
The coefplot2 package

Ben Bolker

November 12, 2012

1 Introduction

The purpose of the coefplot2 is to make the following tasks easy, or at least
easier:

� quickly visualize the point estimates and measures of uncertainty of fitted
statistical models;

� compare fits of models with the same modeling approach but different sets
of predictors;

� compare fits of the same models fitted with different algorithms or imple-
mentations;

� produce beautiful, flexible, publication-quality plots of coefficient esti-
mates

The starting point is the coefplot function in the arm package, which allows
the first (see also the coefplot package and http://www.r-statistics.com/

2010/07/visualization-of-regression-coefficients-in-r/)

2 Design goals & issues

minimizing dependencies in order to meet its goal of understanding/being
able to extract data from data structures from many packages, coefplot2
will necessarily (at least) Suggest: many packages. However, the chances
for various nasty kinds of namespace pollution/collision are high, espe-
cially with various combinations of S3 and S4 methods (nlme, various
flavours of lme4, glmmADMB . . .). Therefore, the dependencies should be
made as weak as possible, and methods etc. should be imported only if
absolutely necessary.

modularity back-end (coeftab) should extract information in a flexible way
into a standardized format, while front-end (coefplot[2]) should use
this standardized format for plotting. Furthermore, the code for merging
lists of coefficients from different models (possibly with different subsets

1

http://cran.r-project.org/web/packages/coefplot/index.html
http://www.r-statistics.com/2010/07/visualization-of-regression-coefficients-in-r/
http://www.r-statistics.com/2010/07/visualization-of-regression-coefficients-in-r/

of parameters), currently inside coefplot2.fitList should be abstracted
into a separate function for merging coeftab objects into coeftabList

objects (or something like that)

back-end flexibility different model types have different kinds of parameters.
I am particularly interested in mixed models, where we might be interested
in picking out (1) fixed-effect parameters; (2) random effects; (3) variance
parameters [in different parameterizations – (log)-Cholesky factor, vari-
ance/covariance, standard deviation/correlation ...]. Other models may
have other kinds of parameters – dispersion parameters (some GLM[M]s
and negative binomial models), heteroscedasticity and correlation param-
eters (e.g. from lme), zero-inflation parameters (from glmmADMB, pscl),
. . .

alternative plotting front-ends it’s a pain, but all three of the existing plot-
ting interfaces (base, lattice, and ggplot) have different features that
make supporting all three of them (potentially) worthwhile

� base graphics are the hardest to make look pretty, and require lots
of parameters to be defined, but are also the easiest for users to
understand, modify, and augment

� lattice graphics are intermediate: prettier by default (and some pre-
fer the style to ggplot’s), but still typically require lots of param-
eters. Plotting confidence intervals is tricky without writing cus-
tomized panel functions (or using Hmisc’s xYplot extension to get
the same results). lattice is also self-contained, and Recommended,
so carries no additional dependencies. For this case, extending the
xyplot S3 generic function is probably the way to go . . .

� ggplot graphics are (perhaps) the prettiest, and allow a good deal of
flexibility, but also carry a string of dependencies (although they are
tightly coupled and hence less of a problem). More importantly, they
require a bit of a paradigm shift on the user’s part, relative to base
graphics. Here it’s probably best to use the fortify and autoplot

mechanisms (see e.g. fortify.confint.glht in ggplot2).

options for error bars provide a reasonably flexible way to specify the defi-
nition of the error bars: could be ± a specified number of SD, an α level
(translated via normal approximation, or ?? t approximation if applica-
ble?, or translated to a credible interval, or a quantile . . .)

default aesthetics there are some design tradeoffs; it won’t hurt to do things
the way we like them, but we should provide flexibility for those who want
to be more old-fashioned/please reviewers, supervisors, etc.

� point-range graphs (cleaner? less non-data-ink?) vs. traditional
error bars with serifs/end caps

2

� inner/outer bars (e.g. thick lines for ±1SD or 50% credible intervals;
thin lines for ±2SD or 95% CI) vs traditional error bars

� horizontal presentation (allows more room for labels) vs traditional
vertical presentation (more familiar, but often requires staggering/rotating/abbreviating
labels)

� allow for violin plots etc. in scenarios that allow them (bootstrap,
MCMC CI)?

information to be incorporated in coeftab we need to decide what kind
of information coeftab should carry along. e.g. it will be very useful for
it to know the assignments of categorical variables to factors (so these can
be grouped in the output). It might be useful for it to know (1) standard
deviations of predictor variables (for post-hoc scaling), (2) link functions
(for back-transformation). Should the . . . ?

transformations make it easy, or at least possible, for users to (1) back-
transform estimates and CI from a predictor to a response scale; (2) change
from unscaled to scaled parameter estimates (this might require access to
the original model, or at least the model frame)

grouping want to allow access to grouping variables for parameters, such as
factor assignment of parameters, allowing them to be grouped by point/line
colour or (?) by background rectangles (see Glycera example)

3 description of coeftab

coeftab currently inherits from data.frame. It has columns for a point esti-
mate, the standard error of the estimate (usually based on local curvature), and
some number of quantiles (by default 2.5, 25, 75, 97.5), which could be derived
in a variety of different ways (based on SE with normal or t distribution, or on
quantiles or HPD intervals of MCMC output, or (??) on bootstrap or paramet-
ric bootstrap output). We could make the structure richer, e.g. by creating a
list of components for different parameter types (fixed vs random effects/BLUPs
vs variances/covariances vs dispersion or zero-inflation parameters . . .) — this
might have advantages but would have a big disadvantage in terms of overall
transparency and letting users hack what they needed out of the results (un-
less we were extremely careful in designing accessors etc. so that the objects
still looked like data frames). coeftabs may also contain p-value columns. The
cheaper/cheesier way to carry along information would be in attributes, which
could be hidden in the default plot method. (At present print.coeftab is set
to printCoefmat, so that p-values are formatted nicely if present.)

I’m not quite sure how lists of coeftabs should be handled: should there
be a separate class for them, so the lists can be kept separate until merging is
needed for plotting/formatting?

3

4 description of coefplot

5 arm::coefplot examples

plot 1

par(mfrow = c(2, 2))

coefplot(fit1)

coefplot(fit2, col.pts = "blue")

plot 2

longnames <- c("(Intercept)", longnames)

coefplot(fit1, longnames, intercept = TRUE, CI = 1)

plot 3

coefplot(fit2, vertical = FALSE, var.las = 1, frame.plot = TRUE)

Regression Estimates

−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6

x1 x2 x3 x4 x5

●

●

●
● ●

plot 4, stacked: bayesglm >> glm

coefplot(M2, xlim = c(-1, 5), intercept = TRUE)

coefplot(M1, add = TRUE, col.pts = "red")

4

Regression Estimates
−1 0 1 2 3 4 5

(Intercept)

x1

x2

●

●

●

==================== arrayed plot ====================

par(mfrow = c(1, 2))

x.scale <- c(0, 7.5) ## fix x.scale for comparison

coefplot(M1, xlim = x.scale, main = "glm", intercept = TRUE)

coefplot(M2, xlim = x.scale, main = "bayesglm", intercept = TRUE)

bayesglm
0 2 4 6

(Intercept)

x1

x2

●

●

●

plot 5: the ordered logit model from polr

par(mfrow = c(1, 2))

coefplot(M3, main = "polr")

##

Re-fitting to get Hessian

5

##

Re-fitting to get Hessian

coefplot(M4, main = "bayespolr", add = TRUE, col.pts = "red")

polr
−1.5 −0.5 0.5 1.5

InflMedium

InflHigh

TypeApartment

TypeAtrium

TypeTerrace

ContHigh

Low|Medium

Medium|High

●

●

●

●

●

●

●

●

●

plot 6: plot bugs & lmer

library("lme4")

M5 <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)

M5.sim <- mcsamp(M5) coefplot(M5, var.idx=5:22, CI=1, ylim=c(18,1),

main='lmer model') detach('package:lme4') ## needed by arm

plot 7: plot coefficients & sds vectors

par(mfrow = c(1, 2))

coef.vect <- c(0.2, 1.4, 2.3, 0.5)

sd.vect <- c(0.12, 0.24, 0.23, 0.15)

longnames <- c("var1", "var2", "var3", "var4")

coefplot(coef.vect, sd.vect, varnames = longnames, main = "Regression Estimates")

coefplot(coef.vect, sd.vect, varnames = longnames, vertical = FALSE, var.las = 1,

main = "Regression Estimates")

6

Regression Estimates

0.0

0.5

1.0

1.5

2.0

2.5

var1 var2 var3 var4

●

●

●

●

detach("package:arm")

detach("package:lme4")

6 Prettier graphs

6.1 Using lattice

Have dotplot method established. Harder to figure out to get confidence inter-
vals: see https://stat.ethz.ch/pipermail/r-help/2006-October/114897.

html, memisc::panel.errbars

library(coefplot2)

Warning: the specification for S3 class "bugs" in package ’coefplot2’

seems equivalent to one from package ’arm’ and is not turning on duplicate

class definitions for this class

Warning: the specification for S3 class "polr" in package ’coefplot2’

seems equivalent to one from package ’arm’ and is not turning on duplicate

class definitions for this class

dotplot.coeftab <- function(object, horizontal = FALSE, ...) {
object$pnames <- rownames(object)

if (!horizontal) {
dotplot(pnames ~ Estimate, type = "p", data = object, ...)

} else {
dotplot(Estimate ~ pnames, type = "p", data = object, ...)

}

7

https://stat.ethz.ch/pipermail/r-help/2006-October/114897.html
https://stat.ethz.ch/pipermail/r-help/2006-October/114897.html

}
dotplot(coeftab(M1))

Estimate

(Intercept)

x1

x2

5 10 15 20

●

●

●

dotplot(coeftab(M1), horizontal = TRUE)

E
st

im
at

e

5

10

15

20

(Intercept) x1 x2

●

●

●

6.2 ggplot2

fortify.coeftab <- function(object) {
object$pnames <- rownames(object)

8

vlocs <- match(c("Std. Error", "2.5%", "25%", "75%", "97.5%"), names(object))

names(object)[vlocs] <- c("std_error", "lwr", "lwr2", "upr2", "upr")

object <- plyr::rename(object, c(`Std.

Error`='std_error',`2.5%`='lwr',`97.5%`='upr',

`25%`='lwr2',`75%`='upr2')) live with this for now repeated code from

melt.coeftabList ?

as.data.frame(object)

}
qplot(pnames, Estimate, ymin = lwr, ymax = upr, data = fortify(coeftab(M2)),

geom = "pointrange") + coord_flip()

●

●

●

(Intercept)

x1

x2

0 2 4 6
Estimate

pn
am

es

7 Miscellaneous/to do

� write a merge.coeftab method

� allow more flexible selection of var.idx (e.g. by regular expression)

� save grouping information on parameters

� sort out the various model list/coeftab structures!

9

	Introduction
	Design goals & issues
	description of coeftab
	description of coefplot
	arm::coefplot examples
	Prettier graphs
	Using lattice
	ggplot2

	Miscellaneous/to do

