (i.e., that were
still present on day 12) were given a “last day seen” (d2) value of 70 in the original

“Bolker” — 1/9/2008 — 15:39 — page 277

−1
0
1

L I K E L I H O O D E X A M P L E S • 277

data set. For the following analysis, time should start from zero and run to ∞ (the
cumulative distribution functions we will be using can handle infinite values), so we
will subtract 1 from d1 and d2 and set the ending value of d2 to Inf:

> day1 = d1 - 1
> day2 = ifelse(d2 == 70, Inf, d2 - 1)

As discussed in Chapter 7, we will use the Weibull distribution to fit the data,
allowing for the observed decrease in mortality rate over time. We are interested
in whether mortality is density-dependent, and whether quality affects either the
density-independent or the density-dependent mortality rate. We may need to allow
for the possibility that different experiments show different results (this data set
combines the results from five experiments run over the course of three years).

The most complete model of the survival time of an individual fish in experiment
x with density (number of neighboring fish) d and quality (background settlement
rate) q would be

T ∼ Weibull(ax(d, q), sx(d, q))

ax(d, q) = exp (αa,x + βa,x · q + (γa,x + δa,x · q)d)

sx(d, q) = exp (αs,x + βs,x · q + (γs,x + δs,x · q)d).

(8.2.1)

In other words, we are fitting the shape and scale parameters on the log scale. For
both the (log) shape and the scale parameter we are allowing for a baseline or inter-
cept value (α), a linear effect of quality (β), a linear effect of density (γ), and an
interaction between density and quality (δ)—i.e., a linear effect of quality on the
density-dependent mortality coefficient. As indicated by the x in the subscripts, we
are also allowing each parameter to be different in each experiment, for a total
of 40 (!) parameters. Given that we have only 369 observations, unevenly divided
among experiments (with as few as 11 observations in an experiment), and that each
observation tells us fairly imprecisely when a fish disappeared, this model is certainly
more complex than we can hope to fit.

We might try anyway, fitting all possible submodels and using model-selection
rules to decide which pieces really belong in the model,∗ but even so there would
be far too many submodels to consider. There are two possibilities for the intercept
parameter α (the same for all experiments or different among experiments), and
three for each of the other parameters β, γ , and δ (zero for all experiments, meaning
no effect of density or quality or their interaction; nonzero but the same for all
experiments; or different for different experiments). There are 34 possible models for
shape and 34 for scale,† or 342 = 1156 models in total, even for this moderate-sized
problem!

We must make some a priori decisions about which parameters to drop—
decisions made harder by the difficulty of graphically representing the dependence
of survival on continuous covariates. Figure 8.5 shows the effects of the shape

∗ The statistical equivalent of the advice of a crusading abbot who when asked how to tell the
innocents and the heretics apart said, “Kill them all, God will recognize his own.”

† You might expect 2 × 3 × 3 × 3 = 54 models for each parameter of the Weibull, but there are a few
combinations that don’t make sense—specifically, fitting the δ (density-quality interaction parameter) if
either the density or quality effect is set to zero.

“Bolker” — 1/9/2008 — 15:39 — page 278

−1
0
1

278 • C H A P T E R 8

Time

F
ra

ct
io

n
su

rv
iv

in
g

0.0 0.5 1.0

0.1

0.2

0.5

1.0

shape=1

shape=0.5

shape=0.2

scale=0.5

Time

0.0 0.5 1.0

scale=0.5

scale=1

scale=2

shape=0.5

a b

Figure 8.5 Comparisons of Weibull distributions with differing scale and shape parame-
ters. The R commands to plot the curves are variations on curve(pweibull(x,shape=...,
scale=...,lower.tail=FALSE)).

and scale parameter on the Weibull distribution. Comparing these differences to
the survival curves in Figure 8.6 suggests that the scale, but not the shape, of the
Weibull distribution varies between density and quality categories. Figure 8.6 also
suggests an interaction between quality and density categories, because survival in the
low-quality/high-density category is considerably below that in any other category.
Figure 8.6 does not separate the results of different experiments. Drawing this figure
to check might be worth while, but for now we will assume that the only possible
difference among experiments is in the baseline scale parameter, not in the effects of
density and quality. Wilson (2004) used a standard survival analysis to demonstrate
nonsignificant interactions between experiment and density/quality, supporting this
assumption.

These simplifications reduce our most complex model to

T ∼ Weibull(a, sx(d, q))

sx(d, q) = exp (αs,x + βs · q + (γs + δs · q)d),
(8.2.2)

with nine parameters (five for treatment effects on scale, three for the effects of density
and quality and their interaction on scale, and one for the shape parameter). Our
suite of models reduces to 10. If we denote the simplest model (a single shape and
scale parameter) by 0; the presence of treatment effects (αi
= αj for at least one pair

“Bolker” — 1/9/2008 — 15:39 — page 279

−1
0
1

L I K E L I H O O D E X A M P L E S • 279

403020100

0.1

0.2

0.5

1.0

Time (days)

P
ro

po
rt

io
n

of
 c

oh
or

t s
ur

vi
vi

ng
high quality/high density

low quality/low density

high quality/low density

low quality/high density

Figure 8.6 Goby survival curves by quality and density categories (above/below median
values), based on mean survival time (d1+d2)/2.

of experiments) by x; a quality effect (βs
= 0) by q; a density effect (γs > 0) by d;
and a quality-density interaction (δs > 0) by i, then our remaining models with their
numbers of parameters are

0 (2) x (6) xq (7) xqd (8) xqdi (9)
q (3) xd (7) qdi (5)
d (3) qd (4)

(These are all combinations of x, q, d, and i, with the restriction that i cannot be
included without both q and d.) If we wanted to allow the shape parameter to vary
with quality and density but not experiment, we would have a most-complex model
with 12 parameters and a total of 40 (4 × 10) model possibilities.

Here is the most complex model, which fits scale and shape parameters that
differ with quality, density, and their interaction:

> NLL.GS.xqdi = function(lscale0, lscale.q, lscale.d,
+ lscale.i, lscale.x2, lscale.x3, lscale.x4, lscale.x5,
+ lshape) {
+ lscalediff = c(0, lscale.x2, lscale.x3, lscale.x4,
+ lscale.x5)
+ scale = exp(lscale0 + lscalediff[exper] + lscale.q *
+ qual + (lscale.d + lscale.i * qual) * density)
+ shape = exp(lshape)
+ -sum(log(pweibull(day2, shape, scale) - pweibull(day1,
+ shape, scale)))
+ }

“Bolker” — 1/9/2008 — 15:39 — page 280

−1
0
1

280 • C H A P T E R 8

The only unusual thing here is that we’ve parameterized the difference among exper-
iments so that the baseline parameter (lscale0) represents the log of the scale
parameter (at density = 0 and quality = 0) in experiment 1, while the experiment
parameters (lscale.x2, etc.) represent the differences between experiment 1 and
the other experiments: This parameterization, which is consistent with the way that
other functions in R define parameters, makes it possible to test the hypothesis that
all experiments are the same by setting lscale.x2 and the other experiment param-
eters to zero. The differences among parameters are indexed by exper and added to
the baseline value along with the effects of density and quality.

Since we don’t know exactly when (between day1 and day2) a given fish disap-
peared, we calculate the probability that it disappeared somewhere between day1
and day2 taking the difference between the probability that it disappeared before
day2 (pweibull(day2,...)) and the probability that it disappeared before day1
(pweibull(day1,...)); we take the log only after calculating the difference.

What about starting values for this model? The mean of the Weibull distribution
with shape a and scale s is s�(1 + 1/a), which for an exponential (a = 1) is equal to
s. We’ll start log (s) from the log of the overall mean survival time (calculated from
d1 and d2 rather than day1 and day2 because day2 contains infinite values that will
mess up the mean calculation), and log (a) from 0, which represents an exponential
distribution. Since the rest of the parameters represent differences from the baseline
case, we’ll try starting them all from zero.

> totmeansurv = mean((d1 + d2)/2)
> startvals.GS = list(lscale0 = log(totmeansurv),
+ lscale.x2 = 0, lscale.x3 = 0, lscale.x4 = 0,
+ lscale.x5 = 0,
+ lscale.q = 0, lscale.d = 0, lscale.i = 0, lshape = 0)
> GS.xqdi = mle2(NLL.GS.xqdi, startvals.GS)

Looking at the estimates of the parameters and their approximate p-values:

> summary(GS.xqdi)

Maximum likelihood estimation

Call:
mle2(minuslogl = NLL.GS.xqdi, start = startvals.GS)

Coefficients:
Estimate Std. Error z value Pr(z)

lscale0 1.9506010 0.7450665 2.6180 0.008844 **
lscale.q -0.0137277 0.0993038 -0.1382 0.890051
lscale.d -0.2198680 0.0973726 -2.2580 0.023945 *
lscale.i 0.0126382 0.0130451 0.9688 0.332644
lscale.x2 -1.0707399 0.5000217 -2.1414 0.032243 *
lscale.x3 -0.7677602 0.3830876 -2.0041 0.045055 *
lscale.x4 -0.1315136 1.0460335 -0.1257 0.899949
lscale.x5 0.0048526 0.9516556 0.0051 0.995932
lshape -1.0016188 0.0944042 -10.6099 < 2.2e-16 ***

“Bolker” — 1/9/2008 — 15:39 — page 281

−1
0
1

L I K E L I H O O D E X A M P L E S • 281

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-2 log L: 886.122

From this summary, it appears that there may be an effect of experiment
(experiments 2 and 3 both show significantly shorter survival times than experi-
ment 1), an effect of density, and a shape parameter that is significantly less than 1
(log (a) < 0)—that is, per capita mortality declines significantly with time.

In a stepwise analysis, we would continue by dropping the interaction term
from the model (dropping the parameters for experiments 4 and 5 doesn’t really
make sense, since they are part of the overall difference among experiments). One
shortcut for dropping terms from an mle2 fit, rather than writing another likelihood
function that is missing one term, is to use the fixed= argument to set a subset of
the parameters to zero. For example, to drop the interaction term from the model:

> GS.xqd = mle2(NLL.GS.xqdi, startvals.GS,
+ fixed = list(lscale.i = 0))

We can use the Likelihood Ratio Test on particular series of nested hypotheses to
test specific conclusions. For example, we might be most interested in testing whether
quality and density have an effect. We attempt to drop the interaction term first,
then quality, then density. Because the differences among experiments are potentially
important, and an unavoidable part of the experimental design, we leave them in the
model. Therefore we want to test the sequence of models xqdi → xqd → xd → x.

Fitting the remaining two models in the sequence:

> GS.xd = mle2(NLL.GS.xqdi, startvals.GS, fixed = list
+ (lscale.i = 0, lscale.q = 0))
> GS.x = mle2(NLL.GS.xqdi, startvals.GS, fixed = list
+ (lscale.i = 0, lscale.q = 0, lscale.d = 0))

Applying anova to run the Likelihood Ratio Test:

> anova(GS.xqdi, GS.xqd, GS.xd, GS.x)

Tot Df Deviance Chisq Df Pr(>Chisq)
1 9 886.12
2 8 887.04 0.9139 1 0.33907
3 7 890.77 3.7384 1 0.05318 .
4 6 895.30 4.5210 1 0.03348 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This analysis confirms the results of summary on the most complex model to some
extent. It finds that the effect of the interaction (model 1 vs. 2) is insignificant and
the effect of density is significant at p = 0.03 (model 3 vs. 4). The effect of quality
(when added to a model that already accounts for density) is weakly significant.
The parameter values (coef(GS.xqd)) show the positive effect of quality (0.076) to
be about half the negative effect of density (− 0.149) on the log scale; adding one
competitor to a reef decreases the scale parameter (and hence survival) by a factor
of e−0.149 = 0.86, while an additional background settler indicates some element

“Bolker” — 1/9/2008 — 15:39 — page 282

−1
0
1

282 • C H A P T E R 8

TABLE 8.2

Model Parameters �AIC AIC Weights �AICc �BIC

qd 4 0.00 0.23 0.00 2.54

xqd 8 0.25 0.20 0.54 18.44

qdi 5 0.92 0.15 0.98 7.38

xqdi 9 1.34 0.12 1.73 23.44

d 3 1.37 0.12 1.32 0.00

xd 7 1.99 0.09 2.19 16.27

xq 7 4.02 0.03 4.22 18.30

x 6 4.51 0.02 4.63 14.88

q 3 4.85 0.02 4.80 3.48

0 2 5.50 0.02 5.42 0.22

of quality that increases survival on average by a factor of e0.076 = 1.08. (You can
interpret small coefficients on the log scale as approximate percentage differences:
0.076 ≈ 8% increase and −0.149 ≈ 15% decrease.)

Alternatively, we can simply fit the remaining six models (qdi, qd, xq, d, q, 0—
not shown) and use information criteria (AICtab, AIcctab, or BICtab) to compare
the results. Table 8.2 shows perhaps too much information—because of the different
weighting used by the different information criteria, they give qualitatively different
answers. AIC and AICc prefer the model that incorporates the effects of quality and
density, with all the models considered plausible (�AIC, �AICc < 6 for all candidate
models) but with the simplest models weighted very little: In contrast, BIC prefers
the simplest models (0, d), ruling out the most complex ones (�BIC > 10 for xqd,
xqdi, xd, xq, x).

What should one conclude in this situation, with too many possible answers?
There isn’t really a good answer, except that one should decide in advance which
model selection approach (if any) comes closest to answering the kind of question
you have, rather than trying several and then having to choose among the answers.
Here there is fairly strong evidence that density decreases survival, and that the effect
of quality is about half as strong (per fish present) as that of density. In terms of
the range of values used in the experiment, density and quality have approximately
equivalent effects (density has a range of 9, from 2 to 11, while quality ranges from
1 to 18).

This particular analysis leaves few loose ends, but there are a number of possible
directions for further exploration:

• We have followed standard survival analysis in making the mortality rate an
exponential function of covariates such as density. Fisheries biologists com-
monly model mortality as a linear (additive) function of density instead (i.e.,
Prob(survival to t) proportional to e−a+b·d rather than Prob(survival to t) pro-
portional to e−ea+b·d

). The exponential analysis is more convenient because it

“Bolker” — 1/9/2008 — 15:39 — page 283

−1
0
1

L I K E L I H O O D E X A M P L E S • 283

guarantees that the mortality rate will always be positive regardless of the
parameters, thus avoiding the need for constrained optimization. For small
mortality rates the analysis will give approximately the same answers, since by
Taylor expansion the exponential is approximately linear near zero. It would
be interesting to redo the analysis with a linear model and see how similar
the answers were. More challengingly, one could explore the dependence of
survival on density and quality in greater detail—perhaps graphically—and
see if a more flexible function could give a better answer, although with this
small a data set greater flexibility might not be warranted.

• We ignored differences in shape parameter. Returning to explore the possibili-
ties of differences in shape (representing the differences in change in mortality
over time) some more, would be interesting as would exploring with a wider
variety of data; does the shape parameter vary with the mode of mortality?

8.3 Seed Removal

For the Duncan seed predation/seed removal data, some of the ecological questions
are: How does the probability of seed removal vary as a function of distance from
the forest edge (10 or 25 m)? With species, possibly as a function of seed mass? By
time?

Since most of the predictor variables are categorical in this case (species; distance
from forest), the deterministic models are relatively simple—simply different proba-
bilities for different levels of the factors. On the other hand, the distribution of the
number of seeds taken is unusual, so most of the initial modeling effort will go into
finding an appropriate stochastic model.

8.3.1 Preliminaries

Pull in the data:

> data(SeedPred)

Drop NAs and records where there are zero seeds available; attach the results.

> SeedPred = na.omit(subset(SeedPred, available > 0))
> attach(SeedPred)

About 90% of the data consist of “zero taken” entries. We don’t want to ignore
these data, but sometimes we can see more if we look only at the nonzero cases; we’ll
use nz for that case.

> nz = subset(SeedPred, taken > 0)

8.3.2 Stochastic Model: Which Distribution?

I used barchart from the lattice package to look at the data in a variety of different
ways—rearranging the order of the factors in the table to get different arrangements

“Bolker” — 1/9/2008 — 15:39 — page 284

−1
0
1

284 • C H A P T E R 8

of panels and bars, plotting data with zero-taken data included and excluded, and
dropping factors from the table command to see coarser views of the data:

> barchart(table(nz$taken, nz$available, nz$dist,
+ nz$species), stack = FALSE)
> barchart(table(nz$taken, nz$species, nz$dist,
+ nz$available), stack = FALSE)
> barchart(table(nz$species, nz$available, nz$dist,
+ nz$taken), stack = FALSE)
> barchart(table(nz$available, nz$dist, nz$taken),
+ stack = FALSE)
> barchart(table(nz$available, nz$species, nz$taken),
+ stack = FALSE)

I could also have included the argument subset=taken>0, Instead of defining nz

beforehead, to restrict the plots to nonzero data.
Plot all data (not just cases where some seeds are taken):

> barchart(table(available, dist, taken), stack = FALSE)

Plot by date:

> tcumfac = cut(nz$tcum, breaks = c(0, 20, 40, 60,
+ 180))
> barchart(table(nz$available, tcumfac, nz$taken),
+ stack = FALSE)
> barchart(table(available, tcumfac, taken), stack = FALSE)

Two additional useful arguments are auto.key=TRUE, to draw a legend for the bar
colors, and scales=list(relation="free"), to allow different scales in each panel.

As with the reed frog predation experiment, the data are discrete and the results
have an upper limit (i.e., the number of seeds available for removal at the beginning of
the interval). The zero-inflated binomial introduced in Chapter 4 might make sense,
if there were more zeros in the data set than expected from the binomial sampling
process (e.g., if the probability distribution had modes both at zero and away from
zero). This distribution would be appropriate if predators sometimes missed the site
entirely. However, Figure 8.7 shows that the seed removal data set doesn’t look
like a zero-inflated binomial either, because the distribution is lowest in the middle
and increases gradually for higher or lower values. Compare that with Figure 4.1
(p. 107), which shows that the probability distribution function of the zero-inflated
binomial distribution usually drops toward zero, then has a spike at zero (p(0) > p(1),
p(1) < p(2)).

Next I tried the beta-binomial distribution, which allows for variability in the
underlying probabilities per trial and can be bimodal at 0 and N for extreme values
of the overdispersion parameter, and a zero-inflated beta-binomial distribution.

One should really test the fits of distributions on a small piece of the data
set or allowing for different parameters for each combination of factors; variation
among groups can mask the shape of the underlying distribution. However, try-
ing to fit parameters for an unknown distribution for all combinations of factors
simultaneously can be tedious, and the exploratory graphical analysis described

“Bolker” — 1/9/2008 — 15:39 — page 285

−1
0
1

L I K E L I H O O D E X A M P L E S • 285

Frequency

S
ee

ds
 a

va
ila

bl
e

2

3

4

5
Taken

5
4
3
2
1

0.0 0.2 0.4 0.6

Figure 8.7 Distribution of overall number of seeds taken as a function of the number available,
when number available > 1 and number taken > 0.

above convinced me that the pattern shown in Figure 8.7 holds up even when the
data are disaggregated by species, distance, or date.

Using the dzinbinom function in the emdbook package as a model, I con-
structed probability density functions for the zero-inflated binomial (dzibinom) and
zero-inflated beta-binomial (dzibb):

> dzibinom = function(x, prob, size, zprob, log = FALSE) {
+ logv = log(1 - zprob) + dbinom(x, prob = prob,
+ size = size, log = TRUE)
+ logv = ifelse(x == 0, log(zprob + exp(logv)),
+ logv)
+ if (log)
+ logv
+ else exp(logv)
+ }

“Bolker” — 1/9/2008 — 15:39 — page 286

−1
0
1

286 • C H A P T E R 8

> dzibb = function(x, size, prob, theta, zprob, log = FALSE)
+ { logv = ifelse(x > size, NA, log(1 - zprob) +
+ dbetabinom(x, prob = prob, size = size,
+ theta = theta, log = TRUE))
+ logv = ifelse(x == 0, log(zprob + exp(logv)),
+ logv)
+ if (log)
+ logv
+ else exp(logv)
+ }

Next I took a shortcut and used the formula interface to mle2 rather than writing
an explicit negative log-likelihood function. Since the zero-inflation probability must
be between 0 and 1, I filled it on a logit scale, using plogis to transform it on
the fly:

> SP.zibb = mle2(taken ˜ dzibb(size = available, prob,
+ theta, plogis(logitzprob)), start = list(prob = 0.5,
+ theta = 1, logitzprob = 0))
> print(SP.zibb)

There were warnings about NaNs in lbeta, but the final answers look rea-
sonable. I was surprised to see that the zero-inflation probability was so small:
plogis(-2.33)= 0.089. I suspected that the zero-inflation parameter and the overdis-
persion parameter (θ) might both be affecting the number of zeros, so I checked the
correlations among the parameters:

> cov2cor(vcov(SP.zibb))

prob theta logitzprob
prob 1.0000000 0.2885011 0.9867901
theta 0.2885011 1.0000000 0.3436282
logitzprob 0.9867901 0.3436282 1.0000000

Indeed, logitzprob and prob are 99% correlated—suggesting that we could
drop the zero-inflation parameter from the model.

> SP.bb = mle2(taken ˜ dbetabinom(size = available,
+ prob, theta), start = list(prob = 0.5, theta = 1))

> logLik(SP.bb) - logLik(SP.zibb)

‘log Lik.’ 0.07956568 (df=2)

The log-likelihood difference is only about 0.08. Even allowing for the fact that
the null value of the zero-inflation parameter is on the boundary, so that the
appropriate χ̄2

1 p-value is half the usual χ2
1 p-value, this difference is certainly not

significant.

“Bolker” — 1/9/2008 — 15:39 — page 287

−1
0
1

L I K E L I H O O D E X A M P L E S • 287

Just for completeness, I fitted the zero-inflated binomial too (although I didn’t
think it would fit well):

> SP.zib = mle2(taken ˜ dzibinom(size = available,
+ prob = p, zprob = plogis(logitzprob)), start = list
+ (p = 0.2, logitzprob = 0))

Using AIC to compare all three distributions confirmed my suspicious:

> AICtab(SP.zib, SP.zibb, SP.bb, sort = TRUE, weights =
+ TRUE)

AIC df weight
SP.bb 3626.1 2 0.746
SP.zibb 3628.3 3 0.254
SP.zib 4045.6 2 <0.001

Figure 8.8 compares the predictions of the different distributions, with stacked
barplots showing the breakdown of different numbers of seeds taken for each number
of seeds available.

The R code to calculate this distribution for the data first computes the table of
number-taken-by-number-available, then uses sweep to divide each column (margin
2) by its sum:

> comb = table(taken, available)
> pcomb = sweep(comb, 2, colSums(comb), "/")

The equivalent computation for the zero-inflated beta-binomial sets up an empty
matrix with six rows (for 0 to 5 seeds taken) and five columns (for 1 to 5 seeds
available). For each number available N, it then sets the first N + 1 rows in column
N of the matrix to the predicted probability of taking 0 to N seeds.

> mtab = matrix(0, nrow = 6, ncol = 5)
> for (N in 1:5) {
+ cvals = coef(SP.zibb)
+ mtab[1:(N + 1), N] = dzibb(0:N, size = N,
+ prob = cvals["prob"],
+ theta = cvals["theta"], zprob = plogis(cvals
+ ["logitzprob"]))
+ }

Similar calculations work for the other two distributions.
As we would expect from the statistical results so far, the zero-inflated beta-

binomial and beta-binomial predictions look nearly identical, and much closer than
the zero-inflated binomial results. However, there are still visible discrepancies for
the cases of 4 and 5 seeds available—the predicted distributions are more regular, and
have more even distributions, than the observed. None of the three models capture
the increased probability that one seed would be taken (dark blocks) when two to
four seeds were available.

We can calculate standard χ2 p-values for the probability of the observed
numbers taken for each number of seeds available:

> pval = numeric(5)
> for (N in 1:5) {

“Bolker” — 1/9/2008 — 15:39 — page 288

−1
0
1

288 • C H A P T E R 8

data Z−I beta−binomial

beta−binomial Z−I binomial

1 2 3 4 5

a b

dc

Figure 8.8 Observed and predicted distribution of number of seeds taken as a function of
number available. (Zero-taken results are omitted, and columns are rescaled to add to 1.)

+ obs = comb[1:(N + 1), N]
+ prob = mtab[1:(N + 1), N]
+ pval[N] = chisq.test(obs, p = prob)$p.value
+ }

The p-values are:

1 2 3 4 5

0.53 0.29 0.81 0.01 <0.001

There are still statistically significant discrepancies between the expected and
observed distributions when 4 or 5 seeds are available. We could try to find a way
to make the stochastic model more complex and accurate, but we have reached the
limit of what we can do with simple models, and we may also have reached the limit

“Bolker” — 1/9/2008 — 15:39 — page 289

−1
0
1

L I K E L I H O O D E X A M P L E S • 289

of what we can do with the data. The mechanism for the pattern remains obscure.
While I can imagine mechanisms that would lead to all seeds or none being taken,
it’s hard to see why it’s least likely that 3 out of 5 available seeds would be taken. I
suspect that there is some disaggregation of the data by species, date, etc., that would
divide stations into those where few or many seeds were taken, with an extreme pat-
tern in each case that combines to create the observed bimodal pattern, but I haven’t
been able to find it.

8.3.3 Deterministic Model: Differences among Species,
Distance, Space, and Time etc.

Now we can check for differences among distances from the forest, species, and
possibly differences in space and time: How does the distribution of number of seeds
removed vary? Does p, the overall probability that a seed will be removed, vary? Does
θ (the overdispersion parameter, which in this case is more related to the probability
that any seeds will be removed) vary? Do they both vary?

8.3.3.1 DIFFERENCES AMONG TRANSECTS
(DISTANCE FROM EDGE)

mle2’s formula interface allows us to specify that some parameters vary among
groups, by giving a parameters argument which is a list of the formulas for each
group (p. 206). Here I wanted to parameterize the model so that mle2 would estimate
the probability and overdispersion parameter for each species, rather than estimat-
ing the parameters for the first group and the differences between subsequent groups
and the first, so I used the formulas prob˜dist-1 and theta˜dist-1 to fit the model
without an intercept.

> SP.bb.dist = mle2(taken ˜ dbetabinom(prob, theta,
+ size = available),
+ parameters = list(prob ˜ dist - 1, theta ˜
+ dist - 1), start = as.list(coef(SP.bb)))

A Likelihood Ratio Test on the two models suggests a significant difference
between transects:

> anova(SP.bb, SP.bb.dist)

Likelihood Ratio Tests
Model 1: SP.bb, taken˜dbetabinom(prob,theta,size=available)
Model 2: SP.bb.dist,

taken˜dbetabinom(prob,theta,size=available):
prob˜dist-1, theta˜dist-1

Tot Df Deviance Chisq Df Pr(>Chisq)
1 2 3622.1
2 4 3615.6 6.4823 2 0.03912 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

“Bolker” — 1/9/2008 — 15:39 — page 290

−1
0
1

290 • C H A P T E R 8

Reparameterizing the model in terms of differences between the 10-m and 25-m
transect rather than the p and θ values for each transect (i.e., dropping the -1 in
the parameter formulas) allows us to calculate confidence limits on the differences
between transects. At the same time, I decided to switch to fitting p on a logit scale
and θ on a log scale. With the formula interface, I can do the inverse transformations
on the fly with plogis and exp.

Set up starting values, using qlogis (the logit transform) and log to transform
the estimated values of the p and θ parameters from above.

> startvals = list(lprob = qlogis(coef(SP.bb.dist)
+ ["prob.dist10"]),
+ ltheta = log(coef(SP.bb.dist)["theta.dist10"]))

> SP.bb.dist2 = mle2(taken ˜ dbetabinom(plogis(lprob),
+ exp(ltheta),size = available), parameters =
+ list(lprob ˜ dist, ltheta ˜ dist), start = startvals)

The summary of the model now gives us approximate p-values on the parameters,
showing that the difference between transects is caused by a change in p and not a
change in θ .

> summary(SP.bb.dist2)

Maximum likelihood estimation

Call:
mle2(minuslogl = taken ˜ dbetabinom(plogis(lprob), size = available,

exp(ltheta)), start = startvals, parameters = list(lprob ˜
dist, ltheta ˜ dist))

Coefficients:
Estimate Std. Error z value Pr(z)

lprob.(Intercept) -2.7968262 0.0813997 -34.3592 < 2e-16 ***
lprob.dist25 0.2663037 0.1110270 2.3985 0.01646 *
ltheta.(Intercept) -1.1255457 0.1261399 -8.9230 < 2e-16 ***
ltheta.dist25 -0.0035835 0.1719498 -0.0208 0.98337

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-2 log L: 3615.627

(The highly significant p-values for lprob.10 and ltheta.10 are not biologically
significant: they merely show that logit(p10)
= 0 (i.e., p10
= 0.5) and log θ
= 0 (θ
=
1), neither of which is ecologically interesting.)

Now reduce the model, allowing only p to vary between transects:

> SP.bb.probdist = mle2(taken ˜ dbetabinom(plogis(lprob),
+ exp(ltheta), size = available), parameters =
+ list(lprob ˜ dist), start = startvals)

“Bolker” — 1/9/2008 — 15:39 — page 291

−1
0
1

L I K E L I H O O D E X A M P L E S • 291

Both the LRT and the AIC approaches suggest that the best model is one in which
p varies between transects but θ does not (although the AIC table suggests that the
more complex model with differing θ should be kept in consideration):

> anova(SP.bb, SP.bb.probdist, SP.bb.dist)

Likelihood Ratio Tests
Model 1: SP.bb,taken˜dbetabinom(prob,theta,size=available)
Model 2: SP.bb.probdist,

taken˜dbetabinom(plogis(lprob),exp(ltheta),size=available):
lprob˜dist

Model 3: SP.bb.dist,
taken˜dbetabinom(prob,theta,size=available):
prob˜dist-1, theta˜dist-1

Tot Df Deviance Chisq Df Pr(>Chisq)
1 2 3622.1
2 3 3615.6 6.4819 1 0.01090 *
3 4 3615.6 0.0004 1 0.98341

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> AICtab(SP.bb, SP.bb.probdist, SP.bb.dist, sort = TRUE,
+ weights = TRUE)

AIC df weight
SP.bb.probdist 3621.6 3 0.678
SP.bb.dist 3623.6 4 0.250
SP.bb 3626.1 2 0.072

How big is the difference between transects?

> c1 = coef(SP.bb.probdist)
> plogis(c(c1[1], c1[1] + c1[2]))

lprob.(Intercept) lprob.(Intercept)
0.05751881 0.07372130

The difference is small—6% vs. 7% probability of removal per observation. This
difference is unlikely to be ecologically significant, and it reminds us that when we
have a big data set (4406 observations) even small differences can be statistically
significant. On the other hand, Duncan and Duncan (2000) failed to find a significant
difference between the transects—so the likelihood framework is more powerful, and
has given us answers in terms (average percent difference in probability of removal)
that we can understand.

8.3.3.2 DIFFERENCES AMONG SPECIES

Now I proceeded to test differences among species. First I tried a model with both θ

and p varying. (Both parameters are again fitted on transformed scales, logit and log
respectively.)

“Bolker” — 1/9/2008 — 15:39 — page 292

−1
0
1

292 • C H A P T E R 8

> SP.bb.sp = mle2(taken ˜ dbetabinom(plogis(lprob),
+ exp(ltheta), size = available), parameters =
+ list(lprob ˜ species, ltheta ˜species),
+ start = startvals)

The parameter estimates (shown in full by summary(SP.bb.sp); here I dropped
one column of the table) suggest that, as in the case of differences among transects,
differences in p and not in θ are driving the differences among species:

Estimate Std. Error Pr(z)
lprob.(Intercept) -1.925509 0.1428 < 2.2e-16 ***
lprob.speciescd 0.329247 0.2186 0.1321056
lprob.speciescor -1.332956 0.2144 5.090e-10 ***
lprob.speciesdio -0.991505 0.2111 2.645e-06 ***
lprob.speciesmmu -0.432409 0.2130 0.0423696 *
lprob.speciespol 0.413143 0.2098 0.0489483 *
lprob.speciespsd -1.274415 0.2207 7.704e-09 ***
lprob.speciesuva -1.302890 0.2146 1.266e-09 ***
ltheta.(Intercept) -0.824310 0.2240 0.0002327 ***
ltheta.speciescd -0.560802 0.3473 0.1063536
ltheta.speciescor 0.016070 0.3292 0.9610611
ltheta.speciesdio -0.377969 0.3276 0.2485773
ltheta.speciesmmu -0.618604 0.3354 0.0651542 .
ltheta.speciespol 0.152877 0.3331 0.6462837
ltheta.speciespsd -0.173435 0.3405 0.6105292
ltheta.speciesuva -0.058962 0.3341 0.8599198

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

So I fitted a model with only probability p, and not overdispersion θ , varying by
species:

> SP.bb.probsp = mle2(taken ˜ dbetabinom(plogis(lprob),
+ exp(ltheta), size = available), parameters = list
+ (lprob ˜ species), start = startvals)

Once again, both LRT and AIC suggest that only the p parameters differ among
species:

> anova(SP.bb.sp, SP.bb.probsp, SP.bb)

Likelihood Ratio Tests
Model 1: SP.bb.sp,

taken˜dbetabinom(plogis(lprob), exp(ltheta),
size=available): lprob˜species, ltheta˜species

Model 2: SP.bb.probsp,
taken˜dbetabinom(plogis(lprob), exp(ltheta),
size=available): lprob˜species

Model 3: SP.bb, taken˜dbetabinom(prob,theta, size=available)

“Bolker” — 1/9/2008 — 15:39 — page 293

−1
0
1

L I K E L I H O O D E X A M P L E S • 293

Tot Df Deviance Chisq Df Pr(>Chisq)
1 16 3460.4
2 9 3469.8 9.3894 7 0.2259
3 2 3622.1 152.2873 7 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> AICtab(SP.bb.sp, SP.bb.probsp, SP.bb, sort = TRUE,
+ weights = TRUE)

AIC df weight
SP.bb.probsp 3487.8 9 0.909
SP.bb.sp 3492.4 16 0.091
SP.bb 3626.1 2 <0.001

Now I want to know whether seed mass and p are related. If they were, I could
fit a likelihood model where p was treated as a function of seed mass, reducing
the number of parameters to estimate and perhaps allowing me to predict removal
probabilities for other species on the basis of their seed masses.

> SP.bb.probsp0 = mle2(taken ˜ dbetabinom(plogis(lprob),
+ size = available, exp(ltheta)), parameters = list
+ (lprob ˜ species - 1), start = startvals,
+ method = "L-BFGS-B",
+ lower = rep(-10, 9), upper = rep(10, 9))

Fitting this model was numerically problematic. In my first attempt, using default
methods and parameters, mle2 found a ridiculous answer (all the logit probabilities
were strongly negative, giving removal probabilities near zero) and crashed while
evaluating the Hessian. I used skip.hessian=TRUE to temporarily stop mle2 from
crashing and trace=TRUE to see what was happening. Switching to method="Nelder-
Mead" helped stabilize the calculation, but it failed to converge until I increased the
number of iterations to 3000 (control=list(maxit=3000)), and even then it got
stuck on a solution that was worse than the previous model. (In this case, since all I
am doing is reparameterizing the previous model, mle2 ought to be able to achieve
an equally good fit.) I then went back to BFGS and tried changing the size of the
finite difference interval both down (control=list(ndeps=rep(1e-4,9))) and up
(control=list(ndeps=rep(1e-2,9))), neither of which helped. I finally got the
model to fit as well as the previous parameterization by switching to L-BFGS-B and
setting the parameter boundaries to disallow ridiculous fits.

> predprob = plogis(coef(SP.bb.probsp0))[1:8]
> SP.bb.ci = plogis(confint(SP.bb.probsp0, method = "quad"))
+ [1:8,]

Figure 8.9 shows the results: rather than the possible trend toward higher seed
removal for larger seeds that I expected, the figure shows elevated removal rates for
the three smallest-seeded species (explained by Duncan and Duncan as a possible
artifact of small seeds being washed out of the trays by rainfall), and a somewhat
elevated rate for species mmu; in this case, I would want to go back and see if there

“Bolker” — 1/9/2008 — 15:39 — page 294

−1
0
1

294 • C H A P T E R 8

0.0 0.1 0.2 0.3 0.4 0.5

0.05

0.10

0.15

0.20

Seed mass

R
em

ov
al

 p
ro

ba
bi

lit
y

(p
)

abz

cd

cor
dio

mmu

pol

psduva

Figure 8.9 Removal probability parameter (p) as a function of seed mass; error bars show
quadratic confidence intervals.

was something special about this species’ characteristics or the way it was handled
in the experiment.

8.3.3.3 IS THERE A SPECIES-DISTANCE INTERACTION?

The initial scan of the data suggested that some species might be more sensitive to the
distance from the edge: This possibility is certainly biologically sensible (some species
might be taken by specialized seed predators that have more restricted movement),
and it is the kind of information that could easily be masked by looking at aggregated
data.

Using the formula interface, we can simply say lprob˜species*dist to allow for
such an interaction: if you need to code such a model by hand, interaction(f1,f2)
will create a factor that represents the interaction of factors f1 and f2.

> SP.bb.probspdist = mle2(taken ˜ dbetabinom(plogis(lprob),
+ size = available, exp(ltheta)), parameters = list

“Bolker” — 1/9/2008 — 15:39 — page 295

−1
0
1

L I K E L I H O O D E X A M P L E S • 295

109876543

0.00

0.05

0.10

0.15

0.20

0.25

Interval (days)

P
ro

po
rt

io
n

ta
ke

n

a

3

4

5

6

7

8

9

10

Date

In
te

rv
al

 (
da

ys
)

May Jul Sep Nov

b

Figure 8.10 Relationships between proportion removed and time interval (�t), and between
�t and date.

+ (lprob ˜ species * dist), start = startvals, method =
+ "L-BFGS-B", lower = rep(-10, 9), upper = rep(5, 9))

I had to restrict the upper bounds still further, to 5, to make L-BFGS-B happy, since
values of 10 gave NaN results for some parameter combinations.

A likelihood ratio test (anova(SP.bb.probsp,SP.bb.probspdist)) gives a
p-value of 0.054; AIC says that the model without distance × species interaction
is best, but only by a little bit:

> AICtab(SP.bb, SP.bb.probsp, SP.bb.probspdist, SP.bb.sp,
+ SP.bb.probdist, SP.bb.dist, weights = TRUE,
+ sort = TRUE)

AIC df weight
SP.bb.probsp 3487.8 9 0.559
SP.bb.probspdist 3488.6 17 0.386
SP.bb.sp 3492.4 16 0.056
SP.bb.probdist 3621.6 3 <0.001
SP.bb.dist 3623.6 4 <0.001
SP.bb 3626.1 2 <0.001

“Bolker” — 1/9/2008 — 15:39 — page 296

−1
0
1

296 • C H A P T E R 8

0.0

0.1

0.2

0.3

0.4

Date

May Jul Sep Nov

P
ro

po
rt

io
n

ta
ke

n

Figure 8.11 Proportion taken as a function of date. The line shows fitted exponential
dependence (p = 0.26 × e−0.023t), based on a fitted model that lumps all the species together.

8.3.3.4 OTHER ISSUES: TIME

One issue that I have neglected so far is that the intervals between observations varied
between 3 and 14 days. To account for these differences in exposure time, I could
use a model like p = 1 − e−r(�t), which assumes that seeds are taken at a constant
rate r. Do the predictions improve, or the conclusions change, if I account for the
time interval allowed for removal?

Before going to the trouble of building a model, let’s look at the data again.
Calculate the mean and standard error of the proportion taken, using tapply to cal-
culate means and standard deviations of proportions divided up by the time interval
(tint); then use table to calculate the number of observations for each time interval
and divide by

√
n to convert standard deviations to standard errors.

> mean.prop.taken = tapply(taken/available, tint, mean,
+ na.rm = TRUE)
> sd.prop.taken = tapply(taken/available, tint, sd,
+ na.rm = TRUE)

“Bolker” — 1/9/2008 — 15:39 — page 297

−1
0
1

L I K E L I H O O D E X A M P L E S • 297

> n.tint = table(tint)
> se.prop.taken = sd.prop.taken/sqrt(n.tint)

Figure 8.10a is a surprise: the model p = 1 − e−r(�t) suggests the proportion
taken should increase rather than decrease with �t. What’s going on? Figure 8.10b,
which plots the time interval between observations against date, gives the answer:
the short-interval (3–4 day) observations were mostly made before May, when the
removal rate was high, while the longest intervals between observations (10 days)
are in September.

This brings us to the issue of temporal variation: we already know from Fig-
ure 2.1 in Chapter 2 that the removal rate decreases over time. Figure 8.11 shows the
relationship between proportion removed and date, calculated in the same way as the
removal vs. �t relationship. Removal appears to decrease exponentially with time.
Replotting the data with a logarithmic y scale suggests that the removal rate might
level off above zero, but it’s hard to tell. Similarly, it’s hard to know what causes
the anomalously low proportions for some sampling dates throughout the study and
the anomalously high proportions at the very end of the study. Nevertheless, we can
add a parameter to the model allowing for exponential decrease in removal rate over
time:

> SP.bb.probspdate = mle2(taken ˜ dbetabinom(plogis(lprob)
+ * exp(-tcum * date), exp(ltheta), size = available),
+ parameters = list(lprob ˜ species), start =
+ c(startvals, date = 0), method = "L-BFGS-B",
+ lower = c(rep(-10, 9), 0), upper = c(rep(5, 9),
+ 2))

The model incorporating date is 237.6 log-likelihood units better—the model should
definitely include the effect of date.

We have gotten a lot of mileage from these data, but as always there are more
questions we could ask: Do the removal rates of different species drop off at different
rates? Can we figure out what causes the anomalous samples in Figure 8.11? Once
we have split the data according to these criteria, can we simplify the underlying
distribution?

“Bolker” — 1/9/2008 — 15:39 — page 298

−1
0
1

9 Standard Statistics Revisited

This chapter rapidly reviews much of classical statistics, discussing the underlying
likelihood models for procedures such as ANOVA, linear regression, and general-
ized linear models. It also gives brief pointers to the built-in procedures in R that
implement these standard techniques. This summary connects maximum likelihood
approaches with more familiar classical techniques. If you’re already familiar with
classical techniques, it may help you understood maximum likelihood better. It also
provides a starting point for using efficient, “canned” approaches when they are
appropriate for your data. It does not, and cannot, provide full coverage of all these
topics. For more details, see Dalgaard (2003), Crawley (2005, 2007), or Venables
and Ripley (2002).

9.1 Introduction

So far this book has covered maximum likelihood and Bayesian estimation in
some detail. In the course of the discussion I have sometimes mentioned that
maximum likelihood analyses give answers equivalent to those provided by famil-
iar, “old-fashioned” statistical procedures. For example, the statistical model Y ∼
Normal(a + bx, σ 2)—specifying that Y is a normally distributed random variable
whose mean depends linearly on x—underlies ordinary least-squares linear regres-
sion. This chapter will briefly review special cases where our general recipe for finding
MLEs for statistical models reduces to standard procedures that are built into R and
other statistics packages.

In the best case, your data will match a classical technique like linear regression
exactly, and the answers provided by classical statistical models will agree with the
results from your likelihood model. Other models you build may be formally equiv-
alent to a classical model that is parameterized in a different way. Most often, the
customized model you build will not be exactly equivalent to any existing classical
model, but a similar classical model may be close enough that you wouldn’t mind
changing your model slightly in order to gain the convenience of using a standard
procedure.

For example, in Chapter 6 we used the model

Y ∼ NegBinom(µ = a · DBHb, k) (9.1.1)

“Bolker” — 1/9/2008 — 15:39 — page 299

−1
0
1

S T A N D A R D S T A T I S T I C S R E V I S I T E D • 299

to represent cone production by fir trees as a function of diameter at breast height.
If we approximated the discrete distribution of cones by a continuous log-normal
distribution instead,

Y ∼ LogNormal(µ = a · DBHb, σ 2), (9.1.2)

we could log-transform both sides and fit the linear regression model

log Y ∼ Normal(log a + b · log (DBH), σ 2). (9.1.3)

Figure 9.1a shows all three models for the DBH–fecundity relationship—
power-law with a negative binomial distribution (power/NB), power-law with a log-
normal distribution (power/LN), and linear with a normal distribution—fitted to the
fir data; all are plausible. Figure 9.1b shows various models for the distribution of
cone production, fitted to the individuals with DBH between 6 and 8 cm: a nonpara-
metric density estimate, the negative binomial, lognormal, and normal. The negative
binomial is closest to the nonparametric density estimate of the distribution, while the
lognormal is more peaked and the normal distribution has an unrealistic negative tail.

Although the power-law/negative binomial is the most realistic model and has
a plausible mechanistic interpretation (the data are discrete, positive, and overdis-
persed; we can imagine individual trees producing cones at an approximately constant
rate with variation in fecundity among trees), the difference between the fit of neg-
ative binomial and lognormal distributions is small enough that the convenience of
linear regression may be worthwhile. When the results of different models are simi-
lar on both biological and statistical grounds, you choose among them by balancing
convenience, mechanistic arguments, and convention.

Why might you want to use standard, special-case procedures rather than the
general MLE approach?

• Computational speed and stability: The special-case procedures use special-
case optimization algorithms that are faster (sometimes much faster) and less
likely to encounter numerical problems. Many of these procedures relieve you
of the responsibility of choosing starting parameters.

• Stable definitions: The definitions of standard models have often been chosen
to simplify parameter estimation. For example, to model a relatively sudden
change between two states you could choose between a logistic equation and a
threshold model. Both might be equally sensible in terms of the biology, but the
logistic equation is easier to fit because it involves smoother changes as param-
eters change. Similarly, generalized linear models such as logistic or Poisson
regression fit parameters on scales (logit- or log-transformed, respectively) that
allow unconstrained optimization.

• Convention: If you use a standard method, you can just say (e.g.) “we used
linear regression” in your Methods section and no one will think twice. If
you use a nonstandard method, you need to explain the method carefully and
overcome readers’ distrust of “fancy” statistics—even if your model is actually
simpler and more appropriate than any standard model. Similarly, it may
minimize confusion to use the same models, and the same parameterizations,
as previous studies of your system.

• Varying models and comparing hypotheses: The machinery built into R and
other packages makes it easy to compare a variety of models. For example,

“Bolker” — 1/9/2008 — 15:39 — page 300

−1
0
1

300 • C H A P T E R 9

DBH

co
ne

s+
1

1

2

5

10

20

50

100

200

15105

power/LN
power/NB
lin/normal

cones+1
D

en
si

ty

0.00

0.01

0.02

0.03

0.04

7550250 100

6 < DBH < 8

density
NB
LN
normal

a b

Figure 9.1 Comparing different functional forms for fir fecundity data: power-law with a
lognormal (LN) distribution, power-law with a negative binomial (NB) distribution, and linear
with a normal distribution. (The linear model appears as a curved line because the data are
plotted on a log-log scale.)

when analyzing a factorial growth experiment that manipulates nitrogen (N)
and phosphorus (P), you can easily switch between models incorporating the
effects of nitrogen only (growth˜N), phosphorus only (growth˜P), additive
effects of N and P (growth˜N+P), and the main effects plus interactions between
nitrogen and phosphorus (growth˜N*P). You can carry out all of these compar-
isons by hand with your own models, and mle2’s formula interface is helpful,
but R’s built-in functions make the process easy for classical models.

This chapter discusses how a variety of different kinds of models fit together,
and how they all represent special cases of a general likelihood framework.
Figure 9.2 shows how many of these areas are connected. The chapter also gives
brief descriptions of how to use them in R; if you want more details on any of these
approaches, you’ll need to check an introductory (Dalgaard, 2003; Crawley, 2005;
Verzani, 2005), intermediate (Crawley, 2002), or advanced (Chambers and Hastie
1992; Venables and Ripley, 2002) reference.

9.2 General Linear Models

General linear models include linear regression, one-way and multiway analysis of
variance (ANOVA), and analysis of covariance (ANCOVA); R uses the function lm
for all of these procedures. SAS implements this with PROC GLM.∗ While regression,
ANOVA, and ANCOVA are often handled differently, and they are usually taught
differently in introductory statistics classes, they are all variants of the same basic
model. The assumptions of the general linear model are that all observed values
are independent and normally distributed with a constant variance (homoscedastic),

∗ This terminology is unfortunate since the rest of the world uses “GLM” to mean generalized linear
models, which correspond to SAS’s PROC GENMOD.

“Bolker” — 1/9/2008 — 15:39 — page 301

−1
0
1

S T A N D A R D S T A T I S T I C S R E V I S I T E D • 301

(non−normal errors)
(nonlinearity)

(nonlinearity)
random

thresholds;
mixtures;

effects

(non−normal
errors)

MIXED MODELS

nonlinearity
nonlinearity

nonlinearity

correlation

correlation

random
effects

random
effects

scaled
variance

over-
dispersion

etc. etc.
compound distributions;

GENERAL
LINEAR MODELS

GENERALIZED LINEAR
MIXED MODELS

NONLINEAR
TIME SERIES
MODELS

logistic regression
binomial regression
log−linear model

GENERALIZED
LINEAR MODELS

NONLINEAR
LEAST-SQUARES

linear regression
ANOVA
analysis of covariance
multiple linear regression models; time−series (ARIMA)

repeated−measures

BINOMIAL MODELS
NEGATIVEQUASILIKELIHOODGENERALIZED

ADDITIVE
MODELS

MODELS

smooth

Figure 9.2 All (or most) of statistics. The labels in parentheses (non-normal errors and nonlin-
earity) imply restricted cases: (non-normal errors) means exponential family (e.g., binomial or
Poisson) distributions, while (nonlinearity) means nonlinearities with an invertible linearizing
transformation. Models to the right of the gray dashed line involve multiple levels or types of
variability; see Chapter 10.

and that any continuous predictor variables (covariates) are measured without error.
(Remember that the assumption of normality applies to the variation around the
expected value—the residuals—not to the whole data set.)

The “linear” part of “general linear model” means that the models are lin-
ear functions of the parameters, not necessarily of the independent variables. For
example, quadratic regression

Y ∼ Normal(a + bx + cx2, σ 2) (9.2.1)

is still linear in the parameters (a, b, c), and thus is a form of multiple linear regres-
sion. Another way to think about this is to say that x2 is just another explanatory
variable—if you called it w instead, it would be clear that this model is an example of
multivariate linear regression. On the other hand, Y ∼ Normal(axb, σ 2) is nonlinear:
it is linear with respect to a (the second derivative of axb with respect to a is zero)
but nonlinear with respect to b (d2(axb)/db2 = b · (b − 1) · axb−2
= 0).

9.2.1 Simple Linear Regression

Simple, or ordinary, linear regression predicts y as a function of a single continuous
covariate x. The model is

Y ∼ Normal(a + bx, σ 2). (9.2.2)

“Bolker” — 1/9/2008 — 15:39 — page 302

−1
0
1

302 • C H A P T E R 9

The equivalent R code is

> lm.reg = lm(y ˜ x)

The intercept term a is implicit in the R model. If you want to force the intercept to
be equal to zero, fitting the model Y ∼ Normal(bx, σ 2), use lm(Y˜X-1).

Typing lm.reg by itself prints only the formula and the estimates of the coef-
ficients; summary(lm.reg) also gives summary statistics (range and quartiles) of the
residuals, standard errors and p-values for the coefficients, and R2 and F statistics
for the full model; coef(lm.reg) gives the coefficients alone, and coef(summary
(lm.reg)) pulls out the table of estimates, standard errors, t statistics, and p-values.
confint(lm.reg) calculates confidence intervals. The function plot(lm.reg) dis-
plays various graphical diagnostics that show how well the assumptions of the model
fit and whether particular points have a strong effect on the results; see ?plot.lm for
details. anova(lm.reg) prints an ANOVA table for the model.∗ If you need to extract
numeric values of, e.g., R2 values or F statistics for further analysis, wade through
the output of str(summary(lm.reg)) to find the pieces you need (e.g., summary
(lm.reg)$r.squared).

To do linear regression by brute force with mle2, you could write this negative
log-likelihood function:

> linregfun = function(a, b, sigma) {
+ Y.pred = a + b * x
+ -sum(dnorm(Y, mean = Y.pred, sd = sigma, log = TRUE))
+ }

or use the formula interface:

> mle2(Y ˜ dnorm(mean = a + b * x, sd = sigma), start = ...)

When using mle2 you must explicitly fit a standard deviation term σ , which is implicit
in the lm approach.

9.2.2 Multiple Linear Regression

It’s easy to extend the simple linear regression model to multiple continuous predictor
variables (covariates). If the extra covariates are powers of the original variable
(x2, x3, . . .), the model is called polynomial regression (quadratic if just the x2 term
is added):

Y ∼ Normal(a + b1x + b2x2, σ 2). (9.2.3)

Or you can use completely separate variables (x1, x2, . . .):

Y ∼ Normal(a + b1x1 + b2x2 + b3x3, σ 2) (9.2.4)

As with simple regression, the intercept a and the coefficients of the different
covariates (b1, b2) are implicit in the R formula:

> lm.poly = lm(y ˜ x + I(xˆ2))

∗ anova gives so-called sequential sums of squares, which SAS calls “type I” sums of squares. If you
need SAS-style “type III” sums of squares, you can use the Anova function in the car package. However,
be aware that type III sums of squares are problematic, and indeed controversial (Venables, 1998).

“Bolker” — 1/9/2008 — 15:39 — page 303

−1
0
1

S T A N D A R D S T A T I S T I C S R E V I S I T E D • 303

(surround xˆ2 and other powers of x with I(), meaning “as is”) or

> lm.mreg = lm(y ˜ x1 + x2 + x3)

You can add interactions among covariates, testing whether the slope with
respect to one covariate changes linearly as a function of another covariate—e.g.,
Y ∼ Normal(a + b1x1 + b2x2 + b12x1x2, σ 2); in R, lm.intreg = lm(y˜x1*x2).

Use the anova function with test="Chisq" to perform likelihood ratio tests
on a nested series of multivariate linear regression models (e.g., anova(lm1,lm2,
lm3,test="Chisq")). If you wonder why anova is a test for regression models,
remember that regression and analyses of variance are just different subsets of the
general linear model.

While multivariate regression is conceptually simple, models with many terms
(e.g., models with many covariates or with multiway interactions) can be difficult
to interpret. Blind fitting of models with many covariates can get you in trouble
(Whittingham et al., 2006). If you absolutely must go on this kind of fishing expedi-
tion, you can use step, or stepAIC in the MASS package to do stepwise modeling, or
regsubsets in the leaps package to search for the best model.

9.2.3 One-Way Analysis of Variance (ANOVA)

If the predictor variables are discrete (factors) rather than continuous (covariate), the
general linear model becomes an analysis of variance. The basic model is

Yi ∼ Normal(αi, σ 2); (9.2.5)

in R it is

> lm.1way = lm(y ˜ f)

where f is a factor. If your original data set has names for the factor levels (e.g.,
{N,S,E,W} or {high,low}), then R will automatically transform the treatment vari-
able into a factor when it reads in the data. However, if the factor levels look like
numbers to R (e.g., you have site designations 101, 227, and 359, or experiments
numbered 1 to 5), R will interpret them as continuous rather than discrete predictors
and will fit a linear regression rather than doing an ANOVA—not what you want.
Use v=factor(v) to turn a numeric variable v into a factor, and then fit the linear
model.

Executing anova(lm.1way) produces a basic ANOVA table; summary(lm.1way)
gives a different view of the model, testing the significance of each parameter against
the null hypothesis that it equals 0.

When fitting regression models, the parameters of the model are easy to
interpret—they’re just the intercept and the slopes with respect to the covariates.
When you have factors in the model, however—as in ANOVA—the parameterization
becomes trickier. By default, R parameterizes the model in terms of the differences
between the first group and subsequent groups (treatment contrasts) rather than in
terms of the mean of each group, although you can tell it to fit the means of each
group by putting a -1 in the formula (e.g., lm.1way = lm(y˜f-1)).

“Bolker” — 1/9/2008 — 15:39 — page 304

−1
0
1

304 • C H A P T E R 9

9.2.4 Multiway ANOVA

Multiway ANOVA models Y as a function of two or more different categori-
cal variables (factors). For example, the full model for two-way ANOVA with
interactions is

Yij ∼ Normal(αi + βj + γij, σ 2) (9.2.6)

where i is the level of the first treatment/group, and j is the level of the second. The
R code using lm is

> lm.2way = lm(Y ˜ f1 * f2)

(f1 and f2 are factors). As before, summary(lm.2way) gives more information,
testing whether the parameters differ significantly from zero; confint(lm.2way)
computes confidence intervals; anova(lm.2way) generates a standard ANOVA table;
plot(lm.2way) shows diagnostic plots. If you want to fit just the main effects with-
out the interactions, use lm(Y˜f1+f2); use f1:f2 to specify an interaction between
f1 and f2.

A negative log-likelihood function for mle2 could look like this:

> aov2fun = function(m11, m12, m21, m22, sigma) {
+ intval = interaction(f1, f2)
+ Y.pred = c(m11, m12, m21, m22)[intval]
+ -sum(dnorm(Y, mean = Y.pred, sd = sigma, log = TRUE))
+ }

(interaction(f1,f2) defines a factor representing the interaction of f1 and f2 with
levels in the order (1.1, 2.1, 1.2, 2.2)). Using the formula interface:

> mle2(Y ˜ dnorm(mean = m, sd = sigma), parameters = list
+ (m ˜ f1 * f2))

For a multiway model, R’s parameters are again defined in terms of contrasts. If
you construct a two-way ANOVA with factors f1 (with levels A and B) and f2 (with
levels I and II), the first (“intercept”) parameter will be the mean of individuals in
level A of the first factor and level I of the second (m11); the second parameter is the
difference between A,II and A,I (m12-m11); the third is the difference between B,I
and A,I (m21-m11); and the fourth, the interaction term, is the difference between
the mean of B,II and its expectation if the effects of the two factors were additive
(m22-(m11+(m12-m11)+(m21-m11)) = m22-m12-m21+m11).

9.2.5 Analysis of Covariance (ANCOVA)

Analysis of covariance defines a statistical model that allows for different intercepts
and slopes with respect to a covariate x in different groups:

Yi ∼ Normal(αi + βix, σ 2). (9.2.7)

In R:

> lm(Y ˜ f * x)

“Bolker” — 1/9/2008 — 15:39 — page 305

−1
0
1

S T A N D A R D S T A T I S T I C S R E V I S I T E D • 305

1.5 2.0 2.5

0

1

2

3

4

5

log(DBH)

lo
g(

co
ne

s+
1)

nonwave

wave

Figure 9.3 General linear model fit to fir fecundity data (analysis of covariance):
lm(log(TOTCONES+1)˜log(DBH)+WAVE_NON,data=firdata). (Lines are practically indistin-
guishable between groups.)

where f is a factor and x is a covariate (the formula Y˜f+x would specify par-
allel slopes, Y˜f would specify zero slopes but different intercepts, Y˜x would
specify a single line). Figure 9.3 shows the fit of the model lm(log(TOTCONES+1)
log(DBH)+WAVE_NON) to the fir data. As suggested by the figure, there is a strong
effect of DBH but no significant effect of population (wave vs. nonwave).

As with other models, use summary, confint, plot, and anova to analyze the
model. The parameters are now the intercept of the first factor level; the slope with
respect to x for the first factor level; the differences in the intercepts for each factor
level other than the first; and the differences in the slopes for each factor level other
than the first.

A negative log-likelihood function for ANCOVA:

> ancovafun = function(i1, i2, slope1, slope2, sigma) {
+ int = c(i1, i2)[f]
+ slope = c(slope1, slope2)[f]
+ Y.pred = int + slope * x
+ -sum(dnorm(Y, mean = Y.pred, sd = sigma, log = TRUE))
+ }

“Bolker” — 1/9/2008 — 15:39 — page 306

−1
0
1

306 • C H A P T E R 9

9.2.6 More Complex General Linear Models

You can add factors (grouping variables) and interactions between factors in different
ways to make multiway ANOVA, covariates (continuous independent variables) to
make multiple linear regression, and combinations to make different kinds of analysis
of covariance. R will automatically interpret formulas based on whether variables
are factors or numeric variables.

9.3 Nonlinearity: Nonlinear Least Squares

Nonlinear least-squares models relax the requirement of linearity but keep the
requirements of independence and normal errors. Two common examples are the
power-law model with normal errors

Y ∼ Normal(axb, σ 2) (9.3.1)

and the Ricker model with normal errors

Y ∼ Normal(axe−rx, σ 2). (9.3.2)

Before computers were ubiquitous, the only practical way to solve these prob-
lems was to linearize them by finding a transformation of the parameters (e.g.,
log-transforming x and y to do power-law regression). A lot of ingenuity went into
developing transformation methods to linearize common functions. However, trans-
forming variables changes the distribution of the error as well as the shape of the
dependence of y on x. Ideally we’d like to find a transformation that simultaneously
produces a linear relationship and makes the errors normally distributed with con-
stant variance, but these goals are often incompatible. If the errors are normal with
constant variance, they won’t be after you transform the data to linearize f (x).

The modern way to solve these problems without distorting the error struc-
ture, or to solve other models that cannot be linearized by transforming them, is to
minimize the sums of squares (equivalent to minimizing the negative log-likelihood)
computationally, using quasi-Newton methods similar to those built into optim.
Restricting the variance model to normally distributed errors with constant variance
allows the use of specific numeric methods that are more powerful and stable than
the generalized algorithms that optim uses.

In R, use the nls command, specifying a nonlinear formula and the starting
values (as a list); e.g., for the power model

> n1 = nls(y ˜ a * xˆb, start = list(a = 1, b = 1))

As usual, summary(n1) shows values of parameters and standard errors; anova
(n1,...) does likelihood ratio tests for nested sequences of nonlinear fits; and
confint(n1) computes profile confidence limits which are more accurate than the
confidence limits suggested by summary(n1). (Unfortunately, plot(n1) does noth-
ing.) Figure 9.4 shows the fit of a nonlinear least-squares model (nls(TOTCONES˜
a*DBHˆb)) to the fir fecundity data set, along with the log-log fit (equivalent to a
power-law fit with lognormal errors) calculated above. The power-lognormal model

“Bolker” — 1/9/2008 — 15:39 — page 307

−1
0
1

S T A N D A R D S T A T I S T I C S R E V I S I T E D • 307

161412106 84

0

50

100

150

200

250

300

DBH

C
on

es
power/normal

power/LN

Figure 9.4 A nonlinear least-squares fit to the fir fecundity data (nls(TOTCONES˜a*DBHˆb,));
the linear model fit to the log-log data (equivalent to a power-law fit with lognormal errors)
is also shown.

is better from a biological point of view, since the normal distribution allows negative
values, but both models are reasonable.

Fitting models with both nonlinear covariates and categorical variables (the non-
linear analogue of ANCOVA—e.g., fitting different a and b parameters for wave and
nonwave populations) is more difficult, but two functions from the nlme package,
nlsList and gnls (generalized nonlinear least squares), can handle such models.
nlsList does completely separate fits for separate groups—for example,

> nlsList(TOTCONES ˜ a * DBHˆb | WAVE_NON, data = firdata,
+ start = list(a = 0.1, b = 2.7))

would fit separate a and b parameters for wave and nonwave populations—but all
parameters will vary among groups. The gnls command can fit models with only a
subset of the parameters differing among groups—for example,

> gnls(TOTCONES ˜ a * DBHˆb, data = firdata, start = c(0.1,
+ 2.7, 2.7), params = list(a ˜ 1, b ˜ WAVE_NON))

will fit different b parameters but the same a parameter for wave and nonwave
populations.

The numerical methods that n/s uses are similar to mle2’s in that (1) you must
specify starting values and (2) if the starting values are unrealistic, or if the problem
is otherwise difficult, the numerical optimization may get stuck. Errors such as

step factor [] reduced below ’minFactor’ of ...

“Bolker” — 1/9/2008 — 15:39 — page 308

−1
0
1

308 • C H A P T E R 9

number of iterations exceeded maximum of ...

or

Missing value or an infinity produced when evaluating the model

indicate numerical problems. To solve these problems try to find better starting
conditions, reparameterize your model, or adjust the control options of nls (see
?nls.control).

As with ML models, you can often use simpler, more robust approaches like lin-
ear models to get a first estimate for the parameters (e.g., estimate the initial slope of a
Michaelis-Menten function from the first 10% of the data and the asymptote from the
last 10%, or estimate the parameters by linear regression based on a linearizing trans-
form). R includes some “self-starting” functions that do these steps automatically.
The functions SSlogis and SSmicmen, for example, provide self-starting logistic and
Michaelis-Menten functions. To fit a self-starting Michaelis-Menten model to the
tadpole data with asymptote a and half-maximum b:

> data(ReedfrogFuncresp)
> nls(Killed ˜ SSmicmen(Initial, a, b),
+ data = ReedfrogFuncresp)

Use apropos("SS",ignore.case=FALSE) to see a more complete list of self-starting
models. The names are cryptic, so check the help system for information about each
model.

Further reading: Bates and Watts (1988), Pinheiro and Bates (2000).

9.4 Nonnormal Errors: Generalized Linear Models

Generalized linear models (not to be confused with general linear models) allow you
to analyze models that have a particular kind of nonlinearity and particular kinds of
nonnormally distributed (but still independent) errors.

Generalized linear models can fit any nonlinear relationship that has a linearizing
transformation. That is, if y = f (x), there must be some function F such that F(f (x))
is a linear function of x. The procedure for fitting generalized linear models uses the
function F to fit the data on the linearized scale (F(y) = F(f (x))) while calculating the
expected variance on the untransformed scale in order to correct for the distortions
that linearization would otherwise induce. In generalized-linear-model jargon F is
called the link function. For example, when f is the logistic curve (y = f (x) = ex/(1 +
ex)), the link function F is a the logit function (F(y) = log (y/(1 − y)) = x; see p. 83 for
the proof that the logit is really the inverse of the logistic). R knows about a variety
of link functions including the log (x = log (y), which linearizes y = ex); square root
(x = √

y, which linearizes y = x2); and inverse (x = 1/y, which linearizes y = 1/x):
see ?family for more possibilities.

The class of nonnormal errors that generalized linear models can handle is called
the exponential family. It includes Poisson, binomial, Gamma and normal distribu-
tions, but not negative binomial or beta-binomial distributions. Each distribution has
a standard link function: the log link is standard for a Poisson, a logit link is standard

“Bolker” — 1/9/2008 — 15:39 — page 309

−1
0
1

S T A N D A R D S T A T I S T I C S R E V I S I T E D • 309

for a binomial distribution, etc. The standard link functions make sense for typical
applications. For example, the logit transformation converts unconstrained values
into values between 0 and 1, which are appropriate as probabilities in a binomial
model. However, R does allow you some flexibility to change these associations for
specific problems.

GLMs are fit by a process called iteratively reweighted least squares, which over-
comes the basic problem that transforming the data to make them linear also changes
the variance. The key is that given an estimate of the regression parameters, and
knowing the relationship between the variance and the mean for a particular distri-
bution, one can calculate the variance associated with each point. With this variance
estimate, one reestimates the regression parameters weighting each data point by the
inverse of its variance; the new estimate gives new estimates of the variance; and so
on. This procedure quickly and reliably fits the models, without the user needing to
specify starting points.

Generalized linear models combine a range of nonnormal error distributions with
the ability to work with some reasonable nonlinear functions. They also use the same
simple model specification framework as lm, allowing us to explore combinations
of factors, covariates, and interactions among variables. GLMs include logistic and
binomial regression and log-linear models. They use terminology that should now be
familiar to you; they estimate log-likelihoods and test the differences between models
using the LRT.

The glm function implements generalized linear models in R. By far the two most
common GLMs are Poisson regression, for count data, and logistic regression, for
survival/failure data.

• Poisson regression: log link, Poisson error (Y ∼ Poisson(aebx)):

> glm1 = glm(y ˜ x, family = "poisson")

The equivalent likelihood function is

> poisregfun = function(a, b) {
+ Y.pred = exp(a + b * x)
+ -sum(dpois(y, lambda = Y.pred, log = TRUE))
+ }

• Logistic regression: logit link, binomial error (Y ∼ Binom(p = exp (a + bx)/
(1 + exp (a + bx)), N)):

> glm2 = glm(cbind(y, N - y) ˜ x, family = "binomial")

or

> logistregfun = function(a, b) {
+ p.pred = exp(a + b * x)/(1 + exp(a + b * x))
+ -sum(dbinom(y, size = N, prob = p.pred, log =
+ TRUE))
+ }

(You could also say p.pred=plogis(a+b*x) in the first line of logistregfun.)

GLMs can also fit models of exponentially decreasing survival, Y ∼ Binom
(p = exp (a + bx), N). Strong et al. (1999) modeled the survival probability of ghost

“Bolker” — 1/9/2008 — 15:39 — page 310

−1
0
1

310 • C H A P T E R 9

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

Initial density

F
ra

ct
io

n
ki

lle
d

logistic regression

log−binomial model

Figure 9.5 Logistic (binomial) regression and log-binomial regression of fraction of tadpoles
killed as a function of tadpole density. Logistic regression:
glm(cbind(Killed,Initial-Killed)˜Initial, family="binomial",
data=ReedfrogFuncresp)
Log-binomial regression:
glm(...,family=binomial(link="log"),...)

moth caterpillars as a decreasing function of density (and as a function of the pres-
ence or absence of entomopathogenic nematodes); Tiwari et al. (2006) modeled the
probability that nesting sea turtles would not dig up an existing nest as a decreasing
function of nest density. You can fit such a model this way:

> glm3 = glm(cbind(y, N - y) ˜ x, family = binomial(link =
+ "log"))

Use family=binomial(link="log") instead of family="binomial" to specify
the log instead of the logit link function. The equivalent negative log-likelihood
function is

> logregfun = function(a, b) {
+ p.pred = exp(a + b * x)
+ -sum(dbinom(y, size = N, prob = p.pred, log = TRUE))
+ }

You can use either a logistic or a log-binomial model to fit Vonesh’s tadpole
mortality data (Figure 9.5), but the fact that expected survival decreases exponentially
at high densities in both models causes problems of interpretation. If the probability

“Bolker” — 1/9/2008 — 15:39 — page 311

−1
0
1

S T A N D A R D S T A T I S T I C S R E V I S I T E D • 311

of survival declines exponentially with density—which is true for the log-binomial
model and approximately true at high densities for the logistic—then the expected
number surviving is p(x) · x = e−(a+bx)x = cxe−bx. This is a Ricker function, which
decreases to zero at high density rather than reaching an asymptote. In predator-
prey systems for example, rather than this overcompensation response to density, we
usually expect compensatory behavior—predation rate reaching an asymptote—the
standard type II functional response model uses p(x) = A/(1 + Ahx), which has a
weaker dependence on x, and which makes the limit of p(x)x as x becomes large
equal to 1/h. The GLM, while convenient, may not be ecologically appropriate in
this case.

After you fit a GLM, you can use the same generic set of modeling functions—
summary, coef, confint, anova, and plot—to examine the parameters, test
hypotheses, and plot residuals. anova(glm1,glm2,...) does an analysis of deviance
(Likelihood Ratio tests) on a nested sequence of models. As with lm, the default
parameters represent (1) the intercept (the baseline value of the first treatment),
(2) differences in the intercept between the first and subsequent treatments, (3) the
slope(s) with respect to the covariate(s) for the first group, or (4) differences in
the slope between the first and subsequent treatments. However, all of the parameters
are given on the scale of the link function (e.g., log scale for Poisson models, logit
scale for binomial models). To interpret them, you need to transform them with the
inverse link function (exponential for Poisson, logistic (=plogis) for binomial). For
example, the coefficients of the logistic regression shown in Figure 9.5 are intercept
= −0.095 slope = −0.0084. To find the probability of mortality at a tadpole density
of 60, calculate exp (− 0.095 + −0.0084 · 60)/(1 + exp (− 0.095 + −0.0084 · 60) =
0.355.

Further reading: McCullagh and Nelder (1989); Dobson (1990); Hastie and
Pregibon (1991); Lindsay (1997). R-specific: Crawley (2002); Faraway (2006).

9.4.1 Models for Overdispersion

To go beyond the exponential family of distributions (normal, binomial, Poisson,
Gamma) you may well need to roll your own ML estimator. R has two built-in
possibilities for the very common case of discrete data with overdispersion, i.e., more
variance than would be expected from the standard (Poisson and binomial) models
for discrete data.

9.4.1.1 QUASI LIKELIHOOD

Quasi likelihood models “inflate” the expected variance of models to account for
overdispersion (McCullagh and Nelder, 1989). For example, the expected variance
of a binomial distribution with N samples and probability p is Np(1 − p). The quasi-
binomial model adds another parameter, φ, which inflates the variance to φNp(1 −
p). The overdispersion parameter φ (Burnham and Anderson (2004) call it ĉ) is
generally greater than 1—we usually find more variance than expected, rather than
less. Quasi-Poisson models are defined similarly, with variance equal to φλ. This
approach is called quasi likelihood because we don’t specify a real likelihood model

“Bolker” — 1/9/2008 — 15:39 — page 312

−1
0
1

312 • C H A P T E R 9

with a probability distribution for the data. We just specify the relationship between
the mean and the variance. Nevertheless, the quasi-likelihood approach works well
in practice. R uses the family function to specify quasi-likelihood models.

Because the quasi likelihood is not a true likelihood, we cannot use Likelihood
Ratio tests or other likelihood-based methods for inference, but the parameter esti-
mates and t statistics generated by summary should still work. However, various
researchers have suggested that using an F test based on the ratio of deviances
is appropriate: use anova(...,test="F") (Crawley, 2002; Venables and Ripley,
2002). Burnham and Anderson (2004) suggest using differences in “quasi-AIC”
(qAIC) in this case, where the �qAIC is the �AIC value divided by the estimate
of φ.

Since the log is the default link function for the quasipoisson family, you can
fit a quasi-Poisson log-log model for fecundity as follows:

> glm(TOTCONES ˜ log(DBH), data = firdata, family =
+ "quasipoisson")

9.4.1.2 NEGATIVE BINOMIAL MODELS

Although the exponential family does not strictly include the negative binomial dis-
tribution, negative binomial models can be fit by a small extension of the GLM
approach, iteratively fitting the k (overdispersion) parameter and then fitting the rest
of the model with a fixed k parameter. The glm.nb function in the MASS package
fits linear negative binomial models, although they restrict the model to a single k
parameter for all groups. (Use $theta to extract the estimate of the negative binomial
k parameter from a negative binomial model.)

Because we can use a log link, we can exactly replicate our original log-likelihood
model (cones ∼ NegBinom(a · DBHb, k)) with the following command:

> glm.nb(TOTCONES ˜ log(DBH), data = firdata)

The only difference from our earlier model is that the estimated intercept parameter
is log (a) rather than a.

9.5 R Supplement

Here’s how to fit various linear models to the log-transformed fir data. Since the
data (TOTCONES) contain some zero values, taking logarithms would give us negative
infinite values. We need either to drop these values (subset=TOTCONES>0) or to add
an offset of 1, in order to avoid infinities. However, since there are few zeros in the
data (sum(firdata$TOTCONES==0) is 10 out of a total of 242 data points) and the
mean number of cones is large, this adjustment shouldn’t affect the results much. If
zeros are frequent so that such an adjustment would affect your results significantly,
or if the results vary depending on how large an offset you add, consider a different
model (Section 9.4).

“Bolker” — 1/9/2008 — 15:39 — page 313

−1
0
1

S T A N D A R D S T A T I S T I C S R E V I S I T E D • 313

> logcones = log(firdata$TOTCONES + 1)
> lm.0 = lm(logcones ˜ 1, data = firdata)
> lm.d = lm(logcones ˜ log(DBH), data = firdata)
> lm.w = lm(logcones ˜ WAVE_NON, data = firdata)
> lm.dw = lm(logcones ˜ log(DBH) + WAVE_NON, data = firdata)
> lm.dwi = lm(logcones ˜ log(DBH) * WAVE_NON,
+ data = firdata)

Since log(DBH) is a covariate and WAVE_NON is a factor, lm.d is a regression; lm.w
is a one-way ANOVA; and lm.dw and lm.dwi are ANCOVA models with parallel
and nonparallel slopes, respectively.

A few different ways to analyze the data:

> anova(lm.0, lm.d, lm.dw, lm.dwi)

Analysis of Variance Table

Model 1: logcones ˜ 1
Model 2: logcones ˜ log(DBH)
Model 3: logcones ˜ log(DBH) + WAVE_NON
Model 4: logcones ˜ log(DBH) * WAVE_NON

Res.Df RSS Df Sum of Sq F Pr(>F)
1 241 384.53
2 240 250.33 1 134.20 127.7512 <2e-16 ***
3 239 250.29 1 0.04 0.0393 0.8431
4 238 250.02 1 0.27 0.2535 0.6151

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> AIC(lm.0, lm.d, lm.w, lm.dw, lm.dwi)

df AIC
lm.0 2 802.8349
lm.d 3 700.9556
lm.w 3 786.5281
lm.dw 4 702.9157
lm.dwi 5 704.6580

(I left lm.w out of the anova statement because it and lm.d cannot be nested.) anova
compares the models sequentially, while AIC compares them simultaneously. AICtab
in the emdbook package offers several more options such as sorting the table in order
of increasing AIC or computing AIC weights. Try coef, summary, and confint on
these models as well.

The full ANCOVA model fit via mle2:

> ancovafun = function(i1, i2, slope1, slope2, sigma) {
+ int = c(i1, i2)[WAVE_NON]
+ slope = c(slope1, slope2)[WAVE_NON]
+ Y.pred = int + slope * log(DBH)
+ -sum(dnorm(logcones, mean = Y.pred, sd = sigma,

“Bolker” — 1/9/2008 — 15:39 — page 314

−1
0
1

314 • C H A P T E R 9

+ log = TRUE))
+ }
> m1 = mle2(ancovafun, start = list(i1 = -2, i2 = -2,
+ slope1 = 2.5, slope2 = 2.5, sigma = 1),
+ data = firdata)
> AIC(m1)

[1] 704.658

The maximum likelihood fit gives the same AIC as the lm fit. You can’t always
take this equality for granted, since different models that are formally equivalent
may include different constants in the likelihood, and different functions may count
the number of parameters differently. This is especially true when comparing results
from different statistics packages.

As pointed out in the text, the models are parameterized differently:

> coef(lm.dwi)

(Intercept) log(DBH) WAVE_NONw
-2.3871702 2.7303449 0.5162954

log(DBH):WAVE_NONw
-0.2630837

> coef(m1)

i1 i2 slope1 slope2 sigma
-2.387134 -1.870762 2.730329 2.467205 1.016441

You can check that the answers are equivalent; for example, the slope of the wave
population is slope2 = 2.467 = logDBH + logDBH:WAVE_NONw.

To do the full model comparison with mle2, you have to construct a series of
nested models (analogous to lm.dw, lm.d, lm.w, lm.0). This is a bit tedious—one
reason for using built-in functions where possible. You may want to read about
the model.matrix function, which can simplify model construction. model.matrix
uses a user-specified formula to construct a design matrix that, when multiplied by
a vector of parameters, gives the expected value of each data point. By default the
design matrix uses parameters that represent baseline levels and differences among
groups, as in lm and glm. mle2’s formula interface uses model.matrix internally, so
that (e.g.) you can easily fit the full ANCOVA model by specifying

> mle2(log(TOTCONES + 1) ˜ dnorm(logDBH * WAVE_NON),
+ data = firdata, start = ...)

Congratulations
You have now finished the first part of the book, which covers all the important basic
tools. You know everything you need to know to fit reasonably complex, realistic
ecological models to you data.

“Bolker” — 1/9/2008 — 15:39 — page 315

−1
0
1

S T A N D A R D S T A T I S T I C S R E V I S I T E D • 315

Warning
Models with multiple levels of variability and dynamical models, the subjects of the
last two chapters, are much harder to create and fit from scratch. Powerful and
specialized statistical methods that have been developed to handle these problems
are beginning to make their way into ecology. The second part of the book will give
a brief overview of these topics, but to use them in any serious way you will have to
go to a specialized reference such as Gelman and Hill (2006) or Clark (2007) to learn
more. The good news is that the concepts and terminology you have now learned
should speed up the learning process considerably.

If your brain is full after the first part of the book, stop here. If you are eager
for more, read on. If you are already swamped but desperately need to incorporate
multiple levels of variability in your analysis, see Section 10.4.3 for ways of avoiding
multilevel models. If you are swamped but must do something to estimate parameters
for a dynamic model, see Section 11.4.

“Bolker” — 1/9/2008 — 15:39 — page 316

−1
0
1

10 Modeling Variance

This chapter addresses models that incorporate more than one kind of variability,
variously called mixed, multilevel, multistratum, or hierarchical models. It starts by
considering data with (1) changing amounts of variability or (2) correlation among
data points. These kinds of data can be modeled adequately with the tools introduced
in previous chapters. The last part of the chapter considers data with two or more
qualitatively different sources of variability. These kinds of data are much more
challenging to model, but they can be fitted with analytical or numerical integration
techniques or via MCMC. This chapter is more conceptual and less technical than
previous chapters.

10.1 Introduction

Throughout this book we have partitioned ecological models into deterministic
(Chapter 3) and stochastic (Chapter 4) submodels. For example, we might use a
deterministic logistic function to describe changes in mean population density with
increasing rainfall and a Gamma stochastic distribution to describe the natural vari-
ation in population density at a particular level of rainfall. We have focused most of
our attention on constructing the deterministic model and testing for differences in
parameters among groups or as a function of covariates. For the stochastic model, we
have stuck to fitting single parameters such as the variance (for normally distributed
data) or the overdispersion parameter (for negative binomially distributed data) to
describe the variability around the deterministic expectation. We have assumed that
the variance parameter is constant within groups, and that we can use a single
distribution to describe the variability.

This chapter will explore more sophisticated stochastic models for ecological
data. Section 10.2 is a warmup, presenting models where the variance may differ
among groups or change as a function of a covariate. These models are easy to fit
with our existing tools. Section 10.3 briefly reviews models for correlation among
observations, useful for incorporating spatial and temporal structure.

Sections 10.4 and 10.5 tackle models that incorporate more than one type of
variability, referred to as mixed, multilevel, multistratum, or hierarchical models.

“Bolker” — 1/9/2008 — 15:39 — page 317

−1
0
1

M O D E L I N G V A R I A N C E • 317

Section 10.4 discusses how to use canned procedures in R to fit multilevel models—
or to cheat and avoid fitting multilevel models at all—while Section 10.5 briefly
describes strategies for tackling more general multilevel models.

The most common multilevel models are block models, which divide observa-
tions into discrete groups according to their spatial or temporal locations, genetic
identity, or other characteristics. The model assigns each block a different ran-
dom mean, typically drawn from a normal or log-normal distribution. Individual
responses within blocks vary around the block mean, most frequently according
to a normal distribution but sometimes according to a Poisson or binomial sam-
pling distribution. In survival analysis, block models are called shared frailty models
(Therneau et al., 2003).

Individual-level models allow for variation at the individual rather than the
group level. When individuals are measured more than once, the resulting repeated-
measures models can be analyzed in the same way as block models. They may also
allow for temporal correlation among measurements, and more sophisticated ver-
sions can quantify random variation among individuals in the parameters of
nonlinear models (Vigliola et al., 2007).

When individuals are measured only once, we lose most of our power to discrim-
inate among-individual and within-individual variation. We can still make progress,
however, if we assume that the observed variation in individual responses is a com-
bination of among-individual variation in a mean response and a random sampling
process (either in the ecological process itself, or in our measurement of it) that leads
to variation around the mean. The combination of among-individual and sampling
variation results in a marginal distribution (the distribution of observations, includ-
ing both levels of variability) that is overdispersed, or more variable than expected
from the sampling process alone.

Finally, when individuals or populations are measured over time we have to
distinguish between measurement and process error, because these two sorts of vari-
ability act differently on ecological dynamics. Process error feeds back to affect the
ecological system in the next time step, while measurement error doesn’t. We defer
analysis of such dynamical models to Chapter 11.

Building models that combine several deterministic processes is straightforward.
For example, if we know the functions for mean plant biomass as a function
of light availability (say B(L) = aL/(b + L)) and for mean fecundity as a func-
tion of biomass (say F(B) = cBd), we can easily combine them mathematically in
order to use the combined function in a maximum likelihood estimate (F(L) =
c(aL/(b + L))d).∗ Incorporating multiple levels of variability in a model is harder
because we usually have to compute an integral in order to average over all the dif-
ferent ways that different sources might combine to produce a particular observation.
For example, suppose that the probability that a plant establishes in an environment
with light availability L is PL(L) dL (where PL is the probability density) and the
probability that it will grow to biomass B at light level L is PBL(B, L) dB. Then the
marginal probability density PB(B) that a plant at a randomly chosen location will
have biomass B is the combination of the all the different probabilities of achieving
biomass B at different light levels:

∫
PB(B, L)PL(L) dL.

∗ Although we may not be able to estimate all the parameters separately. In this case, we can estimate
cad but cannot estimate c and ad separately; see p. 333.

“Bolker” — 1/9/2008 — 15:39 — page 318

−1
0
1

318 • C H A P T E R 10

Computing these integrals analytically is often impossible, but for some mod-
els the answer is known (Section 10.5.1). Otherwise, we can either use numerical
brute force to compute them (Section 10.5.2) or use Markov chain Monte Carlo to
compute a stochastic approximation to the integral (Section 10.5.3). These methods
are challenging enough that, in contrast to the models of previous chapters, you will
often be better off finding an existing procedure that matches the characteristics of
your data rather than coding the model from scratch.

10.2 Changing Variance within Blocks

Once we’ve thought of it, it’s simple to incorporate within-block changes in variance
into an ecological model. All we have to do is define a sensible model that describes
how a variance parameter changes as a function of predictor variables. For example,
Figure 10.1 shows data on glacier lilies (Erythronium glandiflorum) that display the
typical triangular, or “factor-ceiling,” profile of many ecological data sets (Thomson
et al., 1996). The triangular distribution is often caused by an environmental variable
that sets an upper limit on an ecological response rather than determining its precise
value. In this case, the density of adult flowers (or something associated with adult
density) appears to set an upper limit on the density of seedlings, but the number of
seedlings varies widely below the upper limit. I fitted the model

S ∼ NegBinom(µ = a, k = ced·f), (10.2.1)

where S is the observed number of seedlings and f is the number of flowers. The mean
µ is constant, but the overdispersion parameter k increases (and thus the variance
decreases) as the number of flowers increases. The R negative log-likelihood function
for this model is

> nlikfun = function(a, c, d) {
+ k = c * exp(d * flowers)
+ -sum(dnbinom(seedlings, mu = a, size = k, log = TRUE))
+ }

Alternatively, the mle2 formula would be

> mle2(seedling ˜ dbinom(mu = a, size = c * exp(d *
+ flowers)), ...)

This function resembles our previous examples, except that the variance parameter
rather than the mean parameter changes with the predictor variable (f or flowers).
Figure 10.1 shows the estimated mean (which is constant) and the estimated upper
90%, 95%, and 97.5% quantiles, which look like stair-steps because the negative
binomial distribution is discrete. It also shows a nonparametric density estimate for
the mean and quantiles as a function of the number of flowers, as a cross-check of
the appropriateness of the parametric negative binomial model. The patterns agree
qualitatively—both models predict a roughly constant mean and decreasing upper
quantiles. Testing combinations of models that allow mean, variance, both, or neither

“Bolker” — 1/9/2008 — 15:39 — page 319

−1
0
1

M O D E L I N G V A R I A N C E • 319

Flowers

S
ee

dl
in

gs

12080400

0

5

10

15

20

25 0.975

0.95

0.9

30

35

mean

mean

q(0.9)
q(0.95)
q(0.975)

Figure 10.1 Lily data from Thomson et al. (1996); jittered numbers of seedlings as a func-
tion of number of flowers. Black lines show fit of a negative binomial model with constant
mean and increasing k/decreasing variance; gray lines are from a nonparametric density
estimate.

to vary with the numbers of flowers suggests that the best model is the constant model,
but the model fitted here (constant mean, varying k) is the second best, better than
allowing the mean to decrease while holding k constant. Thomson et al. (1996)
suggested a pattern where the ceiling actually increases initially at small numbers of
flowers, but this pattern is hard to establish definitively.

The same general strategy applies for the variance parameter of other distri-
butions such as the variance of a normal distribution or log-normal distribution,
the shape parameter of the Gamma distribution, or the overdispersion parameter of
the beta-binomial distribution. Just as with deterministic models for the mean value,
the variance might differ among different groups or treatment levels (represented as
factors in R), might change as a function of a continuous covariate as in the example
above, or might depend on the interactions of factors and covariates (i.e., different
dependence of variance on the covariate in different groups). Just the variance, or
both the mean and the variance, could differ among groups. Use your imagination
and your biological intuition to decide on a set of candidate models, and then use
the LRT or AIC values to choose among them.

“Bolker” — 1/9/2008 — 15:39 — page 320

−1
0
1

320 • C H A P T E R 10

Variance parameters are best fit on the log scale (log σ 2, log k, etc.) to make
sure the variances are always positive. For fitting to continuous covariates, use
nonnegative functions such as the exponential (σ 2 = aebx) or power (σ 2 = axb), for
the same reason.

When using a normal distribution to model the variability is reasonable, you
can use the built-in functions gls and gnls from the nlme package: gls fits linear
and gnls fits nonlinear models. These models are called generalized (non)linear least
squares models.∗ The weights argument allows a variety of relationships (exponen-
tial, power, etc.) between covariates and the variance. For example, using the fir
data, suppose we wanted to fit a power-law model for the mean number of cones as
a function of DBH and include a power-law model for the variance as a function of
DBH:

cones ∼ Normal(µ = aDBHb, σ 2 = DBHc). (10.2.2)

Fitting the model with gnls:

> data(FirDBHFec)
> firdata = na.omit(FirDBHFec)
> gnls(TOTCONES ˜ a * DBHˆb, data = firdata,
+ weights = varPower(form = ˜DBH), start = list(a = 1,
+ b = 1))

The syntax of weights argument is a bit tricky: Pinheiro and Bates (2000) is
essential background reading.

10.3 Correlations: Time-Series and Spatial Data

Up to now we have assumed that the observations in a data set are all indepen-
dent. When this is true, the likelihood of the entire data set is the product of the
likelihoods of each observation, and the negative log-likelihood is the sum of the
negative log-likelihoods of each observation. Every negative log-likelihood function
we have written has contained code like -sum(ddistrib(...,log=TRUE)), either
explicitly or implicitly, to capitalize on this fact. With a bit more effort, however, we
can write and numerically optimize likelihood functions that allow for correlations
among observations.

It’s best to avoid correlation entirely by designing your observations or exper-
iments appropriately. Correlation among data points is a headache to model, and
it always reduces the total amount of information in the data: correlation means
that data points are more similar to each other than expected by chance, so the
total amount of information in the data is smaller than if the data were independent.
However, if you are stuck with correlated data—for example, because your samples
come from a spatial array or a time series—all is not lost. Moreover, sometimes the
correlation in the data is biologically interesting: for example, the range of spatial
correlation might indicate the spatial scale over which populations interact.

∗ Not to be confused with general linear models or generalized linear models!

“Bolker” — 1/9/2008 — 15:39 — page 321

−1
0
1

M O D E L I N G V A R I A N C E • 321

The standard approach to correlated data is to specify a likelihood of correlated
data, usually using a multivariate normal distribution. The probability distribution
of the multivariate normal distribution (dmvnorm in the emdbook package) is

MVN(x, µ, V) = 1√
(2π)n|V| exp

(
1
2

(x − µ)TV−1(x − µ)
)

, (10.3.1)

where x is a vector of data values, µ is a vector of means, and V is the variance-
covariance matrix (|V| is the determinant of V—see below—and T stands for
transposition). The formula looks scary, but like most matrix equations you can
understand it by making analogies to the scalar (i.e., nonmatrix) equivalent, in this
case the univariate normal distribution

N(x) = 1/
√

2πσ 2 exp ((x − µ)2/(2σ 2)). (10.3.2)

The term exp (1
2 (x − µ)TV−1(x − µ)) is the most important part of the formula, equiv-

alent to the exp (− (x − µ)2/(2σ 2)) term in the univariate normal distribution. (x − µ)
is the deviation of the observations from their theoretical mean values. Multiplying
by V−1 is equivalent to dividing by the variance, and multiplying by (x − µ)T is
equivalent to squaring the deviations from the mean. The stuff in front of this term
is the normalization constant. The |V| matches the σ 2 in the normalization constant
of the univariate normal, and the

√
2π term is raised to the nth power to normalize

the n-dimensional probability distribution.
If all the points are actually independent and have identical variances, then the

variance-covariance matrix is a diagonal matrix with σ 2 on the diagonal:

V =




σ 2 0 . . . 0
0 σ 2 . . . 0
...

...
. . .

...

0 0 . . . σ 2


 . (10.3.3)

Comparing (10.3.1) and (10.3.2) one term at a time shows that the multivariate
normal reduces to a product of identical univariate normal probabilities in this case.
For a diagonal matrix with σ 2 on the diagonal, the inverse is a diagonal matrix with
1/σ 2 on the diagonal, so the matrix multiplication (x − µ)TV−1(x − µ) works out
to
∑

i (xi − µi)2/σ 2—the sum of squared deviations. Exponentiating this sum gives
a product. For a diagonal matrix, the determinant |V| is the product of the diagonal
elements, so for the identical-variance case |V| = (σ 2)n, which equals the product of
the normalizing constants for n independent normal distributions.

If the points are independent but each point has a different variance—like assign-
ing different variances to different groups with one individual in each group—then

V =




σ 2
1 0 . . . 0
0 σ 2

2 . . . 0
...

...
. . .

...

0 0 . . . σ 2
n


 . (10.3.4)

Carrying through the exercise of the previous paragraph will show that the multivari-
ate normal reduces to a product of univariate normals, each with its own variance.

“Bolker” — 1/9/2008 — 15:39 — page 322

−1
0
1

322 • C H A P T E R 10

The exponent term is now half the weighted sum of squares
∑

(xi − µi)2/(σ 2
i), with

the deviation for each point weighted by its own variance; data points with larger
variances have less influence on the total.

Most generally,

V =




σ 2
1 σ12 . . . σ1n

σ21 σ 2
2 . . . σ2n

...
...

. . .
...

σn1 σn2 . . . σ 2
n


 . (10.3.5)

The off-diagonal elements σij quantify the covariance between points i and j. We
could also specify this information in terms of the correlation matrix C = {ρij} ={
σij/
√

σ 2
i σ 2

j

}
. The diagonal elements of the correlation matrix ρii all equal 1, and

the off-diagonal elements range between −1 (perfect anticorrelation) and 1 (perfect
correlation). The variance-covariance matrix V must be symmetric (i.e., σij = σji). In
this case there is no way to express the exponent as a sum of independent normals, but
its meaning is the same as in the previous cases: it weights combinations of deviations
by the appropriate variances and covariances.

To fit a correlated multivariate normal model, you would need to specify param-
eters for the variance-covariance matrix V. In principle you could specify n(n + 1)/2
different parameters for each of the distinct entries in the matrix (since the matrix is
symmetric there are n(n + 1)/2 rather than n2 distinct entries), but there are two rea-
sons not to. First, such a general parameterization takes lots of parameters. Unless we
have lots of data, we probably can’t afford to use up so many parameters specifying
the variance-covariance matrix. Second, in addition to being symmetric, variance-
covariance matrices must also be positive definite, which means essentially that the
relationships among points must be consistent.∗For example,

V =

 1 0.9 −0.9

0.9 1 0.9
−0.9 0.9 1


 (10.3.6)

is not a valid correlation matrix, even though it is symmetric.† It states that site 1 is
strongly positively correlated with site 2 (ρ12 = 0.9), and site 2 is strongly correlated
with site 3 (σ23 = 0.9), but site 1 is strongly negatively correlated with site 3 (σ13 =
−0.9), which is not possible.

For these two reasons, modelers usually select from established correlation mod-
els that (1) use a small number of parameters to construct a full variance-covariance
(correlation) matrix and (2) ensure positive definiteness. For example,

V = σ 2C = σ 2




1 ρ ρ2 . . . ρn

ρ 1 ρ . . . ρn−1

...
...

...
. . .

...

ρn ρn−1 ρn−2 . . . 1


 , (10.3.7)

∗ Technically, positive definiteness means that the matrix must have all positive eigenvalues.
† Its eigenvalues are 1.9 (repeated twice) and −0.8.

“Bolker” — 1/9/2008 — 15:39 — page 323

−1
0
1

M O D E L I N G V A R I A N C E • 323

with |ρ| < 1, specifies a correlation matrix C corresponding to sites arranged in a
line—or data taken in a temporal sequence—where correlation falls off with the
number of steps between sites (sampling times): nearest neighbors (sites 1 and 2, 2
and 3, etc.) have correlation ρ, next-nearest neighbors have correlation ρ2, and so
forth.∗ Other correlation models allow correlation ρij to drop to zero at some thresh-
old distance, or to be a more general function of the spatial distance between sites.

Three different areas of classical statistics use multivariate normal distributions
to describe correlation among observations. Repeated-measures ANOVA is a form
of analysis of variance that allows the errors to be nonindependent in some way,
particularly by building in individual-level variation (see Section 10.4.1) but also
by allowing for correlation between successive points in time. Time-series models
(Chatfield, 1975; Diggle, 1990; Venables and Ripley, 2002) and spatial models (Rip-
ley, 1981; Cressie, 1991; Kitanidis, 1997; Venables and Ripley, 2002; Haining,
2003) specify correlation structures that make sense in temporal and spatial contexts,
respectively.

Generalized least-squares (g[n]ls) allows for correlation among observations,
using the correlation argument. These functions include a variety of standard mod-
els for temporal and spatial autocorrelation; see ?corClasses (in the nlme package)
and Pinheiro and Bates (2000) for more details. The lme and nlme functions, which
fit repeated-measures models, also have a correlation argument. The ts package
implements time-series models, which incorporate correlation, although the descrip-
tion and methods used are different from the more general models described here.
The spatial package will fit trend lines and surfaces with spatial correlation between
points.

To construct variance-covariance functions to use in your own custom-made
likelihood functions, start with the matrix function (for general matrices) or diag (for
diagonal matrices) and extend them. For example, diag(4) produces a 4 × 4 identity
matrix (with 1 on the diagonal); diag(c(2,3,4)) produces a 3 × 3 diagonal matrix
with variances of 2, 3, and 4 on the diagonal. The row and col functions, which
return matrices encoding row and column numbers, are also useful. For example,
d=abs(row(M)-col(M)) produces a absolute-value distance matrix {|i − j|} with the
same dimensions as M, and rhoˆd produces correlation matrix (10.3.7). The slightly
tricky code ifelse(d==0,1,ifelse(d==1,rho,0)) produces a matrix with 1 on the
diagonal, rho on the first off-diagonal, and 0 elsewhere, corresponding to correlation
only among nearest-neighbor sites.

If your data are irregularly spaced or two-dimensional, you can start by com-
puting a matrix of the distances between points, using d=as.matrix(dist(cbind
(x,y))).† Then you can easily use the distance matrix to compute exponential
(proportional to e−d), Gaussian (proportional to e−d2

), or other spatial correlation
matrices. Consult Venables and Ripley (2002) or a spatial statistics reference for
more details.

∗ This correlation matrix is sometimes referred to as AR(1), meaning “autoregressive order 1,” mean-
ing that each point is correlated directly with its first neighbor. The higher powers of ρ with distance arise
because of a chain of correlation: next-nearest neighbors are correlated through their mutual neighbor,
and so on.

† dist(cbind(x,y)) computes the distances between x and y but returns the answer as a dist object.
It is more useful in this case to use as.matrix to convert it to a matrix.

“Bolker” — 1/9/2008 — 15:39 — page 324

−1
0
1

324 • C H A P T E R 10

Once you have constructed a correlation matrix, multiply it by the variance to get
a covariance matrix suitable for use with the dmvnorm density function, for example,
negative log-likelihood

> -dmvnorm(z, mu, Sigma = V, log = TRUE)

where z is a vector of data, mu is a mean vector, and V is one of the variance-
covariance matrices defined above. You can use the mvrnorm command from
the MASS package to generate random, correlated normal deviates. For example,
mvrnorm(n=1,mu=rep(3,5),Sigma=V) produces a five-element vector with a mean
of 3 for each element and variance-covariance matrix V. Asking mvrnorm for more
than one random deviate (n > 1) will produce a five-column matrix where each row
is a separate draw from the multivariate distribution.

Statisticians usually deal with correlated data that is nonnormal (e.g., Poisson
or binomial) by combining a multivariate normal model for the underlying mean
values with a nonnormal distribution based on these varying means. We usually
exponentiate the MVN distribution to get a multivariate lognormal distribution so
that the means are always positive. For example, to model correlated Poisson data
we could assume that �(x), the vector of expected numbers of counts at each point,
is the exponential of a multivariate normally distributed variable:

Y ∼ Poisson(�)

� ∼ exp (MVN(µ, V)).
(10.3.8)

Here Y is a vector of counts at different locations; � (a random variable) is a vec-
tor of expected numbers of counts (intensities); µ is a vector of the logs of the
average intensities; and V describes the variance and correlation of intensities. If
we had already used one of the recipes above to construct a variance-covariance
matrix V, and had a model for the mean vector mu, we could simulate the values as
follows:

> Lambda = exp(mvrnorm(1, mu = mu, Sigma = V))
> Y = rpois(length(mu), Lambda)

Unfortunately, even though we can easily simulate values from this distribution,
writing down a likelihood for this model is difficult because there are two different
levels of variation. The rest of the chapter discusses how to formulate and estimate
the parameters for such multilevel models.

10.4 Multilevel Models: Special Cases

While correlation models assume that samples depend on each other as a function
of spatial or temporal distance, with overlapping neighborhoods in space or time,
traditional multilevel models usually break the population into discrete groups such
as family, block, or site. Within groups, all samples are equally correlated with each
other. If samples 1 and 2 are from one site and samples 3 and 4 are from another,

“Bolker” — 1/9/2008 — 15:39 — page 325

−1
0
1

M O D E L I N G V A R I A N C E • 325

each pair would be correlated and we would write down this variance-covariance
matrix:

V = σ 2C = σ 2




1 ρ 0 0
ρ 1 0 0
0 0 1 ρ

0 0 ρ 1


 . (10.4.1)

Equivalently, we could specify a random-effects model that gives each group its own
random offset from the overall mean value. The correlation model (10.4.1) is formally
identical to a random-effects model where the value of the jth individual in the ith
group is

Yij = εi + εij, (10.4.2)

where εi ∼ N(0, σ 2
b) is the level of the random effect in the ith block and εij ∼ N(0, σ 2

w)
is the difference of the jth individual in the ith block from the block mean. The
among-group variance σ 2

b and within-group variance σ 2
w correspond to the correla-

tion parameters (ρ,σ 2):

σ 2
b = ρσ 2, σ 2

w = (1 − ρ)σ 2. (10.4.3)

Classical models usually describe variability in terms of random effects because
constructing huge variance-covariance matrices is very inefficient.

10.4.1 Fitting (Normal) Mixed Models in R

Some special kinds of block models can be fitted with existing tools in R and in many
other statistics packages. Models with two levels of normally distributed variation
are called mixed-effect models (or just mixed models) because they contain a mixture
of random (between-group) and fixed effects. Classical block ANOVA models such as
split-plot and nested block models fall into this category (Quinn and Keogh, 2002;
Gotelli and Ellison, 2004). If the variation in your model is normally distributed,
your predictors are all categorical, and your design is balanced, you can use the aov
function with an Error term to fit mixed models (Venables and Ripley, 2002). The
nlme package, and the newer, more powerful (but poorly documented) lme4 package
fit a far wider range of mixed models (Pinheiro and Bates, 2000; Gelman and Hill,
2006). These packages allow for unbalanced data sets as well as random effects
on parameters (e.g., ANCOVA with randomly varying slopes among groups), and
nonlinear mixed-effect models (e.g., an exponential, power-law, logistic, or other
nonlinear curve with random variation in one or more of the parameters among
groups).

10.4.2 Generalized Linear Mixed Models

Generalized linear mixed models, or GLMMs, are a cross between mixed mod-
els and generalized linear models (p. 308). GLMMs combine link functions and

“Bolker” — 1/9/2008 — 15:39 — page 326

−1
0
1

326 • C H A P T E R 10

exponential-family variation with random effects. The random effects must be nor-
mally distributed on the scale of the linear predictor—meaning on the scale of the
data as transformed by the link function. For example, for a Poisson model with
a log link, the between-group variation would be log-normal. GLMMs are cutting
edge, and the methods for solving them are evolving rapidly. The glmmPQL function
in the MASS package can fit an approximation to GLMMs, but one that is sometimes
inaccurate (Breslow and Clayton, 1993; Breslow, 2003; Jang and Lim, 2005). The
glmmML and lme4 offer more robust GLMM fitting algorithms (use lmer with the
family argument); so does J. Lindsey’s repeated package, documented in his book
(Lindsey, 1999) and available on his Web page (linked under “Related Projects” on
the R project page). If you want to be thorough, it may also be worth cross-checking
your results with PROC MIXED or NLMIXED in SAS.

R has built-in capabilities for incorporating random effects into a few other
kinds of models. Generalized additive mixed models (GAMMs) (gamm in the mgcv
package) allow random effects and exponential-family variation with models where
spline curves make up the deterministic part of the model. Frailty models (frailty
in the survival package) incorporate Gamma, t, or normally distributed varia-
tion among groups in a survival analysis. Some other variations such as nonnormal
repeated-measures models are described by Lindsey (1999a, 2001, 2004).

10.4.3 Avoiding Mixed Models

Even when canned packages are available, fitting mixed models can be difficult. The
algorithms do not always converge, especially when the number of groups is small. If
your design is linear, balanced, and has only two levels of random effects (i.e., among
and between blocks), then aov should always work, but otherwise you may be at a
loss.

If you want to avoid fitting mixed models altogether, one option is to fit fixed-
effect models instead, estimating a parameter for each group rather than a random
variable for the among-group variation (Clark and Poulsen et al., 2005). You will
probably lose some power this way, so the results are likely to be conservative.∗ As
a second option, Gotelli and Ellison (2004, p. 182) suggest that when you have a
simple nested design (i.e., subsamples within blocks) you should often just collapse
each group’s data by computing its mean and do a single-level analysis. This will
be disappointing if you were hoping to glean information about the within-group
variance, but it is simple and in many cases will give the same p-value as the classical
algorithm coded by aov. Finally, you can try to convince yourself (and your reviewers,
readers, or supervisor) that between-group variation is unimportant by fitting the
model ignoring blocks and then examining the variation of the residuals between
blocks both graphically and statistically. To justify ignoring between-group variation
in the model, you must show that the between-group variation in the residuals is both
statistically and biologically irrelevant. Biologically relevant variation is an important
warning sign even if it is not statistically significant.

∗ The distinction between fixed effects and random effects is murky in any case; see Crawley (2002,
p. 670) for some rules of thumb, and Gelman (2005, p. 20) for more than you ever wanted to know about
the level of debate even among statisticians about the meaning of these terms.

“Bolker” — 1/9/2008 — 15:39 — page 327

−1
0
1

M O D E L I N G V A R I A N C E • 327

10.5 General Multi-Level Models

Now suppose that your data do not allow analysis by classical tools and that you are
both brave and committed to finding out what a multilevel model can tell you.

10.5.1 Analytical Models for Marginal Distributions

In some cases, it may be possible to solve the integrals that arise in multilevel problems
analytically. In this case you can fit the marginal distribution directly to your data. The
marginal distribution describes the combination of multiple stochastic processes but
doesn’t attempt to provide information about the individual processes—analogous to
knowing the row and column sums (the marginal totals) of a table without knowing
the distribution of values within the table.

If you’re comfortable with math, you can read an advanced treatment such
as Bailey (1964) or Pielou (1977) to learn how to solve these problems. Otherwise,
you should do some research to see if someone has already found the answer for
your model. The most common of these distributions—the negative binomial aris-
ing from a Poisson sampling process with underlying Gamma-distributed variability,
the beta-binomial arising from binomial sampling with underlying Beta-distributed
variability, and the Student t distribution arising from normally distributed variation
with Gamma-distributed variability in the inverse variance—were already discussed
on p. 139. Zero-inflated distributions (p. 139) are another example of a multilevel
process—the combination of a presence/absence process and a discrete sampling
process—for which it is fairly easy to figure out the marginal distribution.

If your multilevel process involves summing several values—for example, if the
measured value is the sum of a normally distributed block mean and a normally dis-
tributed individual variation—then the marginal distribution is called a convolution.
If X and Y are random variables with probability densities PX and PY , then the
probability density of X + Y is

PX+Y (z) =
∫

PX(x) · PY (z − x) dx. (10.5.1)

The intuition behind this equation is that we are adding up all the possible ways
we could have gotten z. If X = x, then the value of Y must be z − x in order for
X + Y to equal z, so we can calculate the total probability by integrating over all
values of x. The convolutions of distributions with themselves—i.e., the distribution
of sums of like variables—can sometimes be solved analytically. The sum of two
normal variables N(µ1, σ 2

1) and N(µ2, σ 2
2) is also normal (N(µ1 + µ2, σ 2

1 + σ 2
2)); the

sum of two Poisson variables is also Poisson (Pois(λ1) + Pois(λ2) ∼ Pois(λ1 + λ2));
and the sum of n exponential variables with the same mean is Gamma distributed
with shape parameter n. These solutions are simple, but they also warn us that
we may sometimes face an identifiability problem (p. 333) when we try to separate
multiple levels of variability. If we know only that the sum of two normally dis-
tributed variables is N(µ, σ 2), then we can’t recover any more information about
the means and variance of the individual variables—except that the variances are
between 0 and σ 2. (In the case of classical block models we also know which

“Bolker” — 1/9/2008 — 15:39 — page 328

−1
0
1

328 • C H A P T E R 10

group any individual belong to, so we can partition variability within and among
groups.)

10.5.2 Numerical Integration

If you can’t find anyone who has computed the marginal distribution for your
problem analytically, you may still be able to compute it numerically.

A common problem in forest ecology is estimating the distribution of growth
rates gi of individual trees in a stand from size measurements Si in successive censuses:
gi = Si,2 − Si,1. Foresters commonly assume that adult trees can’t shrink, or at least
not much, but it’s typical to observe a small proportion of individuals in a data set
whose measured size in the second census is smaller than their initial size. If we really
think that measurement error is negligible, then we’re forced to conclude that the
trees actually shrank. It’s standard practice to go through the data set and throw out
negative growth values, along with any that are unrealistically big. Can we do better?

Although it is sensible to throw out really extreme values, which may represent
transcription errors (being careful to keep the original data set intact and document
the rules for discarding outliers), we may be able to extract information from the
data set both about the “true” distribution of growth rates and about the distribution
of errors. The key is that the distributions of growth and error are assumed to be
different. The error distribution is symmetric and narrowly distributed (we hope)
around zero, while the growth distribution is positive and right-skewed. Thus the
negative tail of the distribution tells us about error—negative values must contain at
least some error.

Specifically, let’s assume a Gamma distribution of growth (we could equally well
use a lognormal) and a normal distribution of error. The growth distribution has
parameters a (shape) and s (scale), while the error distribution has just a variance
σ 2—we assume that errors are equally likely to be positive or negative, so the mean
is zero. Then

Ytrue ∼ Gamma(s, a)

Yobs ∼ Normal(Ytrue, σ 2).
(10.5.2)

For normally distributed errors, we can also express this as the sum of the true value
and an error term:

Yobs = Ytrue + ε, ε ∼ Normal(0, σ 2). (10.5.3)

According to the convolution formula, the likelihood of a particular observed value is

P(Yobs|a, s, σ 2) = P(Ytrue + ε = Yobs|a, s, σ 2)

=
∫

P(Ytrue = Yobs − ε|a, s) · P(ε|σ 2) dε. (10.5.4)

The log-likelihood for the whole data set is

L =
∑

log
∫

P(Ytrue = Yobs − ε|a, s) · P(ε|σ 2) dε. (10.5.5)

“Bolker” — 1/9/2008 — 15:39 — page 329

−1
0
1

M O D E L I N G V A R I A N C E • 329

TABLE 10.1

True MLE Quadratic Profile

Shape (a) 3 2.98 2.86– 3.10 2.58– 3.49

Scale (s) 10 10.37 9.79–10.95 8.84–12.03

σ 10 9.06 8.75– 9.37 8.06–10.59

Unfortunately we can’t interchange the logarithm and the integral, which would
make everything much simpler.

We can easily simulate some fake “data” from this system with plausible
parameters in order to test our approach:

> set.seed(1001)
> x.true = rgamma(1000, shape = 3, scale = 10)
> x.obs = rnorm(1000, mean = x.true, sd = 10)

In the R supplement (Section 10.8), I defined a getdist function that implements
(10.5.2)–(10.5.5). I then used mle2 and confint to find the maximum likelihood
values and profile confidence limits (Table 10.1). It was slow, though: it took about
3 minutes (for a total of 137 function evaluations) to find the MLE using Nelder-
Mead and 164 minutes to calculate the profile confidence intervals. The estimates
are encouragingly close to the true values, and the confidence limits are reasonable.
The quadratic confidence intervals, while too narrow for σ , are close enough to the
profile confidence intervals that the extra 2.5 hours of computation may have been
unnecessary. Figure 10.2 plots the observed histogram along with the estimated and
true distributions of actual growth rates and the estimated and true distributions of
measurement error. Excitingly, we can actually recover accurate information about
the growth rates and the measurement process in this example.

Numerical integration works well here, although it’s slow if we insist on calcu-
lating profile confidence limits. Hand-coded numerical integration in R will always
be slower, and less stable, than the special-case algorithms built into packages like
lme4 or glmmML. A commercial package called AD Model Builder uses sophisticated
integration techniques to solve some very difficult multilevel modeling problems, but
I have not evaluated it (Kitakado et al., 2006; Skaug and Fournier, 2006). Gelman
and Hill (2006) primarily use R and BUGS to fit multilevel models, but they provide
an appendix that describes how to fit some multilevel models in SAS, AD Model
Builder, and other packages. Brute-force numerical integration can work reasonably
well as long as you have enough data (both enough individual data points and enough
groups) and as long as your problem has only one, or at most two, random variables
to integrate. The estimation process is fairly straightforward, and numerical failures
are usually obvious—although you should do all the usual checks for convergence.

10.5.3 MCMC for Mixed Models

Most of the time, brute-force numerical integration as illustrated above is just too
hard. Once you have to integrate over more than one or two random variables,

“Bolker” — 1/9/2008 — 15:39 — page 330

−1
0
1

330 • C H A P T E R 10

Observed growth rate

100500

0.000

0.005

0.010

0.015

0.020

0.025

0.030
P

ro
ba

bi
lit

y
de

ns
ity

growth

error

true

estimated

Figure 10.2 True and estimated distributions of growth rates and measurement error for sim-
ulated forest data. Histogram, observed data. Lines, true and estimated distributions of actual
growth rate and measurement error.

computing the integrals becomes extremely slow. MCMC is an alternative way of
doing these high-dimensional integrals, and it gets you confidence limits “for free.”
The disadvantages are that (1) it may be slower than sufficiently clever numerical inte-
gration approximations; (2) you have to deal with the Bayesian framework, including
deciding on a set of reasonable priors (although Lele et al. (2007) recently suggested
a simple method for using MCMC to do ML estimation for multilevel models); and
(3) in badly determined cases where your model is poorly defined or where the data
don’t really contain enough information, BUGS may give you an answer that doesn’t
make sense instead of just crashing—which is really bad.

The BUGS input file for the Gamma-normal model is extremely simple:

model {
for (i in 1:N) {

x.true[i] ˜ dgamma(sh,rate)
x.obs[i] ˜ dnorm(x.true[i],tau)

}
sh ˜ dgamma(0.01,0.01)
rate ˜ dgamma(0.01,0.01)
tau ˜ dgamma(0.01,0.01)

}

“Bolker” — 1/9/2008 — 15:39 — page 331

−1
0
1

M O D E L I N G V A R I A N C E • 331

The first half of the model statement is a direct translation of the model (10.5.2):
for each value in the data set, the observed value is assumed to be drawn from
a normal distribution centered on the true value, which is in turn drawn from a
Gamma distribution (but see Gelman (2006) for possible problems with this choice).

The second half of the model statement specifies vague Gamma-distributed pri-
ors. As mentioned in Chapter 7, BUGS uses slightly different parameterizations from
R for the normal and Gamma distributions. It specifies the normal by the mean and
the precision τ , which is the reciprocal of the variance, and the Gamma by the shape
parameter (just as in R) and the rate parameter, which is the reciprocal of the scale
parameter. The mean of the gamma distribution is shape/rate and the variance is
shape/rate2; thus a standard weak Gamma prior uses equal shape and rate parame-
ters (i.e., a mean of 1), with both the shape and the rate parameter small (i.e., a large
variance). In this case I’ve chosen (0.01, 0.01).

We’d like to run chains starting from overdispersed starting points, as recom-
mended in Chapter 7, so that we can run a Gelman-Rubin diagnostic test to see if the
chains have converged. However, it’s still very important to start with sensible start-
ing values (so that BUGS doesn’t crash or take forever to burn in). A good strategy
is to find a reasonable starting point and then change different parameters by up to
an order of magnitude to get overdispersed starting points.

We can estimate a starting point for the Gamma parameters by fitting a Gamma
distribution just to the nonzero observations:

> pos.obs = x.obs[x.obs > 0]
> f1 = fitdistr(pos.obs, "gamma")

We can estimate a starting value for the precision (τ) by selecting the negative obser-
vations, replicating them with the opposite sign, and calculating the reciprocal of the
variance:

> neg.obs = x.obs[x.obs < 0]
> bineg.obs = c(neg.obs, -neg.obs)
> tau0 = 1/var(bineg.obs)

You’re not required to specify starting values for all of the parameters—if you
don’t, BUGS will pick a random starting value from the prior distribution for that
parameter. However, BUGS will often crash or converge slowly with random starting
values, especially if you use very weak priors. We will start the chains for the true
growth rates from 1 or from the observed growth rate for each individual, whichever
is greater; this strategy avoids negative values for the true growth rate, which are
impossible according to our model.

> tstart = pmax(x.obs, 1)

We specify a list of initial values for each chain; in this case I’ve decided to start
one chain at the values of the crude estimates calculated above, and the other chains
with perturbations of those estimates, with one or the other of the parameters halved
or increased to 150%. I didn’t bother to perturb the starting values for the rate, but
you could in a more thorough analysis.

> clist = as.list(coef(f1))
> params = list(tau = tau0, sh = clist$shape,
+ rate = clist$rate, x.true = tstart)

“Bolker” — 1/9/2008 — 15:39 — page 332

−1
0
1

332 • C H A P T E R 10

> inits = rep(list(params), 5)
> inits[[2]]$tau = 0.5 * tau0
> inits[[3]]$tau = 1.5 * tau0
> inits[[4]]$sh = 0.5 * clist$shape
> inits[[5]]$sh = 1.5 * clist$shape

We need to specify the data for BUGS:

> N = length(x.obs)
> data = list("x.obs", "N")

Finally, we specify for which parameters of the model we want BUGS to save infor-
mation. Of course we want to track the parameters of our model. In addition, it will
be interesting to see what BUGS estimates for the true values, uncorrupted by mea-
surement error, of both the minimum observed value in the data set (which obviously
contains a lot of measurement error, since its value is −15.7) and one of the values
closest to the median.∗

> (minval = which.min(x.obs))

[1] 670

> (medval = which.min(abs(x.obs - median(x.obs))))

[1] 675

> parameters = c("sh", "rate", "tau", "x.true[670]",
+ "x.true[675]")

Running the model:

> gn1.bugs = bugs(data, inits, parameters.to.save =
+ parameters, model.file = "gammanorm.bug",
+ n.chains = length(inits))

BUGS took 264 minutes to run the models. The Gelman-Rubin statistics were
all well below the rule-of-thumb cutoff of 1.2, suggesting that the chains had con-
verged. Using as.mcmc to convert the BUGS result gn1.bugs to a CODA object and
running traceplot and densityplot confirmed graphically that the chains gave
similar answers (Table 10.2), and that the posterior distributions are approximately
normal: the Gelman-Rubin test makes this assumption, so it’s good to check. While
the estimated “true” value of the median point is close to its observed value of 28.2,
the Bayesian model correctly adjusted the estimated true value for the minimum
point from its observed value (− 15.7) to a small but definitely positive value. The
estimates of the values of particular data points have wide distributions—it would
be too good to be true if we could use MCMC to magically get rid of observation
error.

∗ Because the data set has an even number of points, the median value is halfway between the two
values closest to the middle.

“Bolker” — 1/9/2008 — 15:39 — page 333

−1
0
1

M O D E L I N G V A R I A N C E • 333

TABLE 10.2

True Mean 2.5% 97.5%

Shape 3.00 2.993 2.612 3.471

Rate 0.10 0.097 0.084 0.112

τ 0.01 0.012 0.009 0.017

Minimum value 10.70 7.556 1.554 16.780

Median value 24.20 27.053 11.971 42.445

10.6 Challenges

Multilevel models are hard to implement. General linear models like linear regression
represent one extreme, where you can put in any kind of data and know that you
will get a rapid, technically correct (if not necessarily sensible) answer. Multilevel
models represent the other extreme: the methods for fitting them are computation-
ally demanding and must be carefully tuned to a particular type of problem to ensure
an efficient and correct solution. As with analytical solutions, if you are not ready
for a technical challenge, your best bet is to find a prebuilt solution for your class of
models. Another issue we have to face as we incorporate more levels of variability
is identifiability. Unidentifiable parameters are those that are impossible to estimate
separately from our data. For example, if we tried to estimate a linear model with two
different intercepts (Y = a1 + a2 + bX), instead of the more sensible Y = a + bX, any
answer where a1 + a2 = a would fit equally well. We would have the same problem
with the coefficients of two predictor variables that were perfectly correlated. Simi-
larly, there is no way to identify catchability—the probability that you will observe an
individual—from a single observational sample; you simply don’t have the informa-
tion to estimate how many animals or plants you failed to count. Most of these cases
of “perfect” unidentifiability are easily detectable by common sense, although they
can be obscured by complex models. Always remember that there is no free lunch:
if a procedure for estimating parameters seems too good to be true, be suspicious.

Weak identifiability is more common than perfect unidentifiability. Weakly iden-
tifiable parameters are hard to estimate even with large, clean data sets—and practi-
cally impossible to estimate with moderate-size noisy data sets. Identifiability prob-
lems are not limited to multilevel models, but they are particularly common there.
Weak identifiability is related to a lack of statistical power; it means that your model
is structured in such a way that an enormous amount of data or very extreme kinds
of data are needed in order to have the power to differentiate ecological processes.

The best outcome of analyzing an unidentifiable or weakly identifiable model is
for your estimation procedure to crash: at least you will know something is wrong.
The worst outcome is for your estimation procedure to give you a wrong answer, or
one that depends in a sensitive way on the details of your numerical algorithm or
your prior. Weak identifiability in MLE analysis leads either to numerical problems
or to apparently well-defined, but misleadingly precise, answers; weak identifiability

“Bolker” — 1/9/2008 — 15:39 — page 334

−1
0
1

334 • C H A P T E R 10

in MCMC analyses leads to poor convergence. In the worst case, chains may move
through parameter space so slowly that it’s hard to see that they are not converging.
The best defenses against identifiability problems are (1) care and common sense
in defining models (always remember the “no free lunch” principle); (2) examining
model diagnostics—confidence intervals, convergence statistics; and the difference
between prior and posterior distributions; and (3) running models with known inputs
(i.e., simulations), with different amounts of data and different amounts of noise, to
see when they are actually capable of getting the right answers.

Coming to grips with the difficulty of separating different types of variability, like
coming to grips with limitations on statistical power (Chapter 5), can be sobering.
Schnute (1994) says in a paper on state-space models (one kind of multilevel model)
that

the outcome of the analysis often depends critically on the values of [many
variance] parameters, and it is generally impossible to estimate all of them . . .

Statistically, the likelihood surface [may be] “flat”, i.e. insensitive to large
parameter changes. In cases like this, a large number of conflicting scenar-
ios appear equally consistent with the known data, and the analyst has no
objective means to choose among them.

This apparent limitation can be turned into an advantage . . . State space
model design forces essential questions to be asked about underlying pro-
cesses, observed data, and sources of variability. When these questions are
answered honestly, the model may point to scenarios consistent with the
data but in conflict with the prevailing view. If so, the modeling effort can
help to delineate the limits of current knowledge and to establish rational
priorities for future data collection.

Put another way, acknowledging the many different types of uncertainty that actually
exist in our models may make us realize that we know less than we thought we did
about the possible dynamics of our study system, and may drive us to make more
observations, or more useful kinds of observations.

10.7 Conclusion

Why then are multilevel models worth so much effort?
They are clearly the wave of the future in ecological statistics. Books like Gelman

and Hill (2006) and Clark (2007), along with a rapidly growing collection of papers
in ecology and statistical ecology, demonstrate these models’ potential for under-
standing ecological processes. We know that ecological systems are variable at every
level, and multilevel models give us a framework for estimating this variability at
multiple levels rather than lumping it into a single error term. Our statistical models
should match our conceptual models as closely as possible. If we are interested in
the differences among individuals or sites or genotypes, we would often be satisfied
with knowing the amount of variability among groups rather than trying to estimate
a value for every individual.

Furthermore, estimating the variability in this way may be more parsimonious
than estimating fixed effects for every individual or group. While fixed effects require

“Bolker” — 1/9/2008 — 15:39 — page 335

−1
0
1

M O D E L I N G V A R I A N C E • 335

an additional parameter for every additional group in the model, estimating variabil-
ity takes only a single parameter (the variance) no matter how many groups there
are (Kenward and Roger, 1997).∗

Although multilevel models are hard to implement and computationally challeng-
ing, things are getting better. Computers are faster every year, and infrastructure like
grid computing is making it easier to access computing power beyond your desktop
(Wang et al., 2005). Tools for both Bayesian and maximum likelihood estimation are
constantly improving, both in the power and breadth of algorithms available and in
the convenience, interoperability, and robustness of software (Kerman and Gelman,
2006; Skaug and Fournier, 2006).

Multilevel models are data-hungry. If you are a typical ecological experimenter
with a small, noisy data set, you may not be able to apply multilevel models to your
data set, although Bayesian methods can help if you are willing to specify informative
priors (Clark and Poulsen et al., 2005). On the other hand, if you have a large, but
very noisy, data set, then multilevel models may be the perfect tool. Because of data
collection tools such as data loggers, remote sensing, radiotelemetry, and climate
proxies, and data synthesis tools such as Web databases, meta-analysis, and citizen
science initiatives, more and more ecologists are finding themselves with data sets that
are appropriate for multilevel modeling. Knowing how to use multilevel models, and
knowing what dangers to avoid, will help you ask many more interesting questions
about your data.

10.8 R Supplement

10.8.1 Numerical Integration

Here’s a function that calculates the likelihood for a given value of the error (ε) and
the parameters and the observed value (the integrand in (10.5.4)):

> tmpf = function(eps, shape, scale, sd, x) {
+ exp(dnorm(eps, mean = 0, sd = sd, log = TRUE) +
+ dgamma(x - eps, shape = shape, scale = scale,
+ log = TRUE))
+ }

Check that it gives a reasonable value (at least not an NA) for the first data point:

> tmpf(1, shape = 3, scale = 10, sd = 1, x = x.obs[1])

[1] 0.0002398506

∗ Statisticians are still deeply divided about the correct way to count the number of effective parame-
ters associated with a random-effect term. The answer certainly lies between 1 (the variance) and n − 1 (the
number of parameters required to estimate the differences of each group from the first), and the possible
difference can be huge for models containing interaction terms. For a fixed-effect model, an interaction
between two factors with m and n factor levels has (m − 1)(n − 1) degrees of freedom, while the random-
effect model might require as few as 1. Some researchers have suggested rules for calculating or estimating
the number, but the question is still open (Kenward and Roger, 1997; Spiegelhalter et al., 2002; Burnham
and Anderson, 2004, p. 315; Lee et al., 2006).

“Bolker” — 1/9/2008 — 15:39 — page 336

−1
0
1

336 • C H A P T E R 10

Integrate numerically, using integrate:

> i1 = integrate(f = tmpf, lower = -Inf, upper = Inf,
+ shape = 3, scale = 10, sd = 1, x = x.obs[1])
> i1$value

[1] 0.0009216708

Define a function to calculate this integral:

> tmpf2 = function(x, shape, scale, sd) {
+ integrate(f = tmpf, lower = -Inf, upper = Inf,
+ shape = shape, scale = scale, sd = sd, x = x)
+ $value
+ }

To calculate the integral for more than one data point at a time, we have to use
sapply: if we give tmpf2 a vector for x, R will do the wrong thing.

Define the negative log-likelihood function:

> getdist = function(shape, scale, sd, dat, debug = FALSE) {
+ v = -sum(log(sapply(dat, tmpf2, shape = shape,
+ scale = scale, sd = sd)))
+ if (debug)
+ cat(shape, scale, sd, v, "\n")
+ v
+ }

Try this function for one set of reasonable parameters:

> getdist(shape = 3, scale = 10, sd = 1, dat = x.obs)

[1] 5684.876

Now run mle2 and confint to estimate the parameters and confidence intervals:

> m1 = mle2(minuslogl = getdist, start = list(shape = 3,
+ scale = 10, sd = 1), data = list(dat = x.obs),
+ method = "Nelder-Mead")
> m1.ci = confint(m2)

“Bolker” — 1/9/2008 — 15:39 — page 337

−1
0
1

11 Dynamic Models

This chapter covers dynamic models, an important kind of multilevel model. It
shows how to simulate dynamic models, discusses process and observation error, and
illustrates methods for fitting models that assume only one or the other. For problems
where we want to estimate process error when the magnitude of observation error is
known, it introduces the SIMEX approach. Finally, it presents a brief introduction
to fitting state-space models, which can estimate both process and observation error,
via the Kalman filter or Markov chain Monte Carlo.

11.1 Introduction

This chapter covers concepts and techniques for fitting dynamic models—models that
describe how ecological processes drive populations to change over time. Dynamic
models are a special case of the multilevel models we introduced in Chapter 10.
Dynamic models contain both process error, which feeds back on future states of the
population, and observation error, which affects only the current observation.

We introduce dynamic models by describing how to simulate them. Knowing
how to simulate dynamic models is important because fitting dynamic models to
data is so tricky that it’s essential to fit models to simulated data to confirm that the
methods work. (Most of the examples in this chapter use simulated “data.”)

The easiest way by far of dealing with observation and process error is to ignore
one or the other (Section 11.4). If your data have little noise, you may be able to get
away with this approach. When you can independently estimate the variance of the
observation error, the more recently developed SIMEX (simulation-extrapolation)
algorithm provides a way to get unbiased parameter estimates (Section 11.5).

State-space models (Section 11.6) can in principle estimate both process and
observation error from a single data set, subject to the very strong constraint that
the data actually provide enough information to separate them reliably. The Kalman
filter (Section 11.6.1) is a relatively simple algorithm for estimating the parameters
of state-space models with normally distributed error. More generally, computation-
ally intensive Bayesian (Millar and Meyer, 2000) and frequentist (de Valpine and
Hastings, 2002; Thomas et al., 2005; Lele et al., 2007) methods can simultaneously
estimate deterministic parameters, observation error, and process error in nonlinear,

“Bolker” — 1/9/2008 — 15:39 — page 338

−1
0
1

338 • C H A P T E R 11

nonnormal ecological models (Section 11.6.2). The use of such methods has recently
begun to explode in ecology (Solow, 1998; de Valpine and Hastings, 2002; Ellner
et al., 2002; de Valpine, 2003; Jonsen et al., 2003, Buckland et al., 2004; Clark and
Bjornstad, 2004; Thompson et al., 2005). This chapter attempts to provide a basic
and relatively painless introduction. If you want to explore this area further, you will
have to dig into the literature (e.g., Calder et al., 2003).

11.2 Simulating Dynamic Models

Dynamic models describe the changes in the size and characteristics of a population
over time. At each time step except the first, the size and characteristics of the popu-
lation depend on the size and characteristics at the previous time step (or one or more
times further in the past). Writing down the mathematical formula that describes the
population size at time t is often much harder than describing how N(t) depends
on N(t − 1). The difference between observation and process error becomes vitally
important in dynamic models, because they act differently. Process error affects future
population dynamics, while observation error does not.

To simulate a dynamic model:

• Set aside space (a vector or matrix) to record the state of the population
(numbers of organisms, possibly categorized by species/size/age).

• Set the starting conditions for all state variables.
• For each time step, apply R commands to simulate population dynamics

over the course of one time step. Then apply R commands to simulate the
observation process and record the current observed state of the population.

• Plot and analyze the results.

11.2.1 Examples

We can construct dynamic models corresponding to the two simple static models
(linear/normal and hyperbolic/Poisson) introduced in Chapter 5.

Figure 11.1a shows a dynamic model analogous to the static model shown
in Figure 11.1a (p. 149). The closest analogue of the static linear model, Y ∼
Normal(a + bx), is a dynamic model with observation error only:

N(1) = a

N(t + 1) = N(t) + b

Nobs(t) ∼ Normal
(
N(t), σ 2

obs

)
.

(11.2.1)

The first line in (11.2.1) specifies the initial or starting condition (the value of N at
time t = 1). The second line is the updating rule that determines the population size
one time step in the future, which in this case is purely deterministic. The third line
specifies the observation process, in this case that the observed value of the popula-
tion size at time t, Nobs(t), is normally distributed around the true value N(t) with
variance σ 2

obs.

“Bolker” — 1/9/2008 — 15:39 — page 339

−1
0
1

D Y N A M I C M O D E L S • 339

20

0

10

20

30

Time

P
op

ul
at

io
n

de
ns

ity

Process

Observation

201510515105

0

2

4

6

8

10

Time

P
op

ul
at

io
n

nu
m

be
rs

Process

Observation

a b

Figure 11.1 Dynamic models with process and observation error. (a) Linear, continuous (nor-
mal) model. (b) Nonlinear, discrete (hyperbolic/Poisson) model. In each case the envelopes
(dotted and dashed lines) show the 95% confidence limits for equivalent models with pure
process or pure observation error; the realizations shown are generated with a mixture of
process and observation error.

The R code for this model would first specify nt, the number of time steps, and
assign values for the parameters a, b, and sd.obs. Then:

> N = numeric(nt)
> Nobs = numeric(nt)
> N[1] = a
> for (t in 1:(nt - 1)) {
+ Nobs[t] = rnorm(1, mean = N[t], sd = sd.obs)
+ N[t + 1] = b + N[t]
+ }
> Nobs[nt] = rnorm(1, mean = N[nt])

Since the for loop runs only from 1 to nt-1, we have to set the observed value for
t = nt at the end. If we ran the loop to nt, we would be predicting the state of
the population at time nt+1, beyond the end of the vector we have set aside for the
results. R would cooperate by extending the length of the vector, but the too-long
vector might lead to confusion or errors in subsequent steps.

By contrast, a model with pure process error is defined as

N(1) = a

N(t + 1) ∼ Normal
(
N(t) + b, σ 2

proc

)
Nobs(t) = N(t).

(11.2.2)

“Bolker” — 1/9/2008 — 15:39 — page 340

−1
0
1

340 • C H A P T E R 11

The R code:

> N = numeric(nt)
> Nobs = numeric(nt)
> N[1] = a
> for (t in 1:(nt - 1)) {
+ N[t + 1] = rnorm(1, mean = b + N[t], sd = sd.proc)
+ Nobs[t] = N[t]
+ }
> Nobs[nt] = N[nt]

In this case, we assume that our observations are perfect (Nobs(t) = N(t)) but that
the change in the population is noisy rather than deterministic.

The behavior of the mean in this dynamic model is exactly the same whether
the variability in the model is caused by observation error or process error, and
in fact it is identical to the deterministic part of a standard linear model N = a +
b(t − 1). Furthermore, there is no way to separate process from observation error by
simply looking at a single time series; the variation in the observed data will appear
the same. (Figure 11.1 actually shows a single realization of a model with equal
amounts of process and observation error; it falls outside the theoretical bounds of
an observation-error-only model with slope a = 1, but only because we know the
true slope. We couldn’t tell the difference in a real data set.) The difference becomes
apparent only when we simulate many realizations of the same process and look
at how the variation among realizations changes over time (Figure 11.1a). With
observation error only, the variance among realizations is constant over time; with
process error only, there is initially no variance (we always start at the same density),
but the variance among realizations increases over time.

Figure 11.1b shows a discrete-population model with process and observation
error. In this case, the model is a rational function with the same form as the Beverton-
Holt or Michaelis-Menten function. Suppose that per capita plant fecundity declines
with population density according to the hyperbolic function F(N) = a/(b + N).
Then let the next year’s expected population size N(t + 1) equal (population size)
× (per capita fecundity) = N(t)(a/(b + N(t))). The population grows asymptotically
to a stable population size of a − b. (Convince yourself that when N(t) = (a − b),
N(t + 1) = N(t), and the simulated dynamics in Figure 11.1b are indeed nearly
constant.)

For the observation error model, we assume that we have a probability of only
p of counting each individual that is present in the population, which leads to a
binomial distribution of observations:

N(1) = N0

N(t + 1) = aN(t)/(b + N(t))

Nobs(t) ∼ Binomial(N(t), p).

(11.2.3)

The R code:

> N = numeric(nt)
> Nobs = numeric(nt)
> N[1] = N0

“Bolker” — 1/9/2008 — 15:39 — page 341

−1
0
1

D Y N A M I C M O D E L S • 341

> for (t in 1:(nt - 1)) {
+ N[t + 1] = a * N[t]/(b + N[t])
+ Nobs[t] = rbinom(1, size = round(N[t + 1]), prop = p)
+ }
> Nobs[nt] = rbinom(1, size = round(N[nt]), prop = p)

The only problem in this model is that N(t + 1) is usually not an integer, in which case
the binomial doesn’t make sense. I rounded the value in this case, although normally
it would be more sensible to incorporate a more realistic process model with (discrete)
process error.∗ Like the linear observation error model, the distribution of error stays
constant over time—with a few random bumps on the upper confidence limit caused
by sampling error (Figure 11.1b).

The process error model for the discrete population case is simpler:

N(1) = N0

N(t + 1) ∼ Poisson(aN(t)/(b + N(t)))

Nobs(t) = N(t).

(11.2.4)

The R code:

> N = numeric(nt)
> Nobs = numeric(nt)
> N[1] = N0
> for (t in 1:(nt - 1)) {
+ N[t + 1] = rpois(1, lambda = a * N[t]/(b + N[t]))
+ Nobs[t] = N[t]
+ }
> Nobs[nt] = N[nt]

The population size still converges to a − b over time, but the distribution spreads
out over the first few time steps. In fact, many of the simulated populations quickly
go extinct. However, since this model has a stable equilibrium, the distribution of
process error reaches its own equilibrium, rather than spreading out continuously
like the linear model in Figure 11.1a.

11.2.1.1 CONTINUOUS-TIME MODELS

Many dynamic models in ecology are defined in continuous rather than discrete
time. Typically these models are framed as ordinary differential equation (ODE)
models. The rule N(t + 1) = f (N(t)) is replaced by dN/dt = f (N(t)), which speci-
fies the instantaneous population growth rate. Probably the best-known ODE model
is the logistic, dN/dt = rN(1 − N/K). Researchers use continuous-time models for
a variety of reasons including realism (for populations with overlapping genera-
tions that can reproduce in any season), mathematical convenience (the dynamics
of continuous-time models are often more stable than those of their discrete ana-
logues), and consistency with theoretical models. Most dynamic models have no

∗But Henson et al. (2001) describe some possible dynamic consequences of this kind of rounding,
which they call “lattice effects,” in ecological systems.

“Bolker” — 1/9/2008 — 15:39 — page 342

−1
0
1

342 • C H A P T E R 11

closed-form solution (we can’t write down a simple equation for N(t)), so we often
end up simulating them.

The simplest algorithm for simulating continuous-time models is Euler’s method,
which uses small time steps to approximate the continuous passage of time. Speci-
fically, if we know the instantaneous growth rate dN/dt = f (N(t)), we can approxi-
mate the change in the population over a short time interval �t by assuming that the
population grows linearly at rate dN/dt, and thus that �N ≈ dN/dt · �t:

N(t + �t) = N(t) + �N

≈ N(t) + dN
dt

�t

= N(t) + f (N(t))�t.

(11.2.5)

In order to find the population size at some arbitrary time t we make �t “small
enough” and work our way from the starting time to t, adding �N to the population
at each time step �t.

Euler’s method is fine for small problems, but it tends to be both slow and
unstable relative to more sophisticated approaches. If you are going to do serious
work with continuous-time problems, you will need to solve them for thousands of
different parameter values (which may in turn require experimenting with different
values of �t). The lsoda function in R’s odesolve library, which implements an
adaptive step size algorithm, will be much more efficient.

The central problem with comparing ODE models to data is that incorporating
stochasticity in any other way than simply imposing normally distributed observation
error is difficult. The mathematical framework that underlies stochastic differential
equations is subtle (Roughgarden, 1997) and hard to apply to practical problems. For
this reason, studies that attempt to estimate parameters of continuous-time models
from data tend either to use simple least-squares criteria that correspond to nor-
mal observation error (Gani and Leach, 2001) or to revert to discrete-time models
(Finkenstadt and Grenfell, 2000).

One can build dynamical models that are stochastic, are discrete-valued (and
hence more sensible for populations), and run in continuous time, picking random
numbers for the waiting times until the next event (birth, death, immigration, infec-
tion, etc.). The basic algorithm for simulating these models, called the Gillespie
algorithm (Gillespie, 1977), is simple, but it and the advanced methods required
to estimate parameters based on such models are beyond the scope of this chapter
(Gibson and Renshaw, 1998; Gibson and Renshaw, 2001).

11.3 Observation and Process Error

In general, we describe dynamic data by setting up

• A deterministic function for the expected population dynamics—the rela-
tionship between the current density and the expected density at time t + 1,
N̄(t + 1) = f (N(t))—for example, the discrete logistic equation, N̄(t + 1) =
N(t) + rN(t)(1 − N(t)/K), with parameters r and K.

“Bolker” — 1/9/2008 — 15:39 — page 343

−1
0
1

D Y N A M I C M O D E L S • 343

0 50 100 150 200

5

10

15

20

Time

N
(t

)

2015105

5

10

15

20

N(t)

N
(t

+
1)

process error
observation errora b

Figure 11.2 Time-series data: process or observation error?

• A model of process error—for example, N(t) is negative binomially distributed
with overdispersion parameter k, or N(t) ∼ NegBin(µ = N̄(t), k).

• A model of observation error—for example, a binomial sample with capture
probability p from N(t), orNobs(t) ∼ Binom(p, N(t)).

To understand some of the basic issues of dynamic data, let’s look at the simplest
deterministic model for population growth—a constant increase in the population
density per time step, f (N(t)) = N(t) + b, with normally distributed process and
observation error. Formally:

N(t + 1) ∼ Normal
(
N(t) + b, σ 2

proc

)
(11.3.1)

Nobs(t) ∼ Normal
(
N(t), σ 2

obs

)
(11.3.2)

where σ 2
proc and σ 2

obs are the process and observation variances.
Suppose we recorded the data in Figure 11.2 and wanted to try to understand

what was going on in the population. Depending on the combination of observation
and process error that we assumed, we could draw very different conclusions about
these data.

If we assumed there was only observation error, with no process error, then the
simplest approach would be to solve the deterministic equation (N̄(t + 1) = N̄(t) + b)
as a function of time to get N̄(t) = N̄(0) + bt and estimate b as the slope of an ordinary
linear regression (lm(N˜time)). We would interpret the population dynamics as a
linear trend with time.

What if we instead wanted to use the plot of N(t + 1) against N(t) (Figure 11.2b)
to fit f (N) (f (N) = N + b) directly? We would have to recognize that both Nobs(t) and
Nobs(t + 1) contain observation error, which doesn’t fit the assumptions of ordinary
linear regression. Instead we would minimize the diagonal deviations of points from

“Bolker” — 1/9/2008 — 15:39 — page 344

−1
0
1

344 • C H A P T E R 11

a line y = a + bx, a procedure sometimes called model II regression.∗ Our model of
the points {N(t), N(t + 1)} would be that they were bivariate normal, with the mean
of N(t + 1) equal to N(t) + b; the ellipse in Figure 11.2b represents the confidence
limits for the points in this model.

On the other hand, if we assumed process error only (with no observation error),
then we should fit an ordinary linear regression to the plot of N(t) vs. N(t + 1),
because we assume that we know the x variable (N(t)) perfectly and the only uncer-
tainty comes in the population growth from t to t + 1. If we allow the full linear
model N(t + 1) = aN(t) + b, then we are fitting an autoregressive model: while the
overall trend would be the same as the ordinary linear model (provided a < 1), the
variance structure is different.† Figure 11.2b also shows that this assumption gives
different answers from the model II regression, with a larger intercept (which corre-
sponds to a larger population growth rate—remember this is the graph of N(t) vs.
N(t + 1), not the graph of N(t) vs. t) and a flatter slope.

What if we can’t reasonably assume either pure process error or pure observa-
tion error? Intermediate assumptions can lead to any answer between the two slopes
shown in the figure, which might lead to a wide range of different biological conclu-
sions! Unfortunately the data don’t easily show us what assumption to make. The
noisier our data, the more the results of the linear-trend and autoregressive models
will diverge. In the extreme where we have almost no information, the linear-trend
model will say that N(t) = N(t + 1) (a 45° regression line), while the autoregressive
model will say that N(t + 1) is independent of N(t) (a flat line). Since we have no
information, our conclusions are entirely driven by the structure of our assumptions.
This example is the first indication that in analyzing dynamic models we may some-
times be attempting to separate processes (process and observation variability) for
which we have very little distinguishing information. We will return to this sobering
theme at various points during the chapter.

11.4 Process and Observation Error

Now we will see how the extreme assumptions of only process error or only obser-
vation error play out if we want to fit a model with more interesting dynamics than
simple linear increase or decrease with time. For problems with small amounts of
error, or if you want to keep things simple, use one of these approaches, as suggested
by Hilborn and Mangel (1997). For example, pure process error would be a rea-
sonable model for small discrete populations that could be counted exactly or for
experimental populations observed in the lab (Drury and Dwyer, 2005). Pure obser-
vation error seems less plausible, but you would still be in good company picking
one or the other: many sensible analyses of dynamic data have used these crude but
simple methods (Ives et al., 1999; Gani and Leach, 2001; van Veen et al., 2005).

∗ Model II regression is a big topic (Warton et al., 2006); in special cases like this one (dynamic data
with only observation error) where we can assume that the variances in x and y are the same, we can use
reduced major axis regression, which gives the slope as σy/σx, or equivalently as

√
byx/bxy, where byx is

the slope of the ordinary regression of y on x and bxy is the slope of the ordinary regression of x on y.
† We can fit the restricted model f (N) = b + N, assuming the slope of N(t + 1) vs. N(t) is exactly 1,

with lm(y˜offset(x)).

“Bolker” — 1/9/2008 — 15:39 — page 345

−1
0
1

D Y N A M I C M O D E L S • 345

108642

0

5

10

15

Time

N
(t

)

140 12108642

0

5

10

15

20

N(t)

N
(t

+
1)

a b

Figure 11.3 Logistic fit: shooting/trajectory matching (observation error only). True parame-
ters r = 1, K = 10, N(0) = 1, σ2

obs = σ2
proc = 1. Estimated parameters r = 0.48, K = 12.14,

N(0) = 2.53, σ2
obs = 1.41. (a) Time dynamics, showing vertical residuals of observations from

the fitted line. (b) Next vs. current observation, showing diagonal residuals from the fitted line.

11.4.1 Observation Error Only: Shooting or Trajectory Matching

If we assume observation error only we can start with the initial conditions of the
system (e.g., the starting population sizes: we either assume we know these or take
the starting values as additional parameters of the model) and “shoot” through the
whole period, without correcting the model as we go along; this procedure is also
called trajectory matching (Figure 11.3). If the deterministic dynamics are particularly
simple (e.g., linear, exponential, or logistic), we may be able to derive a formula for
N(t) as a function of the starting conditions and calculate the predicted values in a
single step (N=a+b*time or N=a*exp(b*time)), but much more often we will be able
to compute the expected values only by using a loop to go from the value at each time
step to the value at the next time step. (With a continuous-time model, you can use
the odesolve package to solve numerically for each set of parameter values.) One
way or the other, we compute the predicted values at all observation times, ignoring
the variability in the actual data, and then compare the overall fit of the predicted
curve to the data.

“Bolker” — 1/9/2008 — 15:39 — page 346

−1
0
1

346 • C H A P T E R 11

Since we assume there is no uncertainty in the predicted values for each time
step given the starting conditions and the parameters, the only error is between
the predicted values and the observed values. We can then do what we’ve been
doing all along: assume independent observations and add up the log-likelihoods
of observation error for every data point based on our model of observation error.

Trajectory matching is widely used because it is simple and requires no considera-
tion of process variability. If one assumes normally distributed observation error with
constant variance, it simplifies still further to least-squares fitting of the deterministic
trajectory (e.g., Gani and Leach, 2001; van Veen et al., 2005). Trajectory matching
also works with missing data or unobserved variables (Wood, 2001), although Ellner
et al. (2002) warn that trajectory matching can be seriously misleading in cases where
process variability qualitatively changes the dynamics of the population (e.g., Ellner
et al., 1998).

11.4.2 Process Error Only: One-Step-Ahead Fitting

Alternatively, we can assume there is no observation error. Then the only uncer-
tainty is in the relationship between Nt and Nt+1. If we plot the expected value of
each Nt+1 as a function of the (perfectly known) Nt, we have errors only in the Y
variable. Instead of starting with the initial conditions and “shooting” (forecasting)
through the whole observation time period, we take the observation from each time
step and predict just the next time step (Figure 11.4). This way we need not worry
about how process errors compound from step to step. (This procedure is more dif-
ficult with missing time points, because we then have to somehow figure out the
expected relationship, including the process error, between (e.g.) N(t) and N(t + 2)
(Clark and Bjornstad, 2004).) This procedure is called one-step-ahead prediction.
For population dynamics modeled in continuous rather than discrete time, a slightly
more sophisticated analogue is called gradient matching (Ellner et al., 2002).

Shooting and one-step-ahead prediction are approximations, but they are simple
and usually worth trying before you do anything more sophisticated. If the answers
are not (biologically) significantly different, the fancier techniques may not be worth
the effort. Furthermore, if you find in the end that the distinction between process
and observation variability is unidentifiable, stating the results of process-error-only
and observation-error-only analyses and saying that the true value is likely to be
somewhere between those answers may be the best you can do.

11.5 SIMEX

In our one-step-ahead example, ignoring observation error led to a high estimate
of r (1.22 vs. true value 1) and a low estimate of K (9.88 vs. true value 10). It’s
impossible to infer from a single example, but in fact ignoring observation error
will generally give upward biased answers for r because observation error suggests
that the population is changing faster than it really is. In this example K is biased
downward as well. It’s hard to figure out in general what direction of bias to expect—
it depends in detail on the nonlinearities in the model—but estimates of nonlinear

“Bolker” — 1/9/2008 — 15:39 — page 347

−1
0
1

D Y N A M I C M O D E L S • 347

10

0

5

10

15

time

N
(t

)

observed
predicted

10508642 15

0

5

10

15

N(t)

N
(t

+
1)

a b

Figure 11.4 Logistic fit: one-step-ahead (process error only). True parameters r = 1, K = 10,
N(0) = 1, σ2

obs = σ2
proc = 1. Estimated parameters r = 1.22, K = 9.88, σ2

obs = 2.66. (a) Time
dynamics and predictions. (b) Current vs. next observations, showing vertical residuals from
the fitted line.

model parameters that ignore observation error are very likely to be biased one way
or the other.

However, if you do have an estimate of the magnitude of the observation error,
you can use the SIMEX (simulation-extrapolation) algorithm to correct for the bias
caused by neglecting observation error. SIMEX works by inflating the observation
error—adding additional noise to the data set—and reestimating the parameters
(Cook and Stefanski, 1994; Carroll et al., 1995; Carroll et al., 1999; Stefanski
and Cook, 1995). After estimating how increasing levels of observation error change
the parameter estimates, you can then extrapolate to estimate the parameter values
you would get with zero observation error. (Yes, this seems like black magic, but it
works.)

More specifically, the procedure for SIMEX is as follows:

• Based on your estimate of observation error, pick a range of increased error
values; tripling the existing observation variance in four to eight steps is a
reasonable rule of thumb. (For example, if the estimate of observation error
is σ 2

obs, pick observation variances of {1.5σ 2
obs, 2σ 2

obs, 2.5σ 2
obs, 3σ 2

obs}.)• For each error magnitude in your range, generate a data set with that increased
error. The procedure is more stable if you pick a single set of normally dis-
tributed random values and then multiply them by increasing factors for each

“Bolker” — 1/9/2008 — 15:39 — page 348

−1
0
1

348 • C H A P T E R 11

simulation. (If yi are your values and εi is a set of normal deviates with vari-
ance σ 2

obs, the first simulated data set with the inflation factors above would
be yi +

√
0.5εi; the variance of this data set is σ 2

obs + 0.5σ 2
obs = 1.5σ 2

obs. The
second data set with yi + εi would have variance 2σ 2

obs.)• For each simulated data set, estimate the values of the parameters using one-
step-ahead prediction and save them.

• Estimate a relationship between the total variance and the values of the param-
eters (a separate regression for each parameter, typically a linear or quadratic
regression: lm1 = lm(param˜measerr+I(measerrˆ2))).

• Find the SIMEX bias-corrected estimates of the parameters by extrapolating
the regressions to zero variance (for a linear or quadratic regression, the first
coefficient is the intercept: coef(lm1)[1]).

11.6 State-Space Models

The final, most sophisticated and most general but most challenging category of
statistical estimation procedures for dynamic data are so-called state-space models. In
principle state-space models can allow you to estimate parameters of the deterministic
process, observation error, and process error from a single observed time series—
always subject to the constraints of identifiability. Trying to fit state-space models
to time series that are too short, vary too little, or otherwise contain insufficient
information to identify the parameters will lead to numerical problems and wide
confidence intervals if you’re lucky (and skilled), and misleading answers if you’re
unlucky. Schnute’s warning about identifiability (p. 334) refers specifically to state-
space models. With that warning in mind, here we go.

In general, we know that the amount of observation error will be the same for
each observation (or at least will depend only on the true value, and not on when it
is measured), while the amount of process error will tend to increase over time. The
longer we wait between observations, the more random variation will decrease our
certainty about the state of the system.

The key insight of state-space models is that every observation we make does
several things:

• It provides information that shrinks the cloud of uncertainty around the true
but unknown current state of the system.

• It provides indirect information about the likelihood of the next state. For
example, a higher-than-expected population count in 2000 increases the
expectation for the 2001 count.

• It also provides indirect information about the previous state of the system.
For example, a higher-than-expected population count in 2000 also makes us
think that the true population size in 1999 might have been higher than we
previously thought.

If this discussion sounds Bayesian to you (updating our expectations of the probability
of the state of the system based on prior observations), you’re right. Lots of state-
space modeling has a Bayesian flavor, although it can also be done in a frequentist
framework (de Valpine and Hastings, 2002; Ionides et al., 2006; Lele et al., 2007). At

“Bolker” — 1/9/2008 — 15:39 — page 349

−1
0
1

D Y N A M I C M O D E L S • 349

0.0 0.5 1.0 1.5 2.0

1.0

1.5

2.0

2.5

3.0

3.5

Total observation error

r

9.0

9.5

10.0

10.5

K

Figure 11.5 SIMEX extrapolation for the logistic model. Horizontal lines show true values:
black circles show estimates for r and gray triangles show estimates for K, both extrapolated
quadratically back to σ2 = 0.

this cutting-edge level, there’s much more interplay between Bayesian and frequentist
approaches than at more basic levels.

Estimation algorithms for state-space models are essentially systems that carry
out the complicated bookkeeping required to keep track of the current estimates of the
true state of the system at a particular time. For each new choice of parameters, the
algorithm works through the data set one observation at a time, updating estimates
of the true value and variance at that time based on the parameters and the current
estimate of the previous time step (and in some systems, of the next time step as well).
Once this is done for the whole data set, you can use the estimates and variances to
calculate the likelihood for the new set of parameters and decide how to pick the
next one, using a standard algorithm such as Nelder-Mead or MCMC.

11.6.1 Kalman Filter

The Kalman filter is an algorithm for calculating the expected means and covariances
of the observed values for a whole time series in the presence of observation and
process error. In its original form it works only for linear population models (i.e.,

“Bolker” — 1/9/2008 — 15:39 — page 350

−1
0
1

350 • C H A P T E R 11

exponential increase or decrease or expected constant population size over time) with
multivariate normal error; the extended Kalman filter uses an approximation that
works for nonlinear population dynamics. The Kalman filter’s great strengths are its
relative simplicity and speed.

The Kalman filter works by stepping through the data set one observation at a
time, updating what we know about the mean and variance of the true state variables
at time t. It is an inductive procedure, giving the rules for figuring out the mean and
variance at time t if we already know the mean and variance at time t − 1. Clearly,
then, if we can figure out starting values for the mean and variance at time 1, we can
work through the whole data set this way.

I’ll illustrate this with a very simple example (keeping in mind that we can add
many realistic complications), with a single population growing linearly at rate a per
year, with an autoregressive term b that means that Nt−1 and Nt have a correlation
coefficient of b (over and above the general linear trend with time). I assume there is
both process (σ 2

proc) and observation (σ 2
obs) error, both normally distributed.

So our model is

Nt ∼ Normal
(
a + bNt−1, σ 2

proc
)

(11.6.1)

Nobs,t ∼ Normal
(
Nt, σ 2

obs

)
. (11.6.2)

If b < 1, then the population is stable, because random deviations in N shrink by a
factor b every year; if b > 1, then the population is unstable and random deviations
grow over time.

Suppose, based on all the observations up through time t − 1, we believe that
the mean of the true population size at time t − 1, Nt−1, is µ0, and its variance is σ 2

0 .
We can calculate based only on the population parameters a and b what we expect
the mean and variance to be at the next time step. The change in the mean is a direct
reflection of the population model; the variance term is a combination of multiplying
the previous variance by b2 since we have multiplied the population size by b, and
adding the new variability introduced by process error between t − 1 and t. So

mean
(
Nt|Nobs,t−1

) = µ1 = a + bµ0 (11.6.3)

Var
(
Nt|Nobs,t−1

) = σ 2
1 = b2σ 2

0 + σ 2
proc. (11.6.4)

More stable populations, indicated by low values of b, imply lower variance. As
b gets very small, no variance carries over from one time step to the next and the
standing variance of the population becomes just σ 2

proc.
The mean of the observation at time t equals the mean of the true value (we

assume variance, but no bias, in the observation process). The variance equals the
current variance of the true population size plus the observation variance:

mean
(
Nobs,t|Nobs,t−1

) = µ2 = µ1 (11.6.5)

Var
(
Nt|Nobs,t−1

) = σ 2
2 = σ 2

1 + σ 2
obs. (11.6.6)

The last step of the Kalman filter, taking the information about the current obser-
vation into account, is the hardest. The current observation, changes our estimate of
the mean of the true population state. How much it changes it depends on how far

“Bolker” — 1/9/2008 — 15:39 — page 351

−1
0
1

D Y N A M I C M O D E L S • 351

the current observation is from where it was expected to be based on the previous
information (Nobs,t − µ2), as well as the ratio of the variances of the true value and of
the observation. If there is no observation error, then the variance of the observation
is the same as the variance of the true state of the population, and (as shown by
the formula below) we simply set the mean of the population equal to the current
observation. If there is lots of observation error, then the current observation doesn’t
tell us very much and we don’t let an unexpected observation change our value of
the mean.

mean(Nt|Nobs,t) = µ3 = µ1 + σ 2
1

σ 2
2

(Nobs,t − µ2). (11.6.7)

The Bayesian approach suggests another interpretation of this equation: our best
estimate of the current population size is a weighted average of our prior—what
we think the population size is based on previous time steps (µ1)—and the current
observational data (Nobs,t).

Finally, we need to update the variance based on the current observation. Here
we actually reduce the current variance of the true value, again based on the ratio of
the variance of the true value to the variance of the observation.

Var(Nt|Nobs,t) = σ 2
3 = σ 2

1

(
1 − σ 2

1

σ 2
2

)
. (11.6.8)

If there is no observation error, then σ 2
1 = σ 2

2 and the variance of the true value
becomes zero. Unlike the mean, the variance is independent of the observed data.

Now that we’ve figured out the mean and variance of N and Nobs based on all
the observations up to time t, we can repeat the procedure to calculate the values at
time t + 1. Once we have worked through the whole data set, we know the expected
mean and variance at each time step, and we can calculate the standard normal
log-likelihood for the observed values.

The concepts are the same but the formulas are considerably more complicated in
the general case described by Schnute (1994). The one extension I will describe here
is how to estimate a nonlinear population growth function f (N), called the extended
Kalman filter.

All we have to do is replace (11.6.3) and (11.6.4) with appropriate generaliza-
tions. For example, let’s replace the linear equation in (11.6.1) with the discrete
logistic equation:

Nt ∼ Normal(Nt−1 + rNt−1

(
1 − Nt−1

K

)
, σ 2

proc). (11.6.9)

Then substitute this equation for (11.6.3):

mean(Nt|Nobs,t−1) = µ1 = µ0 + rµ0

(
1 − µ0

K

)
. (11.6.10)

For the variance, we need to find the equivalent of b, the per capita growth
rate, to substitute into (11.6.4). A reasonable approximation for the current per

“Bolker” — 1/9/2008 — 15:39 — page 352

−1
0
1

352 • C H A P T E R 11

capita growth rate is the derivative of the population growth rate with respect to the
population size:

∂f
∂N

= ∂(N + rN(1 − N/K))
∂N

= 1 + r − 2N/K. (11.6.11)

Since this equation is based on a first-order Taylor expansion, it is good only for
relatively small noise or short time steps.

Evaluating the derivative at the current mean value of the population size
(N = µ1) gives

Var(Nt|Nobs,t−1) = σ 2
1 = (1 + r − 2µ1/K)2σ 2

0 + σ 2
proc. (11.6.12)

If the population is currently growing (∂f
∂N > 1), the variance is inflated. If it is

shrinking, the variance is deflated.
So how do we implement this in R?
The R supplement defines a function nlkfpred that calculates the nonlinear

Kalman filter predictions for a set of time-series data and a nlkflik that uses those
predictions to compute the negative log-likelihood for a set of parameters. We fit all
the parameters on the log scale to avoid the possibility of negative parameter values.

We need to pick starting values for the estimation. I’m going to cheat here since
I know the true values, but it would be easy enough to do a one-step-ahead or
trajectory-matching fit to the data, or even eyeball, to estimate reasonable starting
values for r, K, and the variances.

> startvec = list(logr = log(0.25), logK = log(10),
+ logprocvar = log(0.5), logobsvar = log(0.5),
+ logM.n.start = log(3), logVar.n.start = -2)

Maximum-likelihood estimation of the parameters:

> m4 = mle2(minuslogl = nlkflik, start = startvec,
+ data = list(obs.data = y.procobs2),
+ method = "Nelder-Mead", control = list(maxit = 2000))

The fitted parameters are reasonable (although K appears slightly biased upward)
and the confidence intervals bracket the true values, as seen in Figure 11.6 and
Table 11.1. It’s not surprising that the confidence intervals are narrow for K and,
slightly wider for r (the population spends more time around its carrying capacity
than in the growth phase), or that the confidence intervals for the variances are larger
than the confidence intervals for the deterministic parameters.

The Kalman filter has been widely used in fisheries modeling, where the need to
squeeze information out of rare data is so strong that researchers are always look-
ing for the next powerful technique. Early on, researchers applied the technique to
abundant but noisy catch-per-unit-effort data. More recent applications have used
the Kalman filter as a way to estimate the locations of animals from noisy telemetry
data, allowing the observed position at a previous time to help constrain the expected
location at the current time (Jonsen et al., 2003). The KF has more recently begun to
make its way into mainstream terrestrial ecology, as a way of estimating parameters
for the growth of species of conservation concern in the presence of both observation
and observation error (Lindley, 2003). While the assumption of linear population

“Bolker” — 1/9/2008 — 15:39 — page 353

−1
0
1

D Y N A M I C M O D E L S • 353

Time

P
op

ul
at

io
n

de
ns

ity

0

5

10

15

500 100

obs
pred.
unconditional

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

σvar
2

σ
ob

s
2

estimated
true

95% conf. int.

a b

Figure 11.6 Results of Kalman filter: (a) observed, predicted, and results of unconditional
simulations; (b) MLE, true value, and approximate 95% bivariate confidence interval.

dynamics in the standard Kalman filter might seem constraining, the autoregressive
equation Nt = a + bNt−1 does allow a range of population dynamics, from fluctua-
tion around a stable equilibrium if a > 0 and b < 1, to exponential dynamics if a = 0
(declining if b < 1, increasing if b > 1), to a pure random walk if a = 0 and b = 1.
Much of conservation biology is built on linear models, which will often apply when
species are rare and thus intraspecific competition is low (Caswell, 2000). And if you
do need nonlinearity, you can use the extended Kalman filter.

There are ways to incorporate many other biological complexities in the Kalman
filter such as multiple species, time lags, bias and imperfect catchability in obser-
vations, correlated observations, time-varying control parameters, and covariates

TABLE 11.1

True Fitted 2.5% 97.5%

r 0.25 0.30 0.18 0.48

K 10.00 10.43 10.01 10.87

σ2
proc 0.50 0.32 0.13 0.74

σ2
obs 0.50 0.54 0.31 0.92

“Bolker” — 1/9/2008 — 15:39 — page 354

−1
0
1

354 • C H A P T E R 11

measured with error; see Schnute (1994) for details. Don’t be scared by the notation.
If you follow through it carefully, you can match up the special case here with all the
details in that paper.

11.6.2 Markov Chain Monte Carlo Approaches (WinBUGS et al.)

The Kalman filter has limitations. In particular, it assumes normal, or lognormal,
distributions. More subtly, the Kalman filter is a prospective algorithm (Schnute,
1994). It uses only the information up to time t to predict the mean and variance of the
population size, even though the observation at time t + 1 also gives us information
about the population size at time t—retrospective information that we might be able
to use to improve estimation.

Retrospective bookkeeping can be done several ways. Schnute discusses a fre-
quentist approach called the errors-in-variables method, and de Valpine (de Valpine
and Hastings, 2002; de Valpine, 2003) has also developed such a frequentist method.
Here I’m going to present Bayesian methods (e.g., Millar and Meyer, 2000), which
are rapidly growing in popularity because BUGS makes it simple to develop and esti-
mate the parameters of relatively complex population dynamic models (Lele et al.
(2007) suggest a way to use BUGS to calculate maximum likelihood estimates for
complex models). The basic idea carries over from the Kalman filter; if you assume
you know all the observations and the true values at every other time step, you can use
them to estimate the population size now. The Markov chain Monte Carlo approach
alternates between picking new random values for each true population size, one at
a time (at each time step pretending you know the population sizes at all the other
time steps), and picking new random values for the parameters that are consistent
with the current assumed population size. Figure 11.7 shows the dependency graph
for the first four steps of a logistic process. Each observed value depends on the true
value at that time step and the observation error; each true value depends on the
parameters and determines the observed value and the value at the next time step. In
this kind of graph, though, you can also follow arrows backward to see that as well
as depending on the value at time 1, the true value at time 2 is also influenced by the
observed value at time 2 and by the true value at time 3—and hence indirectly by the
observation at time 3, just as I suggested above.

To use BUGS to analyze dynamic data you must first decide on a model. Here
we’ll again use the discrete logistic equation with normally distributed observation
and process error for comparison, although BUGS would allow us to be much more
flexible. You also need to set priors for the parameters. Translating (11.6.3) and
(11.6.4) into BUGS syntax produces the following model:

model {
t[1] <- n0
o[1] ˜ dnorm(t[1],tau.obs)
for (i in 2:N) {

v[i] <- t[i-1]+r*t[i-1]*(1-t[i-1]/K)
t[i] ˜ dnorm(v[i],tau.proc)
o[i] ˜ dnorm(t[i],tau.obs)

}

“Bolker” — 1/9/2008 — 15:39 — page 355

−1
0
1

D Y N A M I C M O D E L S • 355

r

N obs,1 Nobs,2 N obs,3 Nobs,4

N true,4N true,2

σ 2
proc

N true,3
N true,1

σ 2
obs

K

Figure 11.7 Dependency structure for the logistic model.

The first two lines define the initial conditions. The rest of the model steps through
the data set, calculating the deterministic expectation (v[i]) and then defining the
distribution of the true values (t[i]) and observed values (o[i]).

The rest of the model file defines the priors:

r ˜ dunif(0.1,maxr)
K ˜ dgamma(0.005,0.005)
tau.obs ˜ dgamma(0.005,0.005)
tau.proc ˜ dgamma(0.005,0.005)
n0 ˜ dgamma(1,n0scale)

}

The prior growth rate r is uniformly distributed between 0.1 and a maximum
value, which I made a parameter so I could vary it within R without changing my
BUGS input file. The priors for the carrying capacity K and the precisions (inverse
variances) τobs and τproc are Gamma distributions with rate and shape parameters of
0.005, giving them a mean of 1 and a large variance (0.005/0.0052 = 200: remem-
ber that BUGS uses a shape + rate parameterization rather than R’s shape + scale
parameterization). The initial density n0 has a prior distribution that is Gamma
with shape parameter 1 and a rate parameter equal to the reciprocal of the first
observed value—again defined as a parameter to be calculated in R—which gives
it an exponential distribution with mean equal to the first observed value. Though
weak, this prior is stronger than the prior distributions for the carrying capacity and
precisions.

“Bolker” — 1/9/2008 — 15:39 — page 356

−1
0
1

356 • C H A P T E R 11

A bit of R code to define the upper limit of the r prior and the parameter of the
initial-state prior:

> maxr <- 2
> n0rate <- 1/y.procobs2[1]

We will set up the model, using the same data series y.procobs2 as before and
defining five different chains, using the perturb.params function from the emdbook
package to change the values of r and the precisions (τobs, τproc). We should probably
vary the starting values of the precisions a bit more systematically, although BUGS
tends to crash if the starting values are too extreme.

> o <- y.procobs2
> N <- length(y.procobs2)
> statespace.data <- list("N", "o", "maxr", "n0rate")
> inits = perturb.params(list(n0 = y.procobs2[1], r = 0.2,
+ K = 10, tau.obs = 1, tau.proc = 1), alt = list(r = c
+ (0.1, 0.4), tau.obs = 3, tau.proc = 3))

We next define the parameters we want to keep track of; we could also track the
estimated true values at each time step.

> parameters <- c("r", "K", "tau.obs", "tau.proc",
+ "n0")

After running WinBUGS from within R, we convert the output to a CODA
object—the CODA format has slightly different uses from the format returned by
R2WinBUGS.

> statespace.sim <- bugs(data = statespace.data, inits,
+ param = parameters, model = "statespace.bug",
+ n.chains = length(inits), n.iter = 15000)
> s1 = as.mcmc.bugs(statespace.sim)

R2WinBUGS’s defaults for running an MCMC analysis are to take the total
number of iterations (the default is 2,000); set aside half of them as “burn-in”; divide
the other half equally among all the chains specified by the user (the default is 3);
and “thin” the results to save a total of 1000 iterations across all chains. In this case
I chose to run 15,000 iterations with five chains, so each chain ran for 3000 steps;
the first 1500 were discarded; and then 13% of the remaining iterates were kept for
a total of 1000.

Checking convergence:

> gelman.diag(s1)

Potential scale reduction factors:

Point est. 97.5% quantile
r 1.00 1.02
K 1.01 1.02
tau.obs 1.02 1.05
tau.proc 1.05 1.09
n0 1.01 1.02
deviance 1.02 1.05

“Bolker” — 1/9/2008 — 15:39 — page 357

−1
0
1

D Y N A M I C M O D E L S • 357

TABLE 11.2

2.5% Median 97.5%

r 0.17 0.30 0.48

K 9.99 10.45 10.98

σ2
proc 0.14 0.36 0.82

σ2
obs 0.22 0.52 0.90

Multivariate psrf

1.02

Based on the G-R rule of thumb that a scale reduction factor < 1.2 for all vari-
ables means adequate convergence, the G-R diagnostic suggests that the chains did
in fact run long enough to mix with each other.

The summary of a CODA object provides the quantiles of the chains; these results
are practically identical to those from the Kalman filter (Table 11.2). I have inverted
the precisions (τproc = 1/σ 2

proc, τobs = 1/σ 2
obs to make it easier to compare directly

with the KF results; the median is not identical to the mode (which in turn is close to
the maximum likelihood estimate if the priors are weak), but it’s close.

Figure 11.8 shows the results of the R2WinBUGS run for σ 2
obs and σ 2

proc. The
values from the Kalman filter (Figure 11.6) are shown in gray. The 95% credible
interval matches the approximate 95% confidence interval reasonably well, espe-
cially considering that the confidence interval is an approximation based on the local
curvature. The mode of the posterior density, as expected, is very close to the MLE—
with a weak prior probability distribution, the likelihood surface and the posterior
probability distribution are close to the same shape. The mean is slightly larger than
the mode—there is some skew toward large values of the process variance—while
the median, not shown, falls between the mean and the mode. All four summary
values (posterior mean, mode, and median, and the MLE) and the true value all fall
within the 50% credible interval; as is often the case, all of these estimates give us
approximately the same answer.

Finally, Figure 11.9 shows density plots for the R2WinBUGS analysis. The den-
sities are all reasonably symmetric and bracket the known true values (the density of
tau.obs extends to very high values; this is the result of a single freakish excursion
in one of the chains to a very high value). Each chain’s density is drawn with a dif-
ferent line type; they all fall on top of each other, reassuring us that the chains have
converged and are all telling the same story.

11.7 Conclusions

This chapter covered a variety of methods for estimating the parameters of dynamic
models, ranging from crude (assuming either process error or observation error, but
not both) to sophisticated (state-space models).

“Bolker” — 1/9/2008 — 15:39 — page 358

−1
0
1

358 • C H A P T E R 11

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

σproc
2

σ
ob

s
2

true
mean

mode

95% cred. int.

50%

Figure 11.8 Results of R2WinBUGS analysis for logistic equation with process and observa-
tion error. Gray ellipse and point represent MLE and approximate (information-based) 95%
confidence interval for Kalman filter fit (Section 11.6.1). Solid line is 95% credible interval
based on BUGS chain; dashed lines is 50% credible interval. Points show the true (known)
value, mean, and mode of the posterior density.

We largely skipped over the question of how to decide which dynamic models
to fit. The logistic and a few simple discrete stochastic models were mentioned here,
and the theta-logistic was noted in Chapter 3, but most of the book has focused
on static models. Understanding dynamic models is a huge topic, mostly focused on
deterministic models—Ellner and Guckenheimer (2006) or the other references listed
in the ecological modeling section in Chapter 1 (section 1.3.1) make a good starting
point on the dynamics side, Clark (2007) includes a review of dynamic modeling
in his presentation of Bayesian methods, and Bjørnstad and Grenfell (2001) give an
overview of more recent advances in the field.

On the other hand, it’s easy to incorporate some additional ecology in the single-
species logistic model. For example, with either the Kalman filter or MCMC you
can incorporate the effects of covariates on the growth rate. To incorporate a linear
effect of rainfall on the growth rate, you could just change the appropriate line of
the BUGS model file to

v[i] <- t[i-1]+(r0+r1*rain[i-1])*t[i-1]*(1-t[i-1]/K)

and change the parameters and data values accordingly in the R code.

“Bolker” — 1/9/2008 — 15:39 — page 359

−1
0
1

D Y N A M I C M O D E L S • 359

D
en

si
ty

0
1

2
3

4
5

0.0 0.2 0.4 0.6

r

0.
0

1.
0

9.5 10.0 10.5 11.0 11.5 12.0

K

0.
0

0.
4

0.
8

121086420

tau.obs

0.
0

0.
2

0.
4

1050 15

tau.proc

0.
0

0.
4

0.
8

n0

0.
00

0
0.

01
5

504321 100 150 200 250 300

deviance

Figure 11.9 Density plots of R2WinBUGS results for the logistic equation. Different line types
show results from different chains.

All too often, you can observe only one facet of a complicated ecological inter-
action. For example, we might be able to sample just hare populations in a complex
Canadian ecosystem consisting of lynx, hare, vegetation, and birds of prey. While
trying to reconstruct an entire ecosystem from observations of a single species is
hopeless, we could in principle include additional unobserved variables in a state-
space model—remember that the “true” population sizes are also unobserved. Be
very careful not to incorporate more complexity in your model than the data can
support: try your model out with some optimistic, but plausible, simulation data.
Such reconstruction has been shown to work, for example, in simple epidemic mod-
els, where the number of new cases is observed but the number of possibly susceptible
individuals left in the population is not. A formal process of “susceptible reconstruc-
tion” provides a time series of susceptibles to go along with the time series of infected
individuals, which then allows estimation of a transmission parameter (Finkenstadt
and Grenfell, 2000; Lekone and Finkenstadt, 2006).

This chapter has presented only analyses of discrete-time models, where the
methods are much better developed. It is unfortunate that continuous-time meth-
ods for dynamical data are so sparse, since most theoretical models of ecological
systems are defined in continuous time. Analysis is feasible if you assume only obser-
vation error (Gani and Leach, 2001; van Veen et al., 2005) or know the amount of
observation error and use SIMEX to correct bias (Ellner et al., 2002; Melbourne and
Chesson, 2006), but the Kalman filter and MCMC approaches have been used almost
exclusively in discrete time (although Fujiwara et al. (2005) provide a recent coun-
terexample). Gibson developed such methods (Gibson and Renshaw, 1998; Gibson
and Renshaw, 2001; Gibson, 1997; Streftaris and Gibson, 2004), but they have yet
to be widely used or made practical.

Right now Bayesian analyses of dynamic models are easier than frequentist
analyses, but the frequentists are catching up fast. Particle filtering and sequential
importance sampling are powerful frequentist alternatives to the Bayesian MCMC
methods presented here (Doucet et al., 2001; Buckland et al., 2004; Thomas et al.,

“Bolker” — 1/9/2008 — 15:39 — page 360

−1
0
1

360 • C H A P T E R 11

2005; Harrison et al., 2006; Ionides et al., 2006). Particle filtering starts with a large
number of random samples (“particles,” e.g., 250,000 in Thomas et al. (2005)) from
a prior (or pseudo-prior) distribution, including the distribution of the initial values
of the state variables. Each sample is projected forward (simulated) one step, and
a likelihood based on the first observation is calculated for each sample. The same
number of particles is then resampled, but with weights proportional to their likeli-
hoods. After simulating one more step, the likelihoods based on the next observation
are calculated and the particles are resampled again (thus taking the observations
at both t and t + 1 into account). This process is iterated for the whole time series
of observations, with various algorithms used to prevent all of the resamples from
coming from a very small number of particles.

Estimating parameters of dynamic ecological models is still clearly an exercise on
the cutting edge of science. Most of the papers that have appeared to date are technical
and methods-oriented rather than applications to particular ecological questions. As
time goes on the tools will improve and more examples will appear, giving potential
users a better idea how much data (at least within an order of magnitude) is needed
to apply these methods successfully. In the meantime, always check your answers
against the results of simulations and against one-step-ahead (process error only)
and trajectory-matching (observation error only) fits.

11.8 R supplement

11.8.1 Kalman Filter

Here’s a function that computes the Kalman filter predictions. Nobs is the data set; r
and K are the population dynamic parameters; procvar and obsvar are the process
and observation variances; and M.n.start and Var.n.start are the starting values
of the mean and variance. This code sets aside numeric vectors for the results on the
mean and variance of the observed population size at each time step. When estimating
parameters we don’t have to save the mean and variance of the true population size
since we don’t have anything to compare them with. The function then sets the
starting values and works through the data set one time step at a time, applying the
Kalman filter equations:

> nlkfpred = function(r, K, procvar, obsvar, M.n.start,
+ Var.n.start, Nobs) {
+ nt = length(Nobs)
+ M.nobs = numeric(nt)
+ Var.nobs = numeric(nt)
+ M.n = M.n.start
+ Var.n = Var.n.start
+ M.nobs[1] = M.n.start
+ Var.nobs[1] = Var.n.start + obsvar
+ for (t in 2:nt) {
+ M.ni = M.n + r * M.n * (1 - M.n/K)
+ b = 1 + r - 2 * r * M.n/K
+ Var.ni = bˆ2 * Var.n + procvar

“Bolker” — 1/9/2008 — 15:39 — page 361

−1
0
1

D Y N A M I C M O D E L S • 361

+ M.nobs[t] = M.ni
+ Var.nobs[t] = Var.ni + obsvar
+ M.n = M.ni + Var.ni/Var.nobs[t] * (Nobs[t] -
+ M.nobs[t])
+ Var.n = Var.ni * (1 - Var.ni/Var.nobs[t])
+ }
+ list(mean = M.nobs, var = Var.nobs)
+ }

Our likelihood function takes a set of parameters (all fitted on the log scale so we
don’t run into trouble with negative values of the parameters), runs the Kalman filter
to predict the values of the means and variances, and then plugs these values into a
normal likelihood comparison with a set of observed values (taking the square root
of the estimated variance since dnorm uses the standard deviation, not the variance,
as a parameter):

> nlkflik = function(logr, logK, logprocvar, logobsvar,
+ logM.n.start, logVar.n.start, obs.data) {
+ pred = nlkfpred(r = exp(logr), K = exp(logK),
+ procvar = exp(logprocvar), obsvar =
+ exp(logobsvar), M.n.start = exp(logM.n.start),
+ Var.n.start = exp(logVar.n.start),
+ Nobs = y.procobs2)
+ -sum(dnorm(obs.data, mean = pred$mean, sd = sqrt
+ (pred$var), log = TRUE))
+ }

“Bolker” — 1/9/2008 — 15:39 — page 362

−1
0
1

12 Afterword

So you read the whole thing . . . it was surely challenging and frustrating at times, but
I hope the way was lightened by moments of clarity. Welcome to the cutting edge—
you now have all the basic tools you need to pose, and answer, ecological questions
in a quantitative way. There is more to learn, of course, but at this point you should
be capable of picking your way through the primary literature to find new tools.
New statistical ideas and new applications of statistics are appearing monthly in
journals like Ecology and Ecological Applications, where they are generally phrased
in “ecologist-friendly” terms, but you may also find yourself making your way to the
pages of journals such as Biometrika and Journal of the American Statistical Associ-
ation in search of new ideas. More important, however, you are now empowered to
make stuff up—within the limits of common sense and the statistical tools you have
learned, you can design and build your own models. Check them with simulations
and ask statistically savvy colleagues to confirm that your methods are reasonable.
You will be pleasantly surprised (I know I was the first time I brought a new statistical
model to a statistician) when they say “gee, nobody’s done that before, but it seems
to make sense.”

. . . many places you would like to see are just off
the map and many things you want to know are
just out of sight or a little beyond your reach. But
someday you’ll reach them all, for what you learn
today, for no reason at all, will help you discover
all the wonderful secrets of tomorrow.

—Norton Juster
The Phantom Tollbooth

“Bolker” — 1/9/2008 — 16:33 — page 363

−1
0
1

Appendix Algebra and Calculus Basics

A.1 Exponentials and Logarithms

Exponentials are written as ex or exp (x), where e = 2.718 By definition
exp (− ∞) = 0, exp (0) = 1, exp (1) = e, and exp (∞) = ∞. In R, ex is exp(x); if you
want the value of e, use exp(1). Logarithms are the solutions to exponential or power
equations like y = ex or y = 10x. Natural logs, ln or loge, are logarithms base e;
common logs, log10, are typically logarithms base 10. When you see just “log” it’s
usually in a context where the difference doesn’t matter (although in R log10 is log10
and loge is log).

1. log (1) = 0. If x > 1, then log (x) > 0, and vice versa. log (0) = −∞; loga-
rithms are undefined for x < 0.

2. Logarithms convert products to sums: log (ab) = log (a) + log (b).
3. Logarithms convert powers to multiplication: log (an) = n log (a).
4. You can’t do anything with log (a + b).
5. Converting bases: logx (a) = logy (a)/ logy (x). In particular, log10 (a) = loge

(a)/ loge (10) ≈ loge (a)/2.3 and loge (a) = log10 (a)/ log10 (e) ≈ log10 (a)/0.434.
This means that converting between log bases just means multiplying or
dividing by a constant. Here’s the proof:

y = log10 (x)

10y = x

loge (10y) = loge (x)

y loge (10) = loge (x)

y = loge (x)/ loge (10)

(compare the first and last lines).
6. The derivative of the logarithm, d(log x)/dx, equals 1/x. This is always pos-

itive for x > 0 (which are the only values for which the logarithm is defined
anyway).

7. The fact that d(log x)/dx > 0 means the function is monotonic (always either
increasing or decreasing), which means that if x > y, then log (x) > log (y) and
if x < y, then log (x) < log (y). This in turn means that if you find the max-
imum likelihood parameter, you’ve also found the maximum log-likelihood
parameter (and the minimum negative log-likelihood parameter).

“Bolker” — 1/9/2008 — 16:33 — page 364

−1
0
1

364 • A P P E N D I X

A.2 Differential Calculus

1. Notation: differentation of a function f (x) with respect to x can be written,
depending on the context, as df

dx ; f ′; ḟ ; or fx.
2. Definition of the derivative:

df
dx

= lim
�x→0

f (x + �x) − f (x)
(x + �x) − x

= lim
�x→0

f (x + �x) − f (x)
�x

. (A.2.1)

In words, the derivative is the slope of the line tangent to a curve at a point, or
the instantaneous slope of a curve. The second derivative, d2f /dx2, is the rate
of change of the slope, or the curvature.

3. The derivative of a constant (which is a flat line if you think about it as a curve)
is zero (slope = 0).

4. The derivative of a linear equation, y = ax, is the slope of the line, a. (The
derivative of y = ax + b is also a.)

5. Derivatives of polynomials: d(xn)
dx = nxn−1.

6. Derivatives of sums: d(f +g)
dx = df

dx + dg
dx (and d(

∑
i yi)/dx =∑i (dyi/dx)).

7. Derivatives of constant multiples: d(cf)
dx = c df

dx , if c is a constant
(
i.e., if dc

dx = 0
)
.

8. Derivative of the exponential: d(exp (ax))
dx = a exp (ax), if a is a constant. (If not,

use the chain rule.)

9. Derivative of logarithms: d(log (x))
dx = 1

x .

10. Chain rule: d(f (g(x)))
dx = df

dg · dg
dx (thinking about this as “multiplying fractions” is

a good mnemonic but don’t take it too literally!) Example:

d(exp (x2))
dx

= d(exp (x2))
d(x2)

· dx2

dx
= exp (x2) · 2x. (A.2.2)

Another example: people sometimes express the proportional change in x,
(dx/dt)/x, as d(log (x))/dt. Can you see why?

11. Critical points (maxima, minima, and saddle points) of a curve f have
df /dx = 0. The sign of the second derivative determines the type of a critical
point (positive = minimum, negative = maximum, zero = saddle).

A.3 Partial Differentiation

1. Partial differentiation acts just like regular differentiation except that you hold
all but one variable constant, and you use a curly d (∂) instead of a regular d.
So, for example, ∂(xy)/∂(x) = y. Geometrically, this is taking the slope of a
surface in one particular direction. (Second partial derivatives are curvatures
in a particular direction.)

2. You can do partial differentiation multiple times with respect to different

variables; order doesn’t matter, so ∂2f
∂x∂y = ∂2f

∂y∂x .

“Bolker” — 1/9/2008 — 16:33 — page 365

−1
0
1

A L G E B R A A N D C A L C U L U S B A S I C S • 365

A.4 Integral Calculus

For the material in this book, I’m not asking you to remember very much about
integration, but it would be useful to remember that

1. The (definite) integral of f (x) from a to b,
∫ b

a f (x) dx, represents the area under

the curve between a and b. The integral is a limit of the sum:
∑b

xi=a f (xi)�x
as �x → 0.

2. You can take a constant out of an integral (or put one in):
∫

af (x) dx =
a
∫

f (x) dx.
3. Integrals are additive:

∫
(f (x) + g(x)) dx = ∫ f (x) dx + ∫ g(x) dx.

A.5 Factorials and the Gamma Function

A factorial, written with an exclamation point !, means k! = k × k − 1 × · · · × 1. For
example, 2! = 2, 3! = 6, and 6! = 720. In R a factorial is factorial—you can’t use
the shorthand ! notation, especially since != means “not equal to” in R. Factorials
come up in probability calculations frequently, e.g., as the number of permuta-
tions with k elements. The gamma function, usually written as � (gamma in R) is
a generalization of factorials. For integers, �(x) = (x − 1)!. Factorials are defined for
integers only, but for positive, noninteger x, �(x) is still defined and it is still true that
�(x + 1) = x · �(x).

Factorials and gamma functions get very large, and you often have to compute
ratios of factorials or gamma functions (e.g., the binomial coefficient, N!/(k!(N −
k)!). Numerically, it is more efficient and accurate to compute the logarithms
of the factorials first, add and subtract them, and then exponentiate the result:
exp (log N! − log k! − log (N − k)!). R provides the log-factorial (lfactorial) and
log-gamma (lgamma) functions for this purpose. (Actually, R also provides choose
and lchoose for the binomial coefficient and the log-binomial coefficient, but the
log-gamma is more generally useful.)

The main reason that the gamma function (as opposed to factorials) comes
up in ecology is that it is part of the normalizing constant (see Chapter 4) for the
Gamma distribution, which is usually written as Gamma (not �): Gamma(x, a, s) =

1
sa�(a)x

a−1e−x/s.

A.6 Probability

Most of the probability rules you need are discussed in Chapter 4.

1. Probability distributions always add or integrate to 1 over all possible values.
2. Probabilities of independent events are multiplied: p(A and B) = p(A)p(B).
3. The binomial coefficient, (

N
k

)
= N!

k!(N − k)! , (A.6.1)

“Bolker” — 1/9/2008 — 16:33 — page 366

−1
0
1

366 • A P P E N D I X

is the number of different ways of choosing k objects out of a set of N, without
regard to order. ! denotes a factorial: n! = n × n − 1 × · · · × 2 × 1.

A.7 The Delta Method

The formula for the delta method of approximating variances is

Var(f (x, y)) ≈
(

∂f
∂x

)2

Var(x) +
(

∂f
∂y

)2

Var(y) + 2
(

∂f
∂x

∂f
∂y

)
Cov(x, y). (A.7.1)

Lyons (1991) describes the delta method very clearly; Oehlert (1992) provides a
short technical description of the formal assumptions necessary for the delta method
to apply.

This formula is exact in some simple cases:

• Multiplying by a constant: Var(ax) = a2Var(x).
• Sum or difference of independent variables: Var(x ± y) = Var(x) + Var(y).
• Product or ratio of independent variables:

Var(x · y) = y2Var(x) + x2Var(y) = x2y2
(

Var(x)
x2 + Var(y)

y2

)
.

Also, (CV(x · y))2 = (CV(x))2 + (CV(y))2.
• The formula is exact for linear functions of normal or multivariate normal

variables.

The formula can be extended to more than two variables. The deltavar function
in the emdbook packages will calculate delta-method-based variances for functions
with any number of parameters.

A.8 Linear Algebra Basics

This section is more of a “cheater’s guide” than a real introduction to linear algebra:
Lynch and Walsh (1997) and Caswell (2000) both give useful bare-bones linear alge-
bra reviews. All you need to know for this book is how to understand the general
meaning of a matrix equation.

In mathematics a matrix is a rectangular table of numbers, while a vector is a list
of numbers (specified as either a 1 row ×n column row vector or an n row ×1 column
column vector in some contexts). Matrices are usually uppercase, often denoted by
boldface (V). Vectors are usually lowercase, either bold (x) or topped with arrows
(�x). The transpose of a matrix or vector, which exchanges the rows and columns of
a matrix or switches between row and column vectors, is written as VT or V′.

Matrices and vectors can be added to or subtracted from any matrix or vector
with the same number of rows and columns. If the number of rows of A is equal
to the number of columns of B, then A can be multiplied on the right by B. Matrix

“Bolker” — 1/9/2008 — 16:33 — page 367

−1
0
1

A L G E B R A A N D C A L C U L U S B A S I C S • 367

multiplication is noncommutative in general: AB
= BA, although diagonal matrices
(matrices with nonzero entries only on the diagonal) do commute.

Matrices can be multiplied on the right by column vectors (Ax) or on the left
by row vectors (xTA) or anywhere by scalars (i.e., plain numbers: cA = Ac). The
inverse of a matrix, A−1, is the matrix such that AA−1 equals the identity matrix
(1 or I)—a matrix with ones on the diagonal and zero everywhere else. Multiplying
by the inverse of a matrix is like dividing by the matrix.

The inner product of two (column) vectors x and y with each other is xTy. The
inner product of a vector with itself, xTx, is the sum of squares of its elements.
The quadratic form of a matrix A and a vector x is xTAx. The quadratic form that
appears in the multivariate normal distribution, (x − µ)TV−1(x − µ), where x is the
data vector, µ is the vector of means, and V is the variance-covariance matrix, is
roughly analogous to (x − µ)2/σ 2 in the univariate normal distribution. We could
write the univariate form as (x − µ)(σ 2)−1(x − µ) to make the two expressions look
more similar.

The determinant of a matrix, |A| or det(A), is complicated in general, but for
diagonal matrices it is equal to the product of the diagonal entries. Similarly, the
trace, tr(A), is the sum of the diagonal entries for a diagonal matrix.

The best way to figure out a matrix equation is to think about the equivalent
scalar equation, or see how the equation would simplify if all the matrices were
diagonal; see p. 321 for an example.

“Bolker” — 1/9/2008 — 16:33 — page 368

−1
0
1

“Bolker” — 1/9/2008 — 16:13 — page 369

−1
0
1

Bibliography

Adler, F. R. 2004. Modeling the Dynamics of Life: Calculus and Probability for Life Scientists,
2d ed. Brooks/Cole, Pacific Grove, CA.

Agrawal, A. A. and M. Fishbein. 2006. Plant defense syndromes. Ecology 87:S132–S149.
Ågren, G. L. and E. Bosatta. 1996. Theoretical Ecosystem Ecology: Understanding Element

Cycles. Cambridge University Press, Cambridge, England.
Agresti, A. 2002. Categorical Data Analysis, 2d ed. Wiley, Hoboken, NJ.
Aitchison, J. 1986. The Statistical Analysis of Compositional Data. Chapman & Hall, New

York.
Anderson, R. M. and R. M. May. 1991. Infectious Diseases of Humans: Dynamics and

Control. Oxford Science Publications, Oxford, England.
Bacon, D. W. and D. G. Watts. 1971. Estimating the transition between two intersecting

straight lines. Biometrika 58:525–534.
———. 1974. Using a hyperbola as a transition model to fit two-regime straight-line data.

Technometrics 16:369–373.
Bailey, N. T. J. 1964. The Elements of Stochastic Processes with Applications to the Natural

Sciences. Wiley, New York.
Barrowman, N. J. and R. A. Myers. 2000. Still more spawner-recruitment curves: The hockey

stick and its generalizations. Canadian Journal of Fisheries and Aquatic Science 57:665–676.
Bates, D. M. and D. G. Watts. 1988. Nonlinear Regression Analysis and Its Applications.

Wiley, New York.
Begon, M., J. L. Harper, and C. R. Townsend. 1996. Ecology: Individuals, Populations and

Communities, 3d ed. Blackwell Science, Cambridge, MA.
Bellows, T. S. 1981. The descriptive properties of some models for density dependence. Journal

of Animal Ecology 50:139–156.
Berger, J. and D. Berry. 1988. Analyzing data: Is objectivity possible? American Scientist

76:159–165.
Billheimer, D. P., P. Guttorp, and W. F. Fagan. 1998. Statistical analysis and interpretation

of discrete compositional data. Technical Report 11. University of Washington. Seattle,
Washington.

Bjørnstad, O. N. and B. T. Grenfell. 2001. Noisy clockwork: Time series analysis of population
fluctuations in animals. Science 293:638–643.

Blanco, J. A., M. A. Zavala, J. B. Imbert, and F. J. Castillo. 2005. Sustainability of forest
management practices: Evaluation through a simulation model of nutrient cycling. Forest
Ecology and Management 213:209–228.

Bolker, B. M., S. W. Pacala, and C. Neuhauser. 2003. Spatial dynamics in model plant
communities: What do we really know? American Naturalist 162: 135–148.

“Bolker” — 1/9/2008 — 16:13 — page 370

−1
0
1

370 • B I B L I O G R A P H Y

Bradlow, E. T., B. G. S. Hardie, and P. S. Fader. 2002. Bayesian inference for the negative
binomial distribution via polynomial expansions. Journal of Computational & Graphical
Statistics 11:189–201.

Brännström, Å. and D. J. T. Sumpter. 2005. The role of competition and clustering in
population dynamics. Proceedings of the Royal Society B 272:2065–2072.

Breslow, N. 2003. Whither PQL? UW Biostatistics Working Paper Series, no.192. http:

//www.bepress.com/uwbiostat/paper192.
Breslow, N. E. and D. G. Clayton. 1993. Approximate inference in generalized linear mixed

models. Journal of the American Statistical Association 88:9–25.
Brown, D. H. and B. M. Bolker. 2004. The effects of disease dispersal and host clustering on

the epidemic threshold in plants. Bulletin of Mathematical Biology 66:341–371.
Buckland, S. T., K. B. Newman, L. Thomas, and N. B. Kösters. 2004. State-space models for

the dynamics of wild animal populations. Ecological Modelling 171:157–175.
Burnham, K. P. and D. R. Anderson. 1998. Model Selection and Inference: A Practical

Information-Theoretic Approach. Springer, New York.
———. 2002. Model Selection and Multimodel Inference, 2d ed. Springer, New York.
———. 2004. Multimodel inference: understanding AIC and BIC in model selection.

Sociological Methods & Research 33:261–304.
Butler, M. I. and C. W. Burns. 1993. Water mite predation on planktonic cladocera: Parallel

curve analysis of functional responses. Oikos 66:5–16.
Calder, C., M. Lavine, P. Müller, and J. S. Clark. 2003. Incorporating multiple sources of

stochasticity into dynamic population models. Ecology 84:1395–1402.
Canham, C. D. and M. Uriarte. 2006. Analysis of neighborhood dynamics of forest ecosystems

using likelihood methods and modeling. Ecological Applications 16:62–73.
Carroll, R. J., J. D. Maca, and D. Ruppert. 1999. Nonparametric estimation in the presence

of measurement errors. Biometrika 86:541–554.
Carroll, R. J., D. Ruppert, and L. W. Stefanski. 1995. Measurement Error in Nonlinear

Models. Chapman and Hall, New York.
Case, T. J. 1999. An Illustrated Guide to Theoretical Ecology. Oxford University Press,

New York.
Caswell, H. 2000. Matrix Population Models: Construction, Analysis and Interpretation.

Sinauer, Sunderland, MA.
Celeux, G., F. Forbes, C. P. Robert, and D. M. Titterington. 2006. Deviance information

criteria for missing data models. Bayesian Analysis 1:651–674.
Chambers, J. M. and T. Hastie, editors. 1992. Statistical Models in S. Wadsworth &

Brooks/Cole, Pacific Grove, CA.
Chatfield, C. 1975. The Analysis of Time Series: Theory and Practice. Chapman and Hall,

London.
Chen, Y. 2004. Multiple periodic solutions of delayed predator-prey systems

with type IV functional responses. Nonlinear Analysis: Real World Applications
5:45–53.

Clark, C. J., J. R. Poulsen, B. M. Bolker, E. F. Connor, and V. T. Parker. 2005. Comparative
seed shadows of bird-, monkey-, and wind-dispersed trees. Ecology 86:2684–2694.

Clark, J. S. 2007. Models for Ecological Data: An Introduction. Princeton University Press,
Princeton, NJ.

Clark, J. S. and O. N. Bjørnstad. 2004. Population time series: Process variability, observation
errors, missing values, lags, and hidden states. Ecology 85: 3140–3150.

“Bolker” — 1/9/2008 — 16:13 — page 371

−1
0
1

B I B L I O G R A P H Y • 371

Clark, J. S., M. Silman, R. Kern, E. Macklin, and J. HilleRisLambers. 1999. Seed dispersal
near and far: Patterns across temperate and tropical forests. Ecology 80:1475–1494.

Clarke, S. C., M. K. McAllister, E. J. Milner-Gulland, G. P. Kirwood, C. G. J. Michielsens,
D. J. Agnew, E. K. Pikitch, H. Nakano, and M. S. Shivji. 2006. Global estimates of shark
catches using trade records from commercial markets. Ecology Letters 9:1115–1126.

Cleveland, W. 1993. Visualizing Data. Hobart Press, Summit, NJ.
Cohen, J. E., F. Briand, and C. M. Newman. 1990. Community food webs: Data and theory.

Springer-Verlag, Berlin.
Collings, J. B. 1997. The effects of the functional response on the bifurcation behavior of a

mite predator-prey interaction model. Journal of Mathematical Biology 36:149–168.
Congdon, P. 2003. Applied Bayesian Modelling. Wiley, Hoboken, NJ.
Cook, J. R. and L. A. Stefanski. 1994. Simulation-extrapolation estimation in paramet-

ric measurement error models. Journal of the American Statistical Association 89:1314–
1328.

Corless, R. M., G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. 1996. On the
Lambert W function. Advances in Computational Mathematics 5:329–359.

Crawley, M. J. 2002. Statistical Computing: An Introduction to Data Analysis Using S-PLUS.
Wiley, Hoboken, NJ.

———. 2005. Statistics: An Introduction Using R. Wiley, Hoboken, NJ.
Crawley, M. J. 2007. The R Book. Wiley, Hoboken, NJ.
Cressie, N. A. C. 1991. Statistics for Spatial Data. Wiley, New York.
Crome, F. H. J. 1997. Researching tropical forest fragmentation: Shall we keep on doing

what we’re doing? Pages 485–501 in W. F. Laurance and R. O. Bierregard, editors. Tropical
Forest Remnants: Ecology, Management, and Conservation of Fragmented Communities.
University of Chicago Press, Chicago.

Crome, F. H. J., M. R. Thomas, and L. A. Moore. 1996. A novel Bayesian approach to
assessing impacts of rain forest logging. Ecological Applications 6:1104–1123.

Crowder, M. J. 1978. Beta-binomial Anova for proportions. Applied Statistics 27: 34–37.
Dalgaard, P. 2003. Introductory statistics in R. Springer, New York.
Dalling, J. W., H. C. Muller-Landau, S. J. Wright, and S. P. Hubbell. 2002. Role of dispersal in

the recruitment limitation of neotropical pioneer species. Journal of Ecology 90:714–727.
Damgaard, C. 1999. A test of asymmetric competition in plant monocultures using the maxi-

mum likelihood function of a simple growth model. Ecological Modelling 116:285–292.
Damgaard, C., J. Weiner, and H. Nagashima. 2002. Modelling individual growth and compe-

tition in plant populations: Growth curves of Chenopodium album at two densities. Journal
of Ecology 90:666–671.

de Valpine, P. 2003. Better inferences from population-dynamics experiments using Monte
Carlo state-space likelihood methods. Ecology 84:3064–3077.

de Valpine, P. and A. Hastings. 2002. Fitting population models incorporating process noise
and observation error. Ecology 72:57–76.

Dennis, B. 1996. Discussion: Should ecologists become Bayesians? Ecological Applications
6:1095–1103.

Diaconis, P., S. Holmes, and R. Montgomery. 2004. Dynamical bias in the coin toss. Tech-
nical report 2004-32, Stanford University. http://www-stat.stanford.edu/reports/

abstracts/04-32.pdf.
Diggle, P. J. 1990. Time Series: A Biostatistical Introduction. Oxford University Press, New

York.

“Bolker” — 1/9/2008 — 16:13 — page 372

−1
0
1

372 • B I B L I O G R A P H Y

Doak, D. F., K. Gross, and W. F. Morris. 2005. Understanding and predicting the effects of
sparse data on demographic analyses. Ecology 86:1154–1163.

Dobson, A. J. 1990. An Introduction to Generalized Linear Models. Chapman and Hall,
London.

Dodd, M. E. and J. Silvertown. 2000. Size-specific fecundity and the influence of lifetime size
variation upon effective population size in Abies balsamea. Heredity 85:604–609.

Doucet, A., N. de Freitas, and N. J. Gordon. 2001. Sequential Monte Carlo Methods in
Practice. Springer-Verlag, New York.

Drury, K. L. S. and G. Dwyer. 2005. Combining stochastic models with experiments to under-
stand the dynamics of monarch butterfly colonization. American Naturalist 166:731–750.

Duncan, R. S. and V. E. Duncan. 2000. Forest succession and distance from forest edge in an
Afro-tropical grassland. Biotropica 32:33–41.

Dwyer, G., S. Levin, and L. Buttel. 1990. A simulation model of the population dynamics and
evolution of myxomatosis. Ecological Monographs 60:423–447.

Edwards, A. W. F. 1992. Likelihood: Expanded Edition. Johns Hopkins University Press,
Baltimore, MD.

Edwards, D. 1996. Comment: The first data analysis should be journalistic. Ecological
Applications 6:1090–1094.

Ellison, A. M. 1996. An introduction to Bayesian inference for ecological research and
environmental decision-making. Ecological Applications 6:1036–1046.

Ellner, S. P., B. A. Bailey, G. V. Bobashev, A. Gallant, B. T. Grenfell, and D. W. Nychka.
1998. Noise and nonlinearity in measles epidemics: Combining mechanistic and statistical
approaches to population modeling. American Naturalist 151: 425–440.

Ellner, S. P. and J. Guckenheimer. 2006. Dynamic Models in Biology. Princeton University
Press, Princeton, NJ.

Ellner, S. P., Y. Seifu, and R. H. Smith. 2002. Fitting population dynamic models to time-series
data by gradient matching. Ecology 83:2256–2270.

Elston, D. A., R. Moss, T. Boulinier, C. Arrowsmith, and X. Lambin. 2001. Analysis of
aggregation, a worked example: Numbers of ticks on red grouse chicks. Parasitology 122:
563–569.

Emlen, D. J. 1996. Artificial selection on horn length-body size allometry in the horned beetle
Onthophagus acuminatus (Coleoptera: Scarabaeidae). Evolution 50:1219–1230.

Essington, T. E., J. F. Kitchell, and C. J. Walters. 2001. The von Bertalanffy growth function,
bioenergetics, and the consumption rates of fish. Canadian Journal of Fisheries and Aquatic
Science 58:2129–2138.

Etienne, R. S., M. E. F. Apol, and H. Olff. 2006a. Demystifying the West, Brown & Enquist
model of the allometry of metabolism. Functional Ecology 20:394–399.

Etienne, R. S., A. M. Latimer, J. A. Silander, and R. M. Cowling. 2006b. Comment on “Neutral
ecological theory reveals isolation and rapid speciation in a biodiversity hot spot.” Science
311:610b.

Evans, M., N. Hastings, and B. Peacock. 2000. Statistical Distributions, 3d ed. Wiley,
New York.

Everitt, B. and T. Hothorn. 2006. A Handbook of Statistical Analyses Using R. Chapman &
Hall/CRC, Boca Raton, FL.

Faraway, J. J. 2004. Linear Models with R. CRC Press, Boca Raton, FL.
———. 2006. Extending Linear Models with R: Generalized Linear, Mixed Effects and

Nonparametric Regression Models. Chapman & Hall/CRC, Boca Raton, FL.

“Bolker” — 1/9/2008 — 16:13 — page 373

−1
0
1

B I B L I O G R A P H Y • 373

Fenner, F., M. F. Day, and G. M. Woodroffe. 1956. Epidemiological consequences of the
mechanical transmission of myxomatosis by mosquitoes. Journal of Hygiene 54:284–303.

Ferrari, J. B. and S. Sugita. 1996. A spatially explicit model of leaf litter fall in hemlock-
hardwood forests. Canadian Journal of Forest Research 26:1905–1913.

Finkenstädt, B. F. and B. T. Grenfell. 2000. Time series modelling of childhood diseases:
A dynamical systems approach. Journal of the Royal Statistical Society Series C: Applied
Statistics 49:187–205.

Flather, C. H. 1996. Fitting species-accumulation functions and assessing regional land use
impacts on avian diversity. Journal of Biogeography 23:155–168.

Forsythe, G., M. Malcolm, and C. Moler. 1977. Computer Methods for Mathematical
Computations. Prentice Hall, Englewood Cliffs, NJ.

Fox, J. 2002. An R and S-PLUS Companion to Applied Regression. Sage Press, Thousand
Oaks, CA.

Framstad, E., N. C. Stenseth, O. N. Bjørnstad, and W. Falck. 1997. Limit cycles in Norwe-
gian lemmings: Tensions between phase-dependence and density-dependence. Proceedings:
Biological Sciences 264:31–38.

Fujiwara, M., B. E. Kendall, R. M. Nisbet, and W. A. Bennett. 2005. Analysis of size trajectory
data using an energetic-based growth model. Ecology 86:1441–1451.

Gani, R. and S. Leach. 2001. Transmission potential of smallpox in contemporary populations.
Nature 414:748–751.

Gelman, A. 2005. Analysis of variance—Why it is more important than ever. Annals of
Statistics 33:1–53.

———. 2006. Prior distributions for variance parameters in hierarchical models. Bayesian
Analysis 1:515–533.

Gelman, A., J. Carlin, H. S. Stern, and D. B. Rubin. 1996. Bayesian Data Analysis. Chapman
and Hall, New York.

Gelman, A. and J. Hill. 2006. Data Analysis Using Regression and Multilevel/Hierarchical
Models. Cambridge University Press, Cambridge, England.

Gelman, A. and D. Nolan. 2002. You can load a die, but you can’t bias a coin. American
Statistician 56:308–311.

Gelman, A. and F. Tuerlinckx. 2000. Type S error rates for classical and Bayesian single and
multiple comparison procedures. Computational Statistics 15: 373–390.

Gibson, G. J. 1997. Markov chain Monte Carlo methods for fitting spatiotemporal stochastic
models in plant epidemiology. Journal of the Royal Statistical Society Series C 46:215–233.

Gibson, G. J. and E. Renshaw. 1998. Estimating parameters in stochastic compartmental
models using Markov chain methods. IMA Journal of Mathematics Applied in Biology and
Medicine 15:19–40.

———. 2001. Likelihood estimation for stochastic compartmental models using Markov chain
methods. Statistics and Computing 11:347–358.

Gillespie, D. T. 1977. Exact stochastic simulation of coupled chemical reactions. Journal of
Physical Chemistry 81:2340–2361.

Goldman, N. and S. Whelan. 2000. Statistical tests of gamma-distributed rate heterogene-
ity in models of sequence evolution in phylogenetics. Molecular Biology and Evolution
17:975–978.

Gonick, L. and W. Smith. 1993. The Cartoon Guide to Statistics. Harper-Perennial,
New York.

Gotelli, N. J. 2001. A Primer of Ecology, 3d ed. Sinauer, Sunderland, MA.

“Bolker” — 1/9/2008 — 16:13 — page 374

−1
0
1

374 • B I B L I O G R A P H Y

Gotelli, N. J. and A. M. Ellison. 2004. A Primer of Ecological Statistics. Sinauer, Sunderland,
MA.

Grenfell, B. T., K. Wilson, B. Finkenstädt, T. N. Coulson, S. Murray, S. D. Albon,
J. M. Pemberton, T. H. Clutton-Brock, and M. J. Crawley. 1998. Noise and determinism in
synchronized sheep dynamics. Nature 394:674–677.

Gurney, W. S. C. and R. Nisbet. 1998. Ecological Dynamics. Oxford University Press, Oxford,
England.

Guthery, F. S., L. A. Brennan, M. J. Peterson, and J. J. Lusk. 2005. Invited paper: Informa-
tion theory in wildlife science: Critique and viewpoint. Journal of Wildlife Management
69:457–465.

Haefner, J. W. 1996. Modeling Biological Systems: Principles and Applications. Kluwer,
Dordrecht, Netherlands.

Haining, R. 2003. Spatial data analysis: Theory and practice. Cambridge University Press,
Cambridge, England.

Halley, J. M., S. Hartley, A. S. Kallimanis, W. E. Kunin, J. J. Lennon, and S. P. Sgardelis. 2004.
Uses and abuses of fractal methodology in ecology. Ecology Letters 7:254–271.

Hanski, I. 1999. Metapopulation Ecology. Oxford University Press, Oxford, England.
Hargrove, W. W. and J. Pickering. 1992. Pseudoreplication: A sine qua non for regional

ecology. Landscape Ecology 6:251–258.
Harrison, P. J., S. T. Buckland, L. Thomas, R. Harris, P. P. Pomeroy, and J. Harwood. 2006.

Incorporating movement into models of grey seal population dynamics. Journal of Animal
Ecology 75:634–645.

Hassell, M. P. 1975. Density-dependence in single-species populations. Journal of Animal
Ecology 45:283–296.

Hastie, T. J. and D. Pregibon. 1991. Generalized linear models. Pages 377–420 in
J. M. Chambers and T. J. Hastie, editors. Statistical Models in S. Wadsworth & Brooks/Cole,
Pacific Grove, CA.

Hastings, A. 1997. Population Biology: Concepts and Models. Springer-Verlag, New York.
Hatfield, J. S., W. A. Link, D. K. Dawson, and E. L. Lindquist. 1996. Coexistence and commu-

nity structure of tropical trees in a Hawaiian montane rain forest. Biotropica 28:746–758.
Heffner, R. A., M. J. Butler, and C. K. Reilly. 1996. Pseudoreplication revisited. Ecology

77:2558–2562.
Heiberger, R. M. and B. Holland. 2004. Statistical Analysis and Data Display: An Intermediate

Course with Examples in S-PLUS, R, and SAS. Springer, New York.
Henson, S. M., R. F. Costantino, J. M. Cushing, R. A. Desharnais, B. Dennis, and A. A. King.

2001. Lattice effects observed in chaotic dynamics of experimental populations. Science
294:602–605.

Hilborn, R. and M. Mangel. 1997. The Ecological Detective: Confronting Models with Data.
Princeton University Press, Princeton, NJ.

Hoaglin, D. C., F. Mosteller, and J. W. Tukey, editors. 2000. Understanding Robust and
Exploratory Data Analysis. Wiley, New York.

———. 2006. Exploring Data Tables, Trends, and Shapes, rev. ed. Wiley, New York.
Holt, R. D. 1983. Optimal foraging and the form of the predator isocline. American Naturalist

122:521–541.
Horne, J. S. and E. O. Garton. 2006. Selecting the best home range model: An information-

theoretical approach. Ecology 87:1146–1152.
Hurlbert, S. 1984. Pseudoreplication and the design of ecological field experiments. Ecological

Monographs 54:187–211.

“Bolker” — 1/9/2008 — 16:13 — page 375

−1
0
1

B I B L I O G R A P H Y • 375

Ingber, L. 1996. Adaptive simulated annealing (ASA): Lessons learned. Control and Cyber-
netics 25:33–54. http://www.ingber.com/asa96_lessons.pdf.

Inouye, B. D. 1999. Estimating competition coefficients: Strong competition among three
species of frugivorous flies. Oecologia 120:588–594.

———. 2005. The importance of the variance around the mean effect size of ecological
processes: comment. Ecology 86:262–264.

Ionides, E. L., C. Bretó, and A. A. King. 2006. Inference for nonlinear dynamical systems.
Proceedings of the National Academy of Sciences of the USA 103:18438–18443.

Ives, A. R., S. R. Carpenter, and B. Dennis. 1999. Community interaction webs and
zooplankton responses to planktivory manipulations. Ecology 80:1405–1421.

Jang, W. and J. Lim. 2005. PQL estimation biases in generalized linear mixed models. Dis-
cussion paper 2005-21, Institute for Statistics and Decision Sciences, Duke University.
http://ftp.stat.duke.edu/WorkingPapers/05-21.html.

Jeffreys, H. 1961. The Theory of Probability. Clarendon Press, Oxford, England.
Jeschke, J. M., M. Kopp, and R. Tollrain. Consumer–food systems: why type I functional

responses are exclusive to filter feeders. Biological Reviews 79:337–349.
Johnson, D. J. 1999. The insignificance of statistical significance testing. Journal of Wildlife

Management 63:763–772.
Johnson, J. B. and K. S. Omland. 2004. Model selection in ecology and evolution. Trends in

Ecology and Evolution 19:101–108.
Jonsen, I. D., R. A. Myers, and J. M. Flemming. 2003. Meta-analysis of animal movement

using state-space models. Ecology 84:3055–3063.
Juliano, S. A. 1993. Nonlinear curve fitting: predation and functional response curves. Pages

159–182 in S. M. Scheiner and J. Gurevitch, editors. Design and Analysis of Ecological
Experiments. Chapman & Hall, New York.

]KassRaftery1995 Kass, R. E. and A. E. Raftery. 1995. Bayes factors and model uncertainty.
Journal of the American Statistical Association 90:773–795.

Katz, R. W., G. S. Brush, and M. B. Parlange. 2005. Statistics of extremes: Modeling ecological
disturbances. Ecology 86:112–1134.

Keeling, K. B. and R. J. Pavur. 2007. A comparative study of the reliability of nine statistical
software packages. Computational Statistics & Data Analysis 51:3811–3831.

Keller, J. B. 1986. The probability of heads. American Mathematical Monthly 93:191–197.
Kendall, M. and A. Stuart. 1979. The Advanced Theory of Statistics. Vol. 2: Inference and

Relationship, 4th ed. Griffin, London.
Kenward, M. G. and J. H. Roger. 1997. Small sample inference for fixed effects from restricted

maximum likelihood. Biometrics 53:983–997.
Kerman, J. and A. Gelman. 2006. Tools for Bayesian data analysis in R. Statistical Computing

and Graphics 17:9–13.
Kirkpatrick, S., C. Gelatt, and M. Vecchi. 1983. Optimization by simulated annealing. Science

220:671–680.
Kitakado, T., S. Kitada, H. Kishino, and H. J. Skaug. 2006. An integrated-likelihood method

for estimating genetic differentiation between populations. Genetics 173:2073–2082.
Kitanidis, P. K. 1997. Introduction to geostatistics: Applications in Hydrogeology. Cambridge

University Press, Cambridge, England.
Lande, R., S. Engen, and B.-E. Sæther. 2003. Stochastic Population Dynamics in Ecology and

Conservation. Oxford University Press, Oxford, England.
Latimer, A. M., J. A. Silander, and R. M. Cowling. 2005. Neutral ecological theory reveals

isolation and rapid speciation in a biodiversity hot spot. Science 309: 1722–1725.

“Bolker” — 1/9/2008 — 16:13 — page 376

−1
0
1

376 • B I B L I O G R A P H Y

Lee, Y., J. A. Nelder, and Y. Pawitan 2006. Generalized Linear Models with Random Effects:
Unified Analysis via H-Likelihood. Chapman & Hall/CRC, Boca Raton, FL.

Lekone, P. E. and B. F. Finkenstädt. 2006. Statistical inference in a stochastic epidemic SEIR
model with control intervention: Ebola as a case study. Biometrics 62:1170–1177.

Lele, S. R., B. Dennis, and F. Lutscher. 2007. Data cloning: easy maximum likelihood estima-
tion for complex ecological models using Bayesian Markov chain Monte Carlo methods.
Ecology Letters 10:551–563.

Levins, R. 1966. The strategy of model building in population biology. American Scientist
54:421–431.

———. 1993. A response to Orzack and Sober: Formal analysis and the fluidity of science.
Quarterly Review of Biology 68:547–555.

Levins, R. and D. Culver. 1971. Regional coexistence of species and competition between rare
species. Proceedings of the National Academy of Sciences of the USA 6:1246–1248.

Lindley, S. T. 2003. Estimation of population growth and extinction parameters from noisy
data. Ecological Applications 13:806–813.

Lindsey, J. K. 1997. Applying Generalized Linear Models. Springer, New York.
———. 1999a. Models for Repeated Measurements, 2d ed. Oxford University Press, New

York.
———. 1999b. Some statistical heresies. The Statistician 48:1–40.
———. 2001. Nonlinear Models in Medical Statistics. Oxford University Press, New York.
———. 2004. Introduction to Applied Statistics: A Modelling Approach. Oxford University

Press, New York.
Link, W. A. and R. J. Barker. 2006. Model weights and the foundations of multimodel

inference. Ecology 87:2626–2635.
Lloyd-Smith, J. O. 2007. Maximum likelihood estimation of the negative binomial dispersion

parameter for highly overdispersed data, with applications to infectious diseases. PLoS ONE
2:e180.

Ludwig, D. 1996. Uncertainty and the assessment of extinction probabilities. Ecological
Applications 6:1067–1076.

Lynch, M. and B. Walsh. 1997. Genetics and Analysis of Quantitative Traits. Sinauer,
Sunderland, MA.

Lyons, L. 1991. A Practical Guide to Data Analysis for Physical Science Students. Cambridge
University Press, Cambridge, England.

Lytle, D. A. 2002. Flash floods and aquatic insect life-history evolution: Evaluation of multiple
models. Ecology 83:370–385.

Maindonald, J. and J. Braun. 2003. Data Analysis and Graphics Using R: An Example-Based
Approach. Cambridge University Press, Cambridge, England.

Mangel, M. 2006. The Theoretical Biologist’s Toolbox: Quantitative Methods for Ecology
and Evolutionary Biology. Cambridge University Press, Cambridge, England.

Martin, T. G., B. A. Wintle, J. R. Rhodes, P. M. Kuhnert, S. A. Field, S. A. Low-Choy, A. J.
Tyre, and H. H. Possingham. 2005. Zero-tolerance ecology: Improving ecological inference
by modelling the source of zero observations. Ecology Letters 8:1235–1246.

May, R. M. 1973. Stability and Complexity in Model Ecosystems. Princeton University Press,
Princeton, NJ.

———. 1978. Host-parasitoid systems in patchy environments: A phenomenological model.
Journal of Animal Ecology 47:833–844.

Maynard-Smith, J. and M. Slatkin. 1973. The stability of predator-prey systems. Ecology
54:384–391.

“Bolker” — 1/9/2008 — 16:13 — page 377

−1
0
1

B I B L I O G R A P H Y • 377

Mazerolle, M. J. 2004. Mouvements et reproduction des amphibiens en tourbières perturbées.
Ph.D. Diss. Université Laval, Quebec. http://www.theses.ulaval.ca/2004/21842.html.

McCarthy, M. A. and K. M. Parris. 2004. Clarifying the effect of toe clipping on frogs with
Bayesian statistics. Journal of Applied Ecology 41:780–786.

McCullagh, P. and J. A. Nelder. 1989. Generalized Linear Models. Chapman and Hall,
London.

McCullough, B. D. and B. Wilson. 2005. On the accuracy of statistical procedures in Microsoft
Excel 2003. Computational Statistics & Data Analysis 49: 1244–1252.

McGill, B. J., B. A. Maurer, and M. D. Weiser. 2006. Empirical evaluation of neutral theory.
Ecology 87:1411–1423.

McKay, B., D. Bar-Natan, M. Bar-Hillel, and G. Kalai. 1999. Solving the Bible Code puzzle.
Statistical Science 14:150–173.

Melbourne, B. A. and P. Chesson. 2006. The scale transition: Scaling up population dynamics
with field data. Ecology 87:1478–1488.

Millar, R. B. and R. Meyer. 2000. Bayesian state-space modeling of age-structured data:
Fitting a model is just the beginning. Canadian Journal of Fisheries and Aquatic Sciences 57:
43–50.

Miller, P. S. and R. C. Lacy. 2005. VORTEX. A Stochastic Simulation of the Simulation
Process. Version 9.50 User’s Manual. Conservation Breeding Specialist Group (IUCN/SSC),
Apple Valley, MN. http://www.vortex9.org/vortex.html.

Mitzenmacher, M. 2003. A brief history of generative models for power laws and lognormal
distributions. Internet Mathematics 1:226–251.

Moorcroft, P. R., M. W. Lewis, and R. L. Crabtree. 2006. Mechanistic home range patterns
capture spatial patterns and dynamics of coyote territories in Yellowstone. Proceedings of
the Royal Society B 273:1651–1659.

Morales, J. M., D. T. Haydon, J. Frair, K. E. Holsinger, and J. M. Fryxell. 2004. Extracting
more out of relocation data: Building movement models as mixtures of random walks.
Ecology 85:2436–2445.

Morris, W. F. 1997. Disentangling effects of induced plant defenses and food quantity on
herbivores by fitting nonlinear models. American Naturalist 150:299–327.

Morris, W. F. and D. F. Doak. 2002. Quantitative Conservation Biology: Theory and Practice
of Population Viability Analysis. Sinauer, Sunderland, MA.

Mossel, E. and E. Vigoda. 2006. Phylogenetic MCMC algorithms are misleading on mixtures
of trees. Science 309:2207–2209.

Muggeo, V. M. R. 2003. Estimating regression models with unknown breakpoints. Statistics
in Medicine 22:3055–3072.

Nakagawa, S. 2004. A farewell to Bonferroni: The problems of low statistical power and
publication bias. Behavioral Ecology 15:1044–1045.

Nelder, J. A. 1961. The fitting of a generalization of the logistic curve. Biometrics 17:89–110.
Ness, J. H., W. F. Morris, and J. L. Bronstein. 2006. Integrating quality and quantity of mu-

tualistic service to contrast ant species protecting Ferocactus wislizeni. Ecology 87:912–921.
Neuhauser, C. 2003. Calculus for Biology and Medicine, 2d ed. Prentice Hall, Upper Saddle

River, NJ.
Niklas, K. J. 1993. The allometry of plant reproductive biomass and stem diameter. American

Journal of Botany 80:461–467.
Nisbet, R. and W. Gurney. 1982. Modelling Fluctuating Populations. Wiley, New York.

Reprint Blackburn Press, Caldwell, NJ, 2003.
Oehlert, G. W. 1992. A note on the delta method. American Statistician 46:27–29.

“Bolker” — 1/9/2008 — 16:13 — page 378

−1
0
1

378 • B I B L I O G R A P H Y

Oksanen, L. 2001. Logic of experiments in ecology: Is pseudoreplication a pseudoissue? Oikos
94:27–38.

Okubo, A. 1980. Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag,
New York.

Okuyama, T. and B. M. Bolker. 2005. Combining genetic and ecological data to estimate sea
turtle origins. Ecological Applications 15:315–325.

Orzack, S. H. and E. Sober. 1993. A critical assessment of Levins’s The Strategy of Model
Building in Population Biology (1966). Quarterly Review of Biology 68:533–546.

Osenberg, C. W., C. M. St. Mary, R. J. Schmitt, S. J. Holbrook, P. Chesson, and B. Byrne.
2002. Rethinking ecological inference: Density dependence in reef fishes. Ecology Letters
5:715–721.

Otto, S. P. and T. Day. 2007. A Biologist’s Guide to Mathematical Modeling in Ecology and
Evolution. Princeton University Press, Princeton, NJ.

Ovaskainen, O. 2004. Habitat-specific movement parameters estimated using mark-recapture
data and a diffusion model. Ecology 85:242–257.

Pacala, S. and J. Silander Jr. 1990. Field tests of neighborhood population dynamic models of
two annual weed species. Ecological Monographs 60:113–134.

Pacala, S. W. and J. A. Silander Jr. 1987. Neighborhood interference among velvet leaf,
Abutilon theophrasti, and pigweed, Amaranthus retroflexus. Oikos 48:217–224.

Paradis, E. 2006. Analysis of Phylogenetics and Evolution with R. Springer, New York.
Parris, K. M. 2006. Urban amphibian assemblages as metacommunities. Journal of Animal

Ecology 75:757–764.
Pascual, M. A. and P. Kareiva. 1996. Predicting the outcome of competition using experimental

data: Maximum likelihood and Bayesian approaches. Ecology 77:337–349.
Persson, L., K. Leonardsson, A. M. de Roos, M. Gyllenberg, and B. Christensen. 1998. Onto-

genetic scaling of foraging rates and the dynamics of a size-structured consumer-resource
model. Theoretical Population Biology 54:270–293.

Petersen, J. E., J. C. Cornwell, and W. M. Kemp. 1999. Implicit scaling in the design of
experimental aquatic ecosystems. Oikos 85:3–18.

Piegorsch, W. W. 1990. Maximum likelihood estimation for the negative binomial dispersion
parameter. Biometrics 46:863–867.

Pielou, E. 1977. Mathematical Ecology, 2d ed. Wiley, New York.
Pieters, E. P., C. E. Gates, J. H. Matis, and W. L. Sterling. 1977. Small sample comparison of

different estimators of negative binomial parameters. Biometrics 33:718–723.
Pinheiro, J. C. and D. M. Bates. 2000. Mixed-Effects Models in S and S-PLUS. Springer, New

York.
Post, E., N. C. Stenseth, R. O. Peterson, J. A. Vucetich, and A. M. Ellisa. 2002. Phase

dependence and population cycles in a large-mammal predator-prey system. Ecology 83:
2997–3002.

Poulin, R. 1996. Measuring parasite aggregation: Defending the index of discrepancy.
International Journal for Parasitology 26:227–229.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 1994. Numerical Recipes
in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, England.

Quinn, G. P. and M. J. Keough. 2002. Experimental Design and Data Analysis for Biologists.
Cambridge University Press, Cambridge, England.

Quinn, T. J. and R. B. Deriso. 1999. Quantitative Fish Dynamics. Oxford University Press,
New York.

“Bolker” — 1/9/2008 — 16:13 — page 379

−1
0
1

B I B L I O G R A P H Y • 379

Raftery, A. E. and S. M. Lewis. 1996. Implementing MCMC. Pages 115–130 in
W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte Carlo in
Practice. Chapman and Hall, London.

Rand, D. A. and H. B. Wilson. 1991. Chaotic stochasticity: A ubiquitous source of
unpredictability in epidemics. Proceedings of the Royal Society B 246:6.

Reeve, J. D. and W. W. Murdoch. 1985. Aggregation by parasitoids in the successful control
of the California red scale: A test of theory. Journal of Animal Ecology 54:797–816.

Renshaw, E. 1991. Modelling Biological Populations in Space and Time. Cambridge University
Press, Cambridge, England.

Ribbens, E., J. A. Silander, and S. W. Pacala. 1994. Seedling recruitment in forests: Calibrating
models to predict patterns of tree seedling dispersion. Ecology 75:1794–1806.

Richards, F. J. 1959. A flexible growth function for empirical use. Journal of Experimental
Botany 10:290–300.

Richards, S. A. 2005. Testing ecological theory using the information-theoretic approach:
Examples and cautionary results. Ecology 86:2805–2814.

Ricketts, T. H. 2001. The matrix matters: Effective isolation in fragmented landscapes.
American Naturalist 158:87–99.

Ripley, B. D. 1981. Spatial Statistics. Wiley, New York.
———. 2004. Selecting amongst large classes of models. Pages 155–170 in N. Adams,

M. Crowder, D. J. Haud, and D. Stephens, editors. Methods and Models in Statistics:
In Honour of Professor John Nelder, FRS. Imperial College Press, London.

Rogers, D. J. 1972. Random search and insect population models. Journal of Animal Ecology
41:369–383.

Ronquist, F., B. Larget, J. P. Huelsenbeck, J. P. Kadane, D. Simon, and P. van der Mark.
2006. Comment on “Phylogenetic MCMC algorithms are misleading on mixtures of trees.”
Science 312:3767a.

Rosenheim, J. A. and D. Rosen. 1991. Foraging and oviposition decisions in the parasitoid
Aphytis lingnanensis: Distinguishing the influences of egg load and experience. Journal of
Animal Ecology 60:873–893.

Roughgarden, J. 1997. Primer of Ecological Theory. Prentice Hall, Upper Saddle River, NJ.
Royama, T. 1992. Analytical Population Dynamics. Chapman and Hall, New York.
Ruel, J. J. and M. P. Ayres. 1999. Jensen’s inequality predicts effects of environmental variation.

Trends in Ecology and Evolution 14:361–366.
Sack, L., P. J. Melcher, W. H. Liu, E. Middleton, and T. Pardee. 2006. How strong is intra-

canopy leaf plasticity in temperate deciduous trees? American Journal of Botany 93: 829–
839.

Saha, K. and S. Paul. 2005. Bias-corrected maximum likelihood estimator of the negative
binomial dispersion parameter. Biometrics 61:179–185.

Sandin, S. A. and S. W. Pacala. 2005. Fish aggregation results in inversely density-dependent
predation on continuous coral reefs. Ecology 86:1520–1530.

Scheiner, S. M. and J. Gurevitch, editors. 2001. Design and Analysis of Ecological
Experiments, 2d ed. Chapman and Hall, New York.

Schmitt, R. J., S. J. Holbrook, and C. W. Osenberg. 1999. Quantifying the effects of multiple
processes on local abundance: A cohort approach for open populations. Ecology Letters
2:294–303.

Schnute, J. 1981. A versatile growth model with statistically stable parameters. Canadian
Journal of Fisheries and Aquatic Sciences 38:1128–1140.

“Bolker” — 1/9/2008 — 16:13 — page 380

−1
0
1

380 • B I B L I O G R A P H Y

Schnute, J. T. 1994. A general framework for developing sequential fisheries models. Canadian
Journal of Fisheries and Aquatic Sciences 51:1676–1688.

Self, S. G. and K.-Y. Liang. 1987. Asymptotic properties of maximum likelihood estimators
and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical
Association 82:605–610.

Shaw, D. J. and A. P. Dobson. 1995. Patterns of macroparasite abundance and aggregation in
wildlife populations: A quantitative review. Parasitology 111 Suppl:S111–S127.

Shono, H. 2000. Efficiency of the finite correction of Akaike’s Information Criteria. Fisheries
Science 66:608–610.

Sibly, R. M., D. Barker, M. C. Denham, J. Hone, and M. Pagel. 2005. On the regulation of
populations of mammals, birds, fish, and insects. Science 309:607–610.

Silvertown, J. and M. Dodd. 1999. Evolution of life history in balsam fir (Abies balsamea) in
subalpine forests. Proceedings of the Royal Society of London B 266:729–733.

Skaug, H. and D. Fournier. 2006. Automatic approximation of the marginal likelihood in
non-Gaussian hierarchical models. Computational Statistics and Data Analysis 51:699–709.

Skellam, J. G. 1951. Random dispersal in theoretical populations. Biometrika 38:196–218.
Reprinted in Leslie A. Real and James H. Brown, editors. Foundations of Ecology: Classic
Papers with Commentaries, University of Chicago Press, Chicago, 1991.

Sokal, R. R. and F. J. Rohlf. 1995. Biometry, 3d ed. W. H. Freeman, New York.
Solow, A. R. 1998. On fitting a population model in the presence of observation error. Ecology

79:1463–1466.
Spiegelhalter, D. J., N. Best, B. P. Carlin, and A. Van der Linde. 2002. Bayesian measures of

model complexity and fit. Journal of the Royal Statistical Society B 64:583–640.
Stefanski, L. A. and J. R. Cook. 1995. Simulation-extrapolation: The measurement error

jackknife. Journal of the American Statistical Association 90:1247–1256.
Stephens, P. A., S. W. Buskirk, G. D. Hayward, and C. Martinez del Rio. 2005. Information

theory and hypothesis testing: A call for pluralism. Journal of Applied Ecology 42:4–12.
Stram, D. O. and J. W. Lee. 1994. Variance components testing in the longitudinal fixed effects

model. Biometrics 50:1171–1177.
Streftaris, G. and G. Gibson. 2004. Bayesian analysis of experimental epidemic of foot-and-

mouth disease. Proceedings of the Royal Society of London B 271:1111–1117.
Strong, D. R., A. V. Whipple, A. L. Child, and B. Dennis. 1999. Model selection for a

subterranean trophic cascade: Root-feeding caterpillars and entomopathogenic nematodes.
Ecology 80:2750–2761.

Swartz, C. 2003. Back-of-the-Envelope Physics. Johns Hopkins University Press, Baltimore,
MD.

Szymura, J. M. and N. H. Barton. 1986. Genetic analysis of a hybrid zone between the
fire-bellied toads, Bombina bombina and B. variegata, near Cracow in southern Poland.
Evolution 40:1141–1159.

Teh, C. 2006. Introduction to Mathematical Modeling of Crop Growth: How the Equations
Are Derived and Assembled into a Computer Model. BrownWalker Press, Boca Raton, FL.

Therneau, T. M., P. M. Grambsch, and V. S. Pankratz. 2003. Penalized survival models and
frailty. Journal of Computational and Graphical Statistics 12:156–175.

Thomas, L., S. T. Buckland, K. B. Newman, and J. Harwood. 2005. A unified framework for
modelling wildlife population dynamics. Australian and New Zealand Journal of Statistics
47:19–34.

Thomas, W. R., M. J. Pomerantz, and M. E. Gilpin. 1980. Chaos, asymmetric growth and
group selection for dynamical stability. Ecology 61:1312–1320.

“Bolker” — 1/9/2008 — 16:13 — page 381

−1
0
1

B I B L I O G R A P H Y • 381

Thompson, D., M. Lonergan, and C. Duck. 2005. Population dynamics of harbour seals
Phoca vitulina in England: Monitoring growth and catastrophic declines. Journal of Applied
Ecology 42:638–648.

Thomson, J. D., G. Weiblen, B. A. Thomson, S. Alfaro, and P. Legendre. 1996. Untan-
gling multiple factors in spatial distributions: Lilies, gophers, and rocks. Ecology 77:
1698–1715.

Thornley, J. H. 2002. Instantaneous canopy photosynthesis: Analytical expressions for sun
and shade leaves based on exponential light decay down the canopy and an acclimated
non-rectangular hyperbola for photosynthesis. Annals of Botany 89:451–458.

Tilman, D. 1994. Competition and biodiversity in spatially structured habitats. Ecology
75:2–16.

Tiwari, M., K. A. Bjorndal, A. B. Bolten, and B. M. Bolker. 2005. Intraspecific application
of the mid-domain effect model: Spatial and temporal nest distributions of green turtles,
Chelonia mydas, at Tortuguero, Costa Rica. Ecology Letters 8:918–924.

———. 2006. Evaluation of density-dependent processes and green turtle Chelonia mydas
production at Tortuguero, Costa Rica. Marine Ecological Progress Series 326:283–293.

Tjørve, E. 2003. Shapes and functions of species-area curves: A review of possible models.
Journal of Biogeography 30:827–835.

Toms, J. D. and M. L. Lesperance. 2003. Piecewise regression: A tool for identifying ecological
thresholds. Ecology 84:2034–2041.

Tracey, J. A., J. Zhu, and K. Crooks. 2005. A set of nonlinear regression models for animal
movement in response to a single landscape feature. Journal of Agricultural, Biological, and
Environmental Statistics 10:1–18.

Tucci, M. P. 2002. A note on global optimization in adaptive control, econometrics and
macroeconomics. Journal of Economic Dynamics and Control 26:1739–1764.

]Tufte2001 Tufte, E. 2001. The Visual Display of Quantitative Information, 2d ed. Graphics
Press, Cheshire, CT.

Tukey, J. W. 1977. Exploratory Data Analysis. Addison-Wesley, Reading, MA.
Turchin, P. 2003. Complex Population Dynamics: A Theoretical/Empirical Synthesis. Prince-

ton University Press, Princeton, NJ.
Tyre, A. J., B. Tenhumberg, S. A. Field, D. Niejalke, K. Parris, and H. P. Possingham. 2003.

Improving precision and reducing bias in biological surveys: Estimating false-negative error
rates. Ecological Applications 13:1790–1801.

Underwood, A. J. 1996. Experiments in Ecology: Their Logical Design and Interpretation
Using Analysis of Variance. Cambridge University Press, Cambridge, England.

van Veen, F. J. F., P. D. van Holland, and H. C. J. Godfray. 2005. Stable coexistence in insect
communities due to density- and trait-mediated indirect effects. Ecology 86:1382–1389.

Vandermeer, J. H. and D. E. Goldberg. 2004. Population Ecology: First Principles. Princeton
University Press, Princeton, NJ.

Venables, W. N. 1998. Exegeses on linear models. 1998 International S-PLUS User Conference.
Washington, DC. http://www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf.

Venables, W. N. and B. D. Ripley. 2002. Modern Applied Statistics with S, 4th ed. Springer,
New York.

Verzani, J. 2005. Using R for Introductory Statistics. Chapman and Hall/CRC, Boca Raton,
FL.

Vesk, P. A. 2006. Plant size and resprouting ability: Trading tolerance and avoidance of
damage? Journal of Ecology 94:1027–1034.

“Bolker” — 1/9/2008 — 16:13 — page 382

−1
0
1

382 • B I B L I O G R A P H Y

Vigliola, L., P. J. Doherty, M. G. Meekan, D. M. Drown, M. E. Jones, and P. H. Barber.
2007. Genetic identity determines risk of post-settlement mortality of a marine fish. Ecology
88:1263–1277.

Vonesh, J. R. and B. M. Bolker. 2005. Compensatory larval responses shift tradeoffs associated
with predator-induced hatching plasticity. Ecology 86:1580–1591.

Walters, C. J. and D. Ludwig. 1981. Effects of measurement errors on the assessment of stock-
recruitment relationships. Canadian Journal of Fisheries and Aquatic Sciences 38:704–710.

Wang, D., E. A. Carr, M. R. Palmer, M. W. Berry, and L. J. Gross. 2005. A grid service module
for natural-resource managers. IEEE Internet Computing, 9:35–41.

Warton, D. I., I. J. Wright, D. S. Falster, and M. Westoby. 2006. Bivariate line-fitting methods
for allometry. Biological Reviews 81:259–291.

Whittingham, M. J., P. A. Stephens, R. B. Bradbury, and R. P. Freckleton. 2006. Why do
we still use stepwise modelling in ecology and behaviour? Journal of Animal Ecology 75:
1182–1189.

Wilmshust, J. F., J. M. Fryxell, and P. E. Colucci. 1999. What constrains daily intake in
Thomson’s gazelles? Ecology 80:2338–2347.

Wilson, J. and C. W. Osenberg. 2002. Experimental and observational patterns of
density-dependent settlement and survival in the marine fish Gobiosoma. Oecologia
130:1432–1439.

Wilson, J. A. 2004. Habitat Quality, Competition and Recruitment Processes in Two Marine
Gobies. Ph.D. diss. University of Florida, Gainesville.

Wilson, W. 2000. Simulating Ecological and Evolutionary Systems in C. Cambridge University
Press, Cambridge, England.

Wintle, B. A. and D. C. Bardos. 2006. Modeling species-habitat relationships with spatially
autocorrelated observation data. Ecological Applications 16:1945–1958.

Wood, S. N. 2001. Partially specified ecological models. Ecological Monographs 71:1–25.
———. 2006. Generalized Additive Models: An Introduction with R. Chapman and

Hall/CRC, Boca Raton, FL.
Yoccoz, N. G. 1991. Use, overuse and misuse of significance tests in evolutionary biology and

ecology. Bulletin of the Ecological Society of America 72:106–111.
Zar, J. H. 1999. Biostatistical Analysis, 4th ed. Prentice Hall, Upper Saddle River, NJ.

	35685_ch00.i-xii.pdf
	35685_ch01.1-28.pdf
	35685_ch02.29-71.pdf
	35685_ch03.72-102.pdf
	35685_ch04.103-146.pdf
	35685_ch05.147-168.pdf
	35685_ch06.169-221.pdf
	35685_ch07.222-262.pdf
	35685_ch08.263-297.pdf
	35685_ch09.298-315.pdf
	35685_ch10.316-336.pdf
	35685_ch11.337-361.pdf
	35685_ch12.362.pdf
	35685_ch13.363-368.pdf
	35685_ref.369-382.pdf

