Advances on Methodological and Applied Aspects of Probability and Statistics **N. Balakrishnan**, Editor-in-Chief McMaster University, Hamilton, Ontario, Canada

Editorial Board

Abraham, B. (University of Waterloo, Waterloo, Ontario)
Arnold, B. C. (University of California, Riverside)
Bhat, U. N. (Southern Methodist University, Dallas)
Ghosh, S. (University of California, Riverside)
Jammalamadaka, S. R. (University of California, Santa Barbara)
Mohanty, S. G. (McMaster University, Hamilton, Ontario)
Raghavarao, D. (Temple University, Philadelphia)
Rao, J. N. K. (Carleton University, Ottawa, Ontario)
Rao, P. S. R. S. (University of Rochester, Rochester)
Srivastava, M. S. (University of Toronto, Toronto, Ontario)

Advances on Methodological and Applied Aspects of Probability and Statistics

Edited by **N. Balakrishnan** *McMaster University*

Hamilton, Canada

Gordon and Breach Science Publishers

Australia Canada China France Germany India Japan Luxembourg Malaysia The Netherlands Russia Singapore Switzerland

PREFACE	xxi
LIST OF CONTRIBUTORS	
LIST OF TABLES	
LIST OF FIGURES	XXXV
Part I Applied Probability	
1 FROM DAMS TO TELECOMMUNICATION – A SURVEY OF BASIC MODELS	
N. U. PRABHU	3
1.1 INTRODUCTION	3
1.2 MORAN'S MODEL FOR THE FINITE DAM	4
1.3 A CONTINUOUS TIME MODEL FOR THE DAM	6
1.4 A MODEL FOR DATA COMMUNICATION	
SYSTEMS	8
REFERENCES	11
2 MAXIMUM LIKELIHOOD ESTIMATION IN QUEUEING SYSTEMS	
U. NARAYAN BHAT and ISHWAR V. BASAWA	13
2.1 INTRODUCTION	13
2.2 M.L.E. IN MARKOVIAN SYSTEMS	15
2.3 M.L.E. IN NON-MARKOVIAN SYSTEMS	16
2.4 M.L.E. FOR SINGLE SERVER QUEUES USING	
WAITING TIME DATA	18
2.5 M.L.E. USING SYSTEM TIME	19

2.6 M.L.E. IN M/G/1 USING QUEUE LENGTH DAT	ГА 21
2.7 M.L.E. IN GI/M/1 USING QUEUE LENGTH DA	
2.8 SOME OBSERVATIONS	26
REFERENCES	27
3 NUMERICAL EVALUATION OF STATE	
PROBABILITIES AT DIFFERENT EPOCHS	
IN MULTISERVER GI/Geom/m QUEUE	
M. L. CHAUDHRY and U. C. GUPTA	31
3.1 INTRODUCTION	32
3.2 MODEL AND SOLUTION: GI/Geom/m (EAS)	33
3.2.1 Evaluation of $\{Q_n\}_0^\infty$ from $\{Q_n^-\}_0^\infty$	37
3.2.2 Outside observer's distribution	39
3.3 GI/Geom/m (LAS-DA)	39
3.3.1 Evaluation of $\{P_n\}_0^\infty$ from $\{P_n^-\}_0^\infty$	42
3.3.2 Outside observer's distribution	42
3.4 NUMERICAL RESULTS	43
REFERENCES	46
4 BUSY PERIOD ANALYSIS OF GI ^b IM/1/N	
QUEUES — LATTICE PATH APPROACH	
KANWAR SEN and MANJU AGARWAL	47
4.1 INTRODUCTION	
4.1 10110000011010	47
4.2 THE $GI^b/M/1/N$ MODEL	$\begin{array}{c} 47\\ 49\end{array}$
4.2 THE $\mathrm{GI}^{b}/\mathrm{M}/1/\mathrm{N}$ MODEL	49
4.2 THE $GI^b/M/1/N$ MODEL 4.3 LATTICE PATH APPROACH	49 50
 4.2 THE GI^b/M/1/N MODEL 4.3 LATTICE PATH APPROACH 4.4 DISCRETIZED C^b₂/M/1/N MODEL 4.4.1 Transient Probabilities 4.4.2 Counting of Lattice Paths 	49 50 51
 4.2 THE GI^b/M/1/N MODEL 4.3 LATTICE PATH APPROACH 4.4 DISCRETIZED C^b₂/M/1/N MODEL 4.4.1 Transient Probabilities 4.4.2 Counting of Lattice Paths 4.4.3 Notations 	49 50 51 51
 4.2 THE GI^b/M/1/N MODEL 4.3 LATTICE PATH APPROACH 4.4 DISCRETIZED C^b₂/M/1/N MODEL 4.4.1 Transient Probabilities 4.4.2 Counting of Lattice Paths 4.4.3 Notations 4.5 BUSY PERIOD PROBABILITY FOR THE 	49 50 51 51 52 53
 4.2 THE GI^b/M/1/N MODEL 4.3 LATTICE PATH APPROACH 4.4 DISCRETIZED C^b₂/M/1/N MODEL 4.4.1 Transient Probabilities 4.4.2 Counting of Lattice Paths 4.4.3 Notations 4.5 BUSY PERIOD PROBABILITY FOR THE DISCRETIZED C^b₂/M/1/N MODEL 	49 50 51 51 52 53 60
 4.2 THE GI^b/M/1/N MODEL 4.3 LATTICE PATH APPROACH 4.4 DISCRETIZED C^b₂/M/1/N MODEL 4.4.1 Transient Probabilities 4.4.2 Counting of Lattice Paths 4.4.3 Notations 4.5 BUSY PERIOD PROBABILITY FOR THE DISCRETIZED C ^b ₂ /M/1/N MODEL 4.6 CONTINUOUS C ^b ₂ /M/1/N MODEL	49 50 51 51 52 53 60 63
 4.2 THE GI^b/M/1/N MODEL 4.3 LATTICE PATH APPROACH 4.4 DISCRETIZED C^b₂/M/1/N MODEL 4.4.1 Transient Probabilities 4.4.2 Counting of Lattice Paths 4.4.3 Notations 4.5 BUSY PERIOD PROBABILITY FOR THE DISCRETIZED C^b₂/M/1/N MODEL 4.6 CONTINUOUS C^b₂/M/1/N MODEL 4.7 PARTICULAR CASES 	49 50 51 51 52 53 60
 4.2 THE GI^b/M/1/N MODEL 4.3 LATTICE PATH APPROACH 4.4 DISCRETIZED C^b₂/M/1/N MODEL 4.4.1 Transient Probabilities 4.4.2 Counting of Lattice Paths 4.4.3 Notations 4.5 BUSY PERIOD PROBABILITY FOR THE DISCRETIZED C^b₂/M/1/N MODEL 4.6 CONTINUOUS C^b₂/M/1/N MODEL 4.7 PARTICULAR CASES 4.8 NUMERICAL COMPUTATIONS AND 	49 50 51 51 52 53 60 63 64
 4.2 THE GI^b/M/1/N MODEL 4.3 LATTICE PATH APPROACH 4.4 DISCRETIZED C^b₂/M/1/N MODEL 4.4.1 Transient Probabilities 4.4.2 Counting of Lattice Paths 4.4.3 Notations 4.5 BUSY PERIOD PROBABILITY FOR THE DISCRETIZED C^b₂/M/1/N MODEL 4.6 CONTINUOUS C^b₂/M/1/N MODEL 4.7 PARTICULAR CASES 	49 50 51 51 52 53 60 63

vi

Part II Models and Applications **5 MEASURES FOR DISTRIBUTIONAL** CLASSIFICATION AND MODEL SELECTION GOVIND S. MUDHOLKAR and RAJESHWARI NATARAJAN 87 5.1 INTRODUCTION 87 5.2 CURRENT MEASURES FOR DISTRIBUTIONAL MORPHOLOGY 88 5.3 (ξ_1, ξ_2) SYSTEM 91 5.4 ASYMPTOTIC DISTRIBUTIONS OF J_1, J_2 935.5 MISCELLANEOUS REMARKS 95REFERENCES 97 6 MODELING WITH A BIVARIATE GEOMETRIC DISTRIBUTION SUNIL K. DHAR 101 6.1 INTRODUCTION 1016.2 INTERPRETATION OF BVG MODEL ASSUMPTIONS 1026.3 THE MODEL UNDER THE ENVIRONMENTAL EFFECT 104 6.4 DATA ANALYSIS WITH BVG MODEL 105REFERENCES 109

Part III Estimation and Testing

7 SMALL AREA ESTIMATION: UPDATES
WITH APPRAISALJ. N. K. RAO1137.1 INTRODUCTION1137.2 SMALL AREA MODELS1157.2.1 Area Level Models1157.2.2 Unit Level Models118

vii

	7.3 MODEL-BASED INFERENCE	120
	7.3.1 EBLUP Method	121
	7.3.2 EB Method	124
	7.3.3 HB Method	125
	7.4 SOME RECENT APPLICATIONS	128
	7.4.1 Area–level Models 7.4.2 Unit Level Models	$128 \\ 131$
	REFERENCES	133
		100
8	UNIMODALITY IN CIRCULAR DATA: A BAYES TEST	
	SANJIB BASU and S. RAO JAMMALAMADAKA	141
	8.1 INTRODUCTION	141
	8.2 EXISTING LITERATURE	143
	8.3 MIXTURE OF TWO VON-MISES	
	DISTRIBUTIONS	144
	8.4 PRIOR SPECIFICATION	146
	8.5 PRIOR AND POSTERIOR PROBABILITY OF UNIMODALITY	147
	8.6 THE BAYES FACTOR	148
	8.7 APPLICATION	149
	8.8 SOME ISSUES	151
	REFERENCES	153
9	MAXIMUM LIKELIHOOD ESTIMATION OF THE LAPLACE PARAMETERS BASED ON PROGRESSIVE TYPE-II CENSORED SAMPLES	
	RITA AGGARWALA and N. BALAKRISHNAN	159
	9.1 INTRODUCTION	159
	9.2 EXAMINING THE LIKELIHOOD FUNCTION	161
	9.3 ALGORITHM TO FIND MLE'S	163
	9.4 NUMERICAL EXAMPLE	165
	REFERENCES	166

viii

10 ESTIMATION OF PARAMETERS OF THE LAPLACE DISTRIBUTION USING RANKED SET SAMPLING PROCEDURES	
DINISH S. BHOJ	169
10.1 INTRODUCTION	169
10.2 ESTIMATION OF PARAMETERS BASED ON THREE PROCEDURES	171
10.2.1 Ranked Set Sampling 10.2.2 Modified Ranked Set Sampling 10.2.3 New Ranked Set Sampling	171 172 173
10.3 LAPLACE DISTRIBUTION	174
10.4 COMPARISON OF ESTIMATORS	176
10.4.1 Joint Estimation of μ and σ 10.4.2 Estimation of μ 10.4.3 Estimation of σ	176 177 177
REFERENCES	178
11 SOME RESULTS ON ORDER STATISTICS ARISING IN MULTIPLE TESTING	
SANAT K. SARKAR	183
11.1 INTRODUCTION	183
11.2 THE MONOTONICITY OF d_i 's	185
11.3 RESULTS ON ORDERED COMPONENTS OF A RANDOM VECTOR	187
REFERENCES	191

Part IV Robust Inference

12 ROBUST ESTIMATION VIA GENERALIZED L-STATISTICS: THEORY, APPLICATIONS, AND PERSPECTIVES			
	ROBERT SERFLING	197	
	12.1 INTRODUCTION	197	
	12.1.1 A Unifying Structure	198	

12.2	BASIC FORMULATION OF GL-STATISTICS	200
	12.2.1 Representation of GL-Statistics as	
	Statistical Functionals	200
	12.2.2 A More General Form of Functional	202
	12.2.3 The Estimation Error	203
12.3	SOME FOUNDATIONAL TOOLS	203
	12.3.1 Differentation Methodology	203
	12.3.2 The Estimation Error in the	
	U-Empirical Process	204
	12.3.3 Extended Glivenko-Cantelli Theory	205
	12.3.4 Oscillation Theory, Generalized Order Statistics, and Bahadur Representations	206
	12.3.5 Estimation of the Variance of a U-Statistic	$200 \\ 207$
194	GENERAL RESULTS FOR GL-STATISTICS	201
12.1	12.4.1 Asymptotic Normality and the LIL	208
	12.4.2 The SLLN	208 209
	12.4.3 Large Deviation Theory	209
	12.4.4 Further Results	210
12.5	SOME APPLICATIONS	210
	12.5.1 One-Sample Quantile Type Parameters	210
	12.5.2 Two-Sample Location and Scale Problems	212
	12.5.3 Robust ANOVA	213
	12.5.4 Robust Regression	213
	12.5.5 Robust Estimation of Exponential Scale	
	Parameter	213
	REFERENCES	214
	CLASS OF ROBUST STEPWISE	
TES	STS FOR MANOVA	
) KUMAR SRIVASTAVA, GOVIND S. MUDHOLKAR	
and	CAROL E. MARCHETTI	219
13.1	INTRODUCTION	220
13.2	PRELIMINARIES	222
	13.2.1 Robust Univariate Tests	222
	13.2.2 Combining Independent P-Values	224
	13.2.3 Modified Step Down Procedure	225
13.3	ROBUST STEPWISE TESTS	227

х

	CONTENTS	xi
	13.4 A MONTE CARLO EXPERIMENT	228
	13.4.1 The Study	228
	13.5 CONCLUSIONS	231
	REFERENCES	231
14	ROBUST ESTIMATORS FOR THE ONE-WAY VARIANCE COMPONENTS MODEL	
	YOGENDRA P. CHAUBEY and K. VENKATESWARLU	241
	14.1 INTRODUCTION	241
	14.2 MIXED LINEAR MODELS AND ESTIMATION	
	OF PARAMETERS	243
	14.2.1 General Mixed Linear Model	243
	14.2.2 Maximum Likelihood and Restricted Maximum Likelihood Estimators	244
	14.2.3 Robust Versions of ML and REML	244
	Estimators	245
	14.2.4 Computation of Estimators for the	
	One Way Model	246
	14.3 DESCRIPTION OF THE SIMULATION	
	EXPERIMENT	246
	14.4 DISCUSSION OF THE RESULTS	248
	14.4.1 Biases of the Estimators of $\hat{\sigma}_a^2$	248
	14.4.2 Biases of the Estimators of $\hat{\sigma}_e^2$	248
	14.4.3 MSE's of Estimators of $\hat{\sigma}_a^2$ 14.4.4 MSE's of Estimators of $\hat{\sigma}_e^2$	$248 \\ 249$
	14.5 SUMMARY AND CONCLUSIONS	249
	REFERENCES	249

Part V Regression and Design

15	PERFORMANCE OF THE PTE BASED ON THE CONFLICTING W, LR AND LM TESTS IN REGRESSION MODEL	
	Md. BAKI BILLAH and A. K. Md. E. SALEH	263
	15.1 INTRODUCTION	264
	15.2 THE TESTS AND PROPOSED ESTIMATORS	265

	15.3 BIAS, M AND RISK OF THE ESTIMATORS	267
	15.4 RELATIVE PERFORMANCE OF THE ESTIMATORS	960
		269
	15.4.1 Bias Analysis of the Estimators	269
	15.4.2 M Analysis of the Estimators 15.4.3 Risk Analysis of the Estimators	$270 \\ 271$
	U U	211
	15.5 EFFICIENCY ANALYSIS AND	070
	RECOMMENDATIONS	273
	15.6 CONCLUSION	275
	REFERENCES	276
16	ESTIMATION OF REGRESSION AND DISPERSION PARAMETERS IN THE ANALYSIS OF PROPORTIONS	
	SUDHIR R. PAUL	283
	16.1 INTRODUCTION	284
	16.2 ESTIMATION	285
	16.2.1 The Extended Beta-Binomial Likelihood 16.2.2 The Quasi-Likelihood Method 16.2.3 Estimation Using Quadratic Estimating	285 286
	Equations	287
	16.3 ASYMPTOTIC RELATIVE EFFICIENCY	289
	16.4 EXAMPLES	292
	16.5 DISCUSSION	293
	REFERENCES	294
17	SEMIPARAMETRIC LOCATION-SCALE REGRESSION MODELS FOR SURVIVAL DATA	
	XUEWEN LU and R. S. SINGH	305
	17.1 INTRODUCTION	306
	17.2 LIKELIHOOD FUNCTION FOR THE	
	PARAMETRIC LOCATION-SCALE MODELS	307
	17.3 GENERALIZED PROFILE LIKELIHOOD	308

xii

	17.3.1 Application of Generalized Profile Likelihood to Semiparametric Location-Scale Regression	
	Models	308
	17.3.2 Estimation and Large Sample Properties	309
	17.4 EXAMPLES OF SEMIPARAMETRIC LOCATION-SCALE REGRESSION MODELS	310
	17.5 AN EXAMPLE WITH CENSORED SURVIVAL DATA: PRIMARY BILIARY	
	CIRRHOSIS (PBC) DATA	312
	REFERENCES	313
	APPENDIX: COMPUTATION OF THE	
	ESTIMATES	314
18	ANALYSIS OF SATURATED AND SUPER-SATURATED FACTORIAL DESIGNS: A REVIEW KIMBERLY K. J. KINATEDER, DANIEL T. VOSS and WEIZHEN WANG	325
	18.1 INTRODUCTION	325
	18.2 BACKGROUND	327
	18.2.1 Orthogonality and Saturation 18.2.2 Control of Error Rates	$327 \\ 329$
	18.3 ORTHOGONAL SATURATED DESIGNS	331
	18.3.1 Background	331
	18.3.2 Simultaneous Stepwise Tests	333
	18.3.3 Individual Tests	337
	18.3.4 Individual Confidence Intervals	338
	18.3.5 Simultaneous Confidence Intervals	338
	18.3.6 Adaptive Methods	339
	18.4 NON-ORTHOGONAL SATURATED DESIGNS	340
	18.4.1 Individual Confidence Intervals 18.4.2 Open Problems	$\begin{array}{c} 341 \\ 342 \end{array}$
	18.5 SUPER-SATURATED DESIGNS	342
	REFERENCES	343

CO	NTEI	VTS
00		N T D

19	9 ON ESTIMATING SUBJECT-TREATMENT INTERACTION		
	GARY GADBURY and HARI IYER	349	
	19.1 INTRODUCTION	350	
	19.2 AN ESTIMATOR OF S_D^2 USING CONCOMITANT INFORMATION	352	
	19.3 AN ILLUSTRATIVE EXAMPLE	359	
	19.4 SUMMARY/CONCLUSIONS	360	
	REFERENCES	361	

Part VI Sample Size Methodology

20	ADVANCES IN SAMPLE SIZE METHODOLOGY FOR BINARY DATA STUDIES–A REVIEW	
	M. M. DESU	367
	20.1 ESTABLISHING THERAPEUTIC EQUIVALENCE IN PARALLEL STUDIES	367
	20.1.1 Tests under Δ -Formulation (20.1.2) 20.1.2 Tests under Relative Risk Formulation	369
	(ψ Formulation) 20.1.3 Confidence Bound Method for Δ Formulation	$371 \\ 373$
	20.2 SAMPLE SIZE FOR PAIRED DATA STUDIES	374
	20.2.1 Testing for Equality of Correlated Proportions 20.2.2 Tests for Establishing Equivalence	$375 \\ 377$
	REFERENCES	380
21	ROBUSTNESS OF A SAMPLE SIZE RE-ESTIMATION PROCEDURE IN CLINICAL TRIALS	
	Z. GOVINDARAJULU	383
	21.1 INTRODUCTION	383
	21.2 FORMULATION OF THE PROBLEM	385
	21.3 THE MAIN RESULTS	386
	21.4 FIXED-WIDTH CONFIDENCE INTERVAL ESTIMATION	395

 xiv

CONTENTS

396	
290	

 $\mathbf{x}\mathbf{v}$

Part VII Applications to Industry

22	IMPLEMENTATION OF STATISTICAL METHODS IN INDUSTRY	
	BOVAS ABRAHAM	401
	22.1 INTRODUCTION	401
	22.2 LEVELS OF STATISTICAL NEED IN INDUSTRY	402
	22.3 IMPLEMENTATION: GENERAL ISSUES	402
	22.4 IMPLEMENTATION VIA TRAINING AND/OR CONSULTING	404
	22.5 IMPLEMENTATION VIA EDUCATION	405
	22.6 UNIVERSITY-INDUSTRY COLLABORATION	406
	22.7 UNIVERSITY OF WATERLOO AND INDUSTRY	406
	22.8 CONCLUDING REMARKS	409
	REFERENCES	410
23	SEQUENTIAL DESIGNS BASED ON CREDIBLE REGIONS	
	ENRIQUE GONZÁLEZ and JOSEP GINEBRA	413
	23.1 INTRODUCTION	413
	23.2 DESIGNS FOR CONTROL BASED ON H.P.D. SETS	415
	23.3 AN EXAMPLE OF THE USE OF HPD DESIGNS	417
	23.4 DESIGNS FOR R.S.B. BASED ON C.P. INTERVALS	418
	23.5 CONCLUDING REMARKS	420
	APPENDIX: MODEL USED IN SECTION 23.3	421
	REFERENCES	422

CO	NTENTS	5

24	CO	ING WITH LAPLACE ORDER NSERVING SURVIVAL UNDER	
		RFECT REPAIRS	
		NISH C. BHATTACHARJEE and IT K. BASU	425
	24.1	INTRODUCTION	425
	24.2	THE CLASS \mathcal{L}_D	426
	24.3	CLOSURE PROPERTIES	429
		24.3.1 Coherent Structures	429
		24.3.2 Convolutions	431
		24.3.3 Mixtures	433
	24.4	THE DISCRETE CLASS \mathcal{G}_D AND ITS DUAL	434
	24.5	\mathcal{L} AND \mathcal{L}_D AGING WITH SHOCKS	436
		REFERENCES	440
	WI	PERFECT ZERO-DEFECT SAMPLING TH RECTIFICATION	
		CRJA WADHWA	441
	25.1	RJA WADHWA INTRODUCTION	441 441
		INTRODUCTION	441
		INTRODUCTION SAMPLING PLAN A 25.2.1 Model 25.2.2 Modification of Greenberg and Stokes	441 443
		INTRODUCTION SAMPLING PLAN A 25.2.1 Model 25.2.2 Modification of Greenberg and Stokes Estimators	441 443 443 444
		 INTRODUCTION SAMPLING PLAN A 25.2.1 Model 25.2.2 Modification of Greenberg and Stokes Estimators 25.2.3 An Empirical Bayes Estimator 	$ \begin{array}{r} 441 \\ 443 \\ 443 \\ 444 \\ 444 \\ 446 \\ \end{array} $
		 INTRODUCTION SAMPLING PLAN A 25.2.1 Model 25.2.2 Modification of Greenberg and Stokes Estimators 25.2.3 An Empirical Bayes Estimator 25.2.4 Comparison of Estimators 	441 443 443 444
	25.2	 INTRODUCTION SAMPLING PLAN A 25.2.1 Model 25.2.2 Modification of Greenberg and Stokes Estimators 25.2.3 An Empirical Bayes Estimator 25.2.4 Comparison of Estimators 25.2.5 Example 	$ \begin{array}{r} 441 \\ 443 \\ 443 \\ 443 \\ 444 \\ 446 \\ 448 \\ 450 \\ \end{array} $
	25.2	 INTRODUCTION SAMPLING PLAN A 25.2.1 Model 25.2.2 Modification of Greenberg and Stokes Estimators 25.2.3 An Empirical Bayes Estimator 25.2.4 Comparison of Estimators 	$ \begin{array}{r} 441 \\ 443 \\ 443 \\ 444 \\ 446 \\ 448 \\ \end{array} $
	25.2 25.3	 INTRODUCTION SAMPLING PLAN A 25.2.1 Model 25.2.2 Modification of Greenberg and Stokes Estimators 25.2.3 An Empirical Bayes Estimator 25.2.4 Comparison of Estimators 25.2.5 Example SAMPLING PLAN B 	$ \begin{array}{r} 441\\ 443\\ 443\\ 443\\ 444\\ 446\\ 448\\ 450\\ 452\\ \end{array} $
	25.2 25.3	 INTRODUCTION SAMPLING PLAN A 25.2.1 Model 25.2.2 Modification of Greenberg and Stokes Estimators 25.2.3 An Empirical Bayes Estimator 25.2.4 Comparison of Estimators 25.2.5 Example SAMPLING PLAN B 25.3.1 Estimators 	$ \begin{array}{r} 441\\ 443\\ 443\\ 443\\ 444\\ 446\\ 448\\ 450\\ 452\\ 452\\ 452 \end{array} $
	25.2 25.3	INTRODUCTION SAMPLING PLAN A 25.2.1 Model 25.2.2 Modification of Greenberg and Stokes Estimators 25.2.3 An Empirical Bayes Estimator 25.2.4 Comparison of Estimators 25.2.5 Example SAMPLING PLAN B 25.3.1 Estimators SUGGESTIONS FOR FURTHER RESEARCH APPENDIX A1: CALCULATION OF THE	$ \begin{array}{r} 441\\ 443\\ 443\\ 443\\ 444\\ 446\\ 448\\ 450\\ 452\\ 452\\ 452\\ 454 \end{array} $

xvi

26 STATISTICS IN THE REAL WORLD— WHAT I'VE LEARNT IN MY FIRST YEAR (AND A HALF) IN INDUSTRY	
REKHA AGRAWAL	465
26.1 THE GE ENVIRONMENT	465
26.2 SIX SIGMA	467
26.3 THE PROJECTS THAT I'VE WORKED ON	468
26.3.1 Introduction	468
26.3.2 New Product Launch 26.3.3 Reliability Issue with a Supplied Part	$\begin{array}{c} 469 \\ 469 \end{array}$
26.3.4 Constructing a Reliability Database	$409 \\ 470$
26.4 SOME SURPRISES COMING TO INDUSTRY	471
26.5 GENERAL COMMENTS	474
REFERENCES	474
Part VIII Applications to Ecology, Biology and Health	
27 CONTEMPORARY CHALLENGES AND RECENT ADVANCES IN ECOLOGICAL AND ENVIRONMENTAL SAMPLING	
G. P. PATIL and C. TAILLIE	477
27.1 CERTAIN CHALLENGES AND ADVANCES	
IN TRANSECT SAMPLING	477
27.1.1 Deep-Sea Red Crab	
	478
27.1.2 Bivariate Sighting Functions	480
27.1.2 Bivariate Sighting Functions 27.1.3 Guided Transect Sampling	
27.1.2 Bivariate Sighting Functions 27.1.3 Guided Transect Sampling 27.2 CERTAIN CHALLENGES AND ADVANCES	480 482
27.1.2 Bivariate Sighting Functions27.1.3 Guided Transect Sampling27.2 CERTAIN CHALLENGES AND ADVANCES IN COMPOSITE SAMPLING	480 482 486
 27.1.2 Bivariate Sighting Functions 27.1.3 Guided Transect Sampling 27.2 CERTAIN CHALLENGES AND ADVANCES IN COMPOSITE SAMPLING 27.2.1 Estimating Prevalence Using Composites 	480 482
27.1.2 Bivariate Sighting Functions27.1.3 Guided Transect Sampling27.2 CERTAIN CHALLENGES AND ADVANCES IN COMPOSITE SAMPLING	480 482 486 486
 27.1.2 Bivariate Sighting Functions 27.1.3 Guided Transect Sampling 27.2 CERTAIN CHALLENGES AND ADVANCES IN COMPOSITE SAMPLING 27.2.1 Estimating Prevalence Using Composites 27.2.2 Two-Way Compositing 27.2.3 Compositing and Stochastic Monotonicity 27.3 CERTAIN CHALLENGES AND ADVANCES 	480 482 486 486 491 492
 27.1.2 Bivariate Sighting Functions 27.1.3 Guided Transect Sampling 27.2 CERTAIN CHALLENGES AND ADVANCES IN COMPOSITE SAMPLING 27.2.1 Estimating Prevalence Using Composites 27.2.2 Two-Way Compositing 27.2.3 Compositing and Stochastic Monotonicity 27.3 CERTAIN CHALLENGES AND ADVANCES IN ADAPTIVE CLUSTER SAMPLING 	480 482 486 486 491 492 495
 27.1.2 Bivariate Sighting Functions 27.1.3 Guided Transect Sampling 27.2 CERTAIN CHALLENGES AND ADVANCES IN COMPOSITE SAMPLING 27.2.1 Estimating Prevalence Using Composites 27.2.2 Two-Way Compositing 27.2.3 Compositing and Stochastic Monotonicity 27.3 CERTAIN CHALLENGES AND ADVANCES 	480 482 486 486 491 492

xvii

CONTENTS	3
----------	---

		REFERENCES	503
28		E ANALYSIS OF MULTIPLE NEURAL KE TRAINS	
	SAT	ISH IYENGAR	507
	28.1	INTRODUCTION	507
	28.2	PHYSIOLOGICAL BACKGROUND	508
	28.3	METHODS FOR DETECTING FUNCTIONAL	510
		CONNECTIONS	510
		28.3.1 Moment Methods	$510 \\ 512$
		28.3.2 Intensity Function Based Methods 28.3.3 Frequency Domain Methods	$512 \\ 513$
		28.3.4 Graphical Methods	$515 \\ 516$
		28.3.5 Parametric Methods	518
	28.4	DISCUSSION	521
		REFERENCES	521
29	SO	ME STATISTICAL ISSUES INVOLVING	
	MU	LTIGENERATION CYTONUCLEAR DATA	
	SUS	MITA DATTA	525
	29.1	INTRODUCTION	526
	29.2	NEUTRALITY OR SELECTION?	527
		29.2.1 Sampling Schemes for Multi-Generation Data	529
		29.2.2 An Omnibus Test	530
		29.2.3 Application to Gambusia Data	531
		29.2.4 Application to Drosophila Melanogaster Data	532
		29.2.5 Tests Against a Specific Selection Model	532
	29.3	INFERENCE FOR THE SELECTION	
		COEFFICIENTS	538
		29.3.1 A Multiplicative Fertility Selection Model	539
		29.3.2 An Approximate Likelihood	539
		29.3.3 Application to Hypotheses Testing	541
		REFERENCES	541

xviii

30 THE PERFORMANCE OF ESTIMATION PROCEDURES FOR COST-EFFECTIVENESS RATIOS	
JOSEPH C. GARDINER, ALKA INDURKHYA and ZHEHUI LUO	547
30.1 INTRODUCTION	547
30.2 CONFIDENCE INTERVALS FOR CER	548
30.3 COMPARISON OF INTERVALS	540 550
30.4 SIMULATION STUDIES	552
30.5 RESULTS	553
30.6 RECOMMENDATIONS	558
REFERENCES	559
31 MODELING TIME-TO-EVENT DATA USING FLOWGRAPH MODELS	
APARNA V. HUZURBAZAR	561
31.1 INTRODUCTION	561
31.2 INTRODUCTION TO FLOWGRAPH MODELING	G 563
31.2.1 Flowgraph Models for Series Systems 31.2.2 Flowgraph Models for Parallel Systems 31.2.3 Flowgraph Models with Feedback	$563 \\ 564 \\ 565$
31.3 RELIABILITY APPLICATION: HYDRAULIC PUMP SYSTEM	566
31.4 SURVIVAL ANALYSIS APPLICATION: A FEED	
FORWARD MODEL FOR HIV	568
31.5 CONCLUSION	570
REFERENCES	571
Part IX Applications to Economics and Management	
32 INFORMATION MATRIX TESTS FOR THE COMPOSED ERROR FRONTIER MODEL	
ANIL K. BERA and NARESH C. MALLICK	575
32.1 INTRODUCTION	575

 $_{\rm xix}$

CONTENTS

32.2	INFORMATION MATRIX TESTS FOR	
	FRONTIER MODELS	577
	32.2.1 The Elements of the IM Test for the	F 77
	Output Model 32.2.2 The Elements of the IM Test for the	577
	Cost Model	582
32.3	EMPIRICAL RESULTS	584
	32.3.1 Output Model Estimation	584
	32.3.2 Moments Test for the Output Model	585
	32.3.3 Cost Model Estimation	587
	32.3.4 Moments Test for the Cost Model	587
32.4	CONCLUSION	589
	APPENDIX A	590
	APPENDIX B	592
	REFERENCES	595
- 01	R PANEL DATA AND MANAGERIAL	
	NITORING IN ELECTRIC UTILITIES	507
		597
Н. Г	NITORING IN ELECTRIC UTILITIES	597 597
Н. Г 33.1	NITORING IN ELECTRIC UTILITIES D. VINOD and R. R. GEDDES THE INTRODUCTION AND MOTIVATION GLM, GEE & PANEL LOGIT/PROBIT (LDV)	597
Н. Г 33.1	NITORING IN ELECTRIC UTILITIES D. VINOD and R. R. GEDDES THE INTRODUCTION AND MOTIVATION	
Н. Г 33.1	NITORING IN ELECTRIC UTILITIES VINOD and R. R. GEDDES THE INTRODUCTION AND MOTIVATION GLM, GEE & PANEL LOGIT/PROBIT (LDV) MODELS 33.2.1 GLM for Panel Data	597 601 605
Н. Г 33.1	NITORING IN ELECTRIC UTILITIES VINOD and R. R. GEDDES THE INTRODUCTION AND MOTIVATION GLM, GEE & PANEL LOGIT/PROBIT (LDV) MODELS 33.2.1 GLM for Panel Data 33.2.2 Random Effects Model from Econometrics	597 601
Н. Г 33.1	NITORING IN ELECTRIC UTILITIES VINOD and R. R. GEDDES THE INTRODUCTION AND MOTIVATION GLM, GEE & PANEL LOGIT/PROBIT (LDV) MODELS 33.2.1 GLM for Panel Data	597 601 605
H. D 33.1 33.2	 NITORING IN ELECTRIC UTILITIES VINOD and R. R. GEDDES THE INTRODUCTION AND MOTIVATION GLM, GEE & PANEL LOGIT/PROBIT (LDV) MODELS 33.2.1 GLM for Panel Data 33.2.2 Random Effects Model from Econometrics 33.2.3 Derivation of GEE, the Estimator for β 	597 601 605 606
H. D 33.1 33.2	 NITORING IN ELECTRIC UTILITIES VINOD and R. R. GEDDES THE INTRODUCTION AND MOTIVATION GLM, GEE & PANEL LOGIT/PROBIT (LDV) MODELS 33.2.1 GLM for Panel Data 33.2.2 Random Effects Model from Econometrics 33.2.3 Derivation of GEE, the Estimator for β and Standard Errors 	597 601 605 606
H. D 33.1 33.2	NITORING IN ELECTRIC UTILITIES). VINOD and R. R. GEDDES THE INTRODUCTION AND MOTIVATION GLM, GEE & PANEL LOGIT/PROBIT (LDV) MODELS 33.2.1 GLM for Panel Data 33.2.2 Random Effects Model from Econometrics 33.2.3 Derivation of GEE, the Estimator for β and Standard Errors GEE ESTIMATION OF CEO TURNOVER AND THREE HYPOTHESES 33.3.1 Description of Data	597 601 605 606 607
H. D 33.1 33.2	NITORING IN ELECTRIC UTILITIES O. VINOD and R. R. GEDDES THE INTRODUCTION AND MOTIVATION GLM, GEE & PANEL LOGIT/PROBIT (LDV) MODELS 33.2.1 GLM for Panel Data 33.2.2 Random Effects Model from Econometrics 33.2.3 Derivation of GEE, the Estimator for β and Standard Errors GEE ESTIMATION OF CEO TURNOVER AND THREE HYPOTHESES 33.3.1 Description of Data 33.3.2 Shareholder and Consumer Wealth Variables	597 601 605 606 607 609 611
H. D 33.1 33.2	NITORING IN ELECTRIC UTILITIES VINOD and R. R. GEDDES THE INTRODUCTION AND MOTIVATION GLM, GEE & PANEL LOGIT/PROBIT (LDV) MODELS 33.2.1 GLM for Panel Data 33.2.2 Random Effects Model from Econometrics 33.2.3 Derivation of GEE, the Estimator for β and Standard Errors GEE ESTIMATION OF CEO TURNOVER AND THREE HYPOTHESES 33.3.1 Description of Data 33.3.2 Shareholder and Consumer Wealth Variables for Hypothesis Testing	597 601 605 606 607 609 611 613
H. D 33.1 33.2 33.3	NITORING IN ELECTRIC UTILITIES O. VINOD and R. R. GEDDES THE INTRODUCTION AND MOTIVATION GLM, GEE & PANEL LOGIT/PROBIT (LDV) MODELS 33.2.1 GLM for Panel Data 33.2.2 Random Effects Model from Econometrics 33.2.3 Derivation of GEE, the Estimator for β and Standard Errors GEE ESTIMATION OF CEO TURNOVER AND THREE HYPOTHESES 33.3.1 Description of Data 33.3.2 Shareholder and Consumer Wealth Variables for Hypothesis Testing 33.3.3 Empirical Results	597 601 605 606 607 609 611 613 614
H. D 33.1 33.2 33.3	NITORING IN ELECTRIC UTILITIES VINOD and R. R. GEDDES THE INTRODUCTION AND MOTIVATION GLM, GEE & PANEL LOGIT/PROBIT (LDV) MODELS 33.2.1 GLM for Panel Data 33.2.2 Random Effects Model from Econometrics 33.2.3 Derivation of GEE, the Estimator for β and Standard Errors GEE ESTIMATION OF CEO TURNOVER AND THREE HYPOTHESES 33.3.1 Description of Data 33.3.2 Shareholder and Consumer Wealth Variables for Hypothesis Testing	597 601 605 606 607 609 611 613

 $\mathbf{X}\mathbf{X}$

PREFACE

This is one of two volumes consisting of 33 invited papers presented at the International Indian Statistical Association Conference held during October 10–11, 1998, at McMaster University, Hamilton, Ontario, Canada. This Second International Conference of IISA was attended by about 240 participants and included around 170 talks on many different areas of Probability and Statistics. All the papers submitted for publication in this volume were refereed rigorously. The help offered in this regard by the members of the Editorial Board listed earlier and numerous referees is kindly acknowledged. This volume, which includes 33 of the invited papers presented at the conference, focuses on Advances on Methodological and Applied Aspects of Probability and Statistics.

For the benefit of the readers, this volume has been divided into nine parts as follows:

Part I	Applied Probability
Part II	Models and Applications
Part III	Estimation and Testing
Part IV	Robust Inference
Part V	Regression and Design
Part VI	Sample Size and Methodology
Part VII	Applications to Industry
Part VIII	Applications to Ecology, Biology and Health
Part IX	Applications to Economics and Management

I sincerely hope that the readers of this volume find the papers to be useful and of interest. I thank all the authors for submitting their papers for publication in this volume.

PREFACE

Special thanks go to Ms. Arnella Moore and Ms. Concetta Seminara-Kennedy of Gordon and Breach Science Publishers for supporting this project and also for helping with the production of this volume. My final thanks go to Mrs. Debbie Iscoe for her fine typesetting of the entire volume.

I hope the readers of this volume enjoy it as much as I did putting it together!

N. BALAKRISHNAN

McMaster University Hamilton, Ontario, Canada

xxii

LIST OF CONTRIBUTORS

- Abraham, Bovas, IIQP, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 babraham@setosa.uwaterloo.ca
- Agarwal, Manju, Department of Operations Research, University of Delhi, Delhi-110007, India
- Aggarwala, Rita, Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4 rita@math.ucalgary.ca
- Agrawal, Rehka, GE Corproate Research & Devleopment, Schenectady, NY 12065, U.S.A. rekha.agrawal@corporate.ge.com
- Balakrishnan, N., Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1 bala@mcmail.cis.mcmaster.ca
- Basawa, Ishwar V., Department of Statistics, University of Georgia, Athens, GA 30602-1952, U.S.A. ishwar@stat.uga.edu
- Basu, Sanjib, Division of Statistics, Northern Illinois University, DeKalb, IL 60115, U.S.A. basu@niu.edu
- Basu, Sujit K., National Institute of Management, Calcutta 700027, India
- Bera, Anil K., Department of Economics, University of Illinois at Urbana-Champaign, Champaign, IL 61820, U.S.A. anil@fisher.econ.uiuc.edu

- Bhat, U. Narayan, Department of Statistical Science, Southern Methodist University, Dallas, TX 75275-0240, U.S.A. nbhat@mail.smu.edu
- Bhattacharjee, Manish C., Center for Applied Mathematics & Statistics, Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102-1982, U.S.A. mabhat@chaos.njit.edu
- Bhoj, Dinesh S., Department of Mathematical Sciences, Rutgers University, Camden, NJ 08102-1405, U.S.A. dbhoj@crab.rutgers.edu
- Billah, Md. Baki, Department of Statistics, University of Dhaka, Dhaka-1000, Bangladesh
- Chaubey, Yogendra P., Department of Mathematics and Statistics, Concordia University, Montreal, Quebec, Canada H4B 1R6 chaubey@vax2.concordia.ca
- Chaudhry, M. L., Department of Mathematics and Computer Science, Royal Military College of Canada, P.O. Box 17000, STN Forces, Kingston, Ontario, Canada K7K 7B4 chaudhry-ml@rmc.ca
- Datta, Susmita, Department of Mathematics and Computer Science, Georgia State University, Atlanta, GA 30303-3083, U.S.A. sdatta@cs.gsu.edu
- Desu, M. M., Department of Statistics, State University of New York, Buffalo, NY 14214-3000, U.S.A. desu@calcutta.med.buffalo.edu
- Dhar, Sunil K., Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102-1824, U.S.A. sunidh@stat.njit.edu
- Gadbury, Gary, Department of Mathematics, University of North Carolina at Greensboro, Greensboro, NC, U.S.A.
- Gardiner, Joseph C., Department of Epidemiology, College of Human Medicine, Michigan State University, East Lansing, MI 48823, U.S.A. gardine3@pilot.msu.edu
- Geddes, R. R., Department of Economics, Fordham University, 441 East Fordham Road, Bronx, NY 10458-5158, U.S.A.

xxiv

- **Ginebra, Josep,** Departament d'Estadística, E.T.S.E.I.B., Universitat Politècnica de Catalunya, Avgda. Diagonal 647, 6^a planta, 08028 Barcelona, Spain ginebra@eio.upc.es
- **González, Enrique,** Departamento de Estadística, Universidad de La Laguna, 38271 La Laguna, Spain egonzale@ull.es
- Govindarajulu, Z., Department of Statistics, University of Kentucky, Lexington, KY 40506, U.S.A. raju@ms.uky.edu
- Gupta, U. C., Department of Mathematics, Indian Institute of Technology, Kharagpur 721 302, India umesh@maths.iitkgp.ernet.in
- Huzurbazar, Aparna V., Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131-1141, U.S.A. aparna@stat.unm.edu
- Indurkhya, Alka, Department of Epidemiology, College of Human Medicine, Michigan State University, East Lansing, MI 48823, U.S.A.
- Iyengar, Satish, Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A. su@bacchus.stat.pitt.edu
- Iyer, Hari, Department of Statistics, Colorado State University, Fort Collins, CO 80523, U.S.A. hari@stat.colostat.edu
- Jammalamadaka, S. Rao, Department of Statistics and Applied Probability, University of California, Santa Barbara, CA 93106, U.S.A. rao@pstat.ucsb.edu
- Kinateder, Kimberly K. K., Department of Mathematics and Statistics, Wright State University, Dayton, OH 45453, U.S.A.
- Lu, Xuewen, Food Research Program, Sourthern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 43 McGilvray Street, Guelph, Ontario, Canada N1G 2W1 lux@em.agr.ca

LIST OF CONTRIBUTORS

- Luo, Zhehui, Department of Epidemiology, College of Human Medicine, Michigan State University, East Lansing, MI 48823, U.S.A.
- Mallick, Naresh C., Department of Economics and Finance, Alabama Agricultural and Mechanical University, Normal, AL, U.S.A.
- Marchetti, Carol E., Department of Mathematics and Statistics, Rochester Institute of Technology, Rochester, NY 14623-5603, U.S.A. cemsma@rit.edu
- Mudholkar, Govind S., Department of Statistics, University of Rochester, Rochester, NY 14727, U.S.A. govind@metro.bst.rochester.edu
- Natarajan, Rajeshwari, Department of Statistics, University of Rochester, Rochester, NY 14727, U.S.A. rajn@stat1.bst.rochester.edu
- Patil, G. P., Department of Statistics, Pennsylvania State University, University Park, PA 16802, U.S.A. gpp@stat.psu.edu
- Paul, Sudhir R., Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario, Canada N9B 3P4 smjp@uwindsor.ca
- Prabhu, N. U., School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14853-3801, U.S.A. questa@orie.cornell.edu
- Rao, J. N. K., School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6 jrao@math.carleton.ca
- Saleh, A. K. Md. E., School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6 esaleh@math.carleton.ca
- Sarkar, Sanat K., Department of Statistics, Temple University, Philadelphia, PA 19122, U.S.A. sanat@sbm.temple.edu
- Sen, Kanwar, Department of Statistics, University of Delhi, Delhi-110007, India ksen@ndb.vsnl.net.in

xxvi

- Serfling, Robert, Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75083-0688, U.S.A. serfling@utdallas.edu
- Singh, R. S., Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada N1G 2W1 rsingh@msnet.mathstat.uoguelph.ca
- Srivastava, Deo Kumar, Department of Biostatistics and Epidemiology, St. Jude Children's Research Hospital, 332 North Lauderdale St., Memphis, TN 38105-2794, U.S.A. kumar.srivastava@stjude.org
- Taillie, C., Department of Statistics, Pennsylvania State University, University Park, PA 16802, U.S.A.
- Venkateswarlu, K., Department of Mathematics and Statistics, Concordia University, Montreal, Quebec, Canada H4B 1R6
- Vinod, H. D., Department of Economics, Fordham University, 441 East Fordham Road, Bronx, NY 10458-5158, U.S.A. vinod@murray.fordham.edu
- Voss, Daniel T., Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, U.S.A. dvoss@math.wright.edu
- Wadhwa, Neerja, Card Services, GE Capital, Stamford, CT 06820, U.S.A. pwadhwa@sprintmail.com
- Wang, Weizhen, Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, U.S.A.

xxviii

LIST OF CONTRIBUTORS

TABLE 3.1	Distributions of numbers in system, at various epochs, in the queueing system Geom/Geom/m	
	with $\mu = 0.2, \lambda = 0.2, m = 5, \text{ and } \rho = 0.2$	44
TABLE 3.2	Distributions of numbers in system, at various epochs, in the queueing system D/Geom/m with	
	$\mu = 0.2, a = 4, m = 5, and \rho = 0.25$	44
TABLE 3.3	Distributions of numbers in system, at various epochs, in the queueing system D/Geom/m with	
	$\mu = 0.016666, a = 4, m = 20, and \rho = 0.75$	45
TABLE 4.1	Busy period probabilities for different values of b	
	when $h = 0.02, i = 1, N = 5, \alpha = 0.6, \hat{a} = 0.4,$	
	$\lambda_1 = 3, \lambda_2 = 2, \mu = 5$	71
TABLE 4.2	Busy period probabilities for different values of	
	α when $h = 0.02, i = 1, b = 2, N = 5, \lambda_1 = 3,$	
	$\lambda_2 = 2, \ \mu = 5$	73
TABLE 4.3	Busy period probabilities for different values of λ_1	
	when $h = 0.02$, $i = 1$, $b = 2$, $N = 5$, $\alpha = 0.6$,	
	$\hat{a} = 0.4, \lambda_2 = 2, \mu = 5$	75
TABLE 4.4	Busy period probabilities for different values of λ_2	
	when $h = 0.02$, $i = 1, b = 2, N = 5, \alpha = 0.6$,	
	$\hat{a} = 0.4, \lambda_1 = 3, \mu = 5$	77
TABLE 4.5	Busy period probabilities for different values of μ	
	when $h = 0.02$, $i = 1$, $N = 5$, $b = 2$, $\alpha = 0.6$,	
	$\hat{a} = 0.4, \lambda_1 = 3, \lambda_2 = 2$	79
TABLE 4.6	Busy period probabilities for different values of i	
	when $h = 0.02, b = 2, N = 5, \alpha = 0.6, \hat{a} = 0.4,$	
	$\lambda_1 = 3, \lambda_2 = 2, \mu = 5$	81

TABLE 4.7	Busy period probabilities for different values of N when $h = 0.02$, $i = 1$, $b = 2$, $\alpha = 0.6$, $\hat{a} = 0.4$, $\lambda_1 = 3$, $\lambda_2 = 2$, $\mu = 5$	83
TABLE 5.1	Comparison of $(\sqrt{b_1}, b_2)$ and (J_1, J_2) for the datasets	92
TABLE 5.2	Rainfall (in mm) at Kyoto, Japan for the month	
	of July from 1880–1960	92
TABLE 5.3	Fifth bus motor failure	92
TABLE 6.1	This data is taken from a video recording during the summer of 1995 relayed by NBC sports TV, IX World Cup diving competition, Atlanta, Georgia. The data starts at the last dive of the	
	fourth round of the diving competition	107
TABLE 6.2	Projected consumers preference ranks, from 1,	
	the highest preference, to 10, the lowest	108
TABLE 8.1	Evidence in support of alternative model from	
TABLE 6.1	Bayes factor	149
TABLE 8.2	Vanishing direction of 15 homing pigeons.	110
	The loft direction is 149°	149
TABLE 8.3	Estimated posterior mean, standard deviation	
	and percentiles of $\mu_1, \mu_2, \kappa_1, \kappa_2$ and π	150
TABLE 10.1	Coefficients for computing $\tilde{\mu}$ and $\tilde{\sigma}$	180
TABLE 10.2	Variances and relative precisions	180
TABLE 10.3	Coefficients, variances and covariance of	
	estimators for MRSS	181
TABLE 10.4	Coefficients, variances and covariance of	
	estimators for NRSS	181
TABLE 10.5	Relative efficiencies of the estimators	181
TABLE 10.6	Relative efficiencies of the estimators	101
	based on MRSS and NRSS	181
TABLE 13.1	Type I error control with Fisher combination	
	statistic of Section 13.3; $k = 3, p = 2, g_i =$ number	
	and $\delta_i = \%$ trimmed from the <i>i</i> -th population	235
TABLE 13.2	Empirical power functions for Fisher combination	
	statistic of Section 13.3; $k = 3, p = 2$, Alternatives	
	(A), (B) and (C) in Section 13.4, g_i = number and	000
	$\delta_i = \%$ trimmed from <i>i</i> -th population	238

 $\mathbf{X}\mathbf{X}\mathbf{X}$

TABLE 14.1	Bias of different estimators for σ_a^2 and σ_e^2	252
TABLE 14.2	MSE's of different estimators for σ_a^2	
	and σ_e^2	256
TABLE 14.3	Number of trials not coverged in 200 iterations (in 1000 trials)	260
TABLE 15.1	Maximum and minimum guaranteed efficiency of PTE's $(p = 4)$	282
TABLE 16.1	Asymptotic relative efficiency of $\hat{\pi}$ by the $QL, GL, M1 = (QL \text{ and } QEE \text{ combination}),$ $M2 = QEE, M3 = (QEE \text{ with } \gamma_1 = \gamma_2 = 0) \text{ and }$ M4 = (QL and GL combination) methods; two parameter model	296
TABLE 16.2	Asymptotic relative efficiency of $\hat{\phi}$ by the $QL, GL, M1 = (QL \text{ and } QEE \text{ combination}),$ $M2 = QEE, M3 = (QEE \text{ with } \gamma_1 = \gamma_2 = 0)$ and $M4 = (QL \text{ and } GL \text{ combination})$ methods; two parameter model	297
TABLE 16.3	Asymptotic relative efficiency of $\hat{\beta}_1$ by the $QL, GL, M1 = (QL \text{ and } QEE \text{ combination}),$ $M2 = QEE, M3 = (QEE \text{ with } \gamma_1 = \gamma_2 = 0)$ and $M4 = (QL \text{ and } GL \text{ combination})$ methods; the simple logit linear regression model	298
TABLE 16.4	Asymptotic relative efficiency of $\hat{\phi}$ by the $QL, GL, M1 = (QL \text{ and } QEE \text{ combination}),$ $M2 = QEE, M3 = (QEE \text{ with } \gamma_1 = \gamma_2 = 0)$ and $M4 = (QL \text{ and } GL \text{ combination})$ methods; the simple logit linear regression model	299
TABLE 16.5	Number of the cross-over offsprings in $m = 36$ families from Potthoff and Whittinghill (1966). y = number of ++ offsprings, $n =$ total cross-over offsprings	300
TABLE 16.6	The estimates $\hat{\pi}$ and $\hat{\phi}$ and their estimated relative efficiencies by the $ML, QL, GL, M1 = (QL$ and QEE combination), $M2 = QEE, M3 = (QEE$ with $\gamma_1 = 0, \gamma_2 = 0$) and $M4 = (QL$ and GL	
	combination) methods for the cross-over data	300

xxxi

TABLE 16.7	The toxicological data of law dose group from	
	Paul (1982). $m = 19$ litters. $y =$ number of live	
	foetuses affected by treatment, $n = \text{total of live}$	
	foetuses	300
TABLE 16.8	The estimates $\hat{\pi}$ and $\hat{\phi}$ and their estimated	
	relative efficiencies by the $ML, QL, GL, M1 = (QL)$	
	and QEE combination), $M2 = QEE$, $M3 = (QEE)$	
	with $\gamma_1 = 0, \gamma_2 = 0$ and $M4 = (QL \text{ and } GL$	
	combination) methods for the toxicology data	301
TABLE 16.9	Low-iron rat teratology data. N denotes the	
	litter size, R the number of dead foetuses, HB	
	the hemoglobin level, and GRP the group number.	
	Group 1 is the untreated (low-iron) group, group 2	
	received injections on day 7 or day 10 only, group 3	
	received injections on days 0 and 7, and group 4	
	received injections weekly	302
TABLE 16.10	The estimates $\hat{\beta}_0, \hat{\beta}_1$ and $\hat{\phi}$ and their estimated	
	relative efficiencies by the ML, QL, GL ,	
	M1 = (QL and GL combination), M2 = QEE,	
	$M3 = (QEE \text{ with } \gamma_1 = 0, \gamma_2 = 0) \text{ and}$	
	M4 = (QL and GL combination) methods for	202
	the low-iron rat teratology data	303
TABLE 17.1	Estimates of the parameters under the	
	semiparametric and parametric models	
	for PBC data	320
		000
TABLE 18.1	A regular 2_{III}^{7-4} fractional factorial design	328
TABLE 18.2	The 12-run Plackett-Burman design	329
TABLE 19.1	True finite population of potential responses	363
TABLE 19.2	Observed responses from the population after	
	treatment assignment	363
TABLE 19.3	Estimated population after treatment assignment	
	and prediction of unobserved responses	364
TABLE 20.1	Probability model for paired data studies	374
	v i	
TABLE 21.1	Numerical values of $\alpha^* = E\Phi(-tS)$	391
TABLE 21.1 TABLE 21.2	Values of ratio (as a percent) of the effective	391
		391

xxxii

	2	
	and $\theta \ge 1 + {\delta^*}^2 / 4\sigma^2$	394
TABLE 21.3	Values of ratio (as a percent) of the effective	
	power to the nominal power at the specified alternative $y = x^*$ when $0 < 1 + 5^*/(4\pi^2)$	205
	alternative $\mu_2 - \mu_1 = \delta^*$ when $\theta < 1 + {\delta^*}^2/4\sigma^2$	395
TABLE 21.4	Values of $\gamma^* = 2\Phi \left(t \left(1 + \eta^2 / 4\sigma^2 \right)^{\frac{1}{2}} \right) - 1$ when	
	$\theta < 1 + \eta^2 / 4\sigma^2$	397
TABLE 21.5	Values of $\gamma^* = 2\Phi\left(t\sqrt{\theta}\right) - 1$ when $\theta \ge 1 + \eta^2/4\sigma^2$	397
TABLE 25.1	(p = 0.999, p' = 0.001)	451
TABLE 25.2	(p = 0.999, p' = 0.001)	451
	Values of many the optimal composite	
TABLE 27.1	Values of $p = p_k$ where the optimal composite sample size makes a transition from	
	$k_{\text{opt}} = k \text{ to } k_{\text{opt}} = k + 1.$ When p is slightly	
	larger than $p_{\mathbf{k}}$, the optimal composite sample	
	size is k; when p is slightly smaller than p_k	
	the optimal composite sample size is $k + 1$.	
	The composite prevalence $\pi_{\mathbf{k}} = H^{-1}(p_{\mathbf{k}})$	
	corresponding to $p_{\mathbf{k}}$ is also tabulated	489
TABLE 29.1	Frequencies in a cytonuclear system	527
TABLE 29.2	Genotypic disequilibria in a cytonuclear system	527
TABLE 29.3	Results for the Gambusia data [from Scribner	
	et al. (1998)]	531
TABLE 29.4	Results for the Drosophila data [from Datta	
	et al. (1996)]	532
TABLE 29.5	Selection coefficients in a cytonuclear system	532
TABLE 29.6	α_{fmk}	536
TABLE 29.7	eta_{ki}	537
TABLE 30.1	Parameters in joint distributions of cost and	
	effectiveness in test and referent interventions	549
TABLE 30.2	Normal distributions for cost and effectiveness	
	$(n_0 = n_1 = 250; (\mu_{0c}, \mu_{0e}) = (30, 5);$	
	$(\mu_{1c}, \mu_{1e}) = (40, 6))$	554
TABLE 30.3	Log normal cost and normal effectiveness	
	distributions $(n_0 = n_1 = 250; (\mu_{0c}, \mu_{0e}) = (30, 5);$	FF 4
	$(\mu_{1c}, \mu_{1e}) = (40, 6))$	554
TABLE 30.4	Log normal cost and normal effectiveness distributions $(n_0 = n_1 = 250; (\mu_{0c}, \mu_{0e}) = (30, 5);$	
	$\begin{array}{l} \text{distributions} \ (n_0 = n_1 = 250, \ (\mu_{0c}, \mu_{0e}) = (50, 5), \\ (\mu_{1c}, \mu_{1e}) = (40, 6)) \end{array}$	554
	$(\mu_{1c},\mu_{1e}) = (\mathbf{x}_{0},0))$	1001

xxxiii

TABLE 30.5	Log normal cost and normal effectiveness	
	distributions $(n_0 = n_1 = 50; (\mu_{0c}, \mu_{0e}) = (30, 5);$	
	$(\mu_{1c}, \mu_{1e}) = (40, 6))$	555
TABLE 30.6	Normal cost and normal effectiveness distributions	
	$(n_0 = n_1 = 50; (\mu_{0c}, \mu_{0e}) = (30, 5);$	
	$(\mu_{1c}, \mu_{1e}) = (40, 6))$	555
TABLE 30.7	$(n_0 = n_1 = 100; (\mu_{0c}, \mu_{0e}) = (30, 5);$	
	$(\mu_{1c}, \mu_{1e}) = (40, 6))$	558
TABLE 32.1		584
TABLE 32.2		585
TABLE 32.3		587
TABLE 33.1	Tested hypotheses and predictions	614
TABLE 33.2	Generalized estimating equations estimates	
	of the effects of firm performance on managerial	
	turnover in investor-owned utilities	615
TABLE 33.3	GEE estimates of the effects of output price	
	and allowed returns on managerial turnover in	
	investor-owned utilities	616

xxxiv

FIGURE 1.1 FIGURE 1.2	A buffer of infinite capacity for storage An integrated circuit and packet switching	10
	multiplexer	10
FIGURE 3.1	Various time epochs in early arrival system (EAS)	34
FIGURE 3.2	Various time epochs in late arrival system with delayed access (LAS-DA)	40
FIGURE 4.1	2-phase Cox distribution C_2	49
FIGURE 4.2	Possible transitions in a time	51
FIGURE 4.3	Busy period illustration	55
FIGURE 4.4	$C_2^b/M/1/N$ model. Lattice path ignoring the	
	diagonals	56
FIGURE 4.5		72
FIGURE 4.6		74
FIGURE 4.7		76
FIGURE 4.8		78
FIGURE 4.9		80
FIGURE 4.10		82
FIGURE 4.11		84
FIGURE 5.1	The (ξ_1, ξ_2) -chart	96
FIGURE 8.1	Three von-Mises mixtures: Top = $0.5 \text{ vm}(\theta \mid -90^{\circ}, 2) + 0.5 \text{ vm}(\theta \mid 90^{\circ}, 2),$ Middle = $0.6 \text{ vm}(\theta \mid -45^{\circ}, 1.5) + 0.4 \text{ vm}(\theta \mid 45^{\circ}, 1.5),$ Bottom = $0.65 \text{ vm}(\theta \mid -60^{\circ}, 2) + 0.25 \text{ vm}(\theta \mid 00^{\circ}, 2)$	155
	$0.35\mathrm{vm}(heta 90^\circ,2)$	155

FIGURE 8.2	Kernel estimates of the posterior density of the	150
FIGURE 8.3	parameters $\kappa_1, \kappa_2, \mu_1, \mu_2, \pi$ Autocorrelation plot at different lags for the five	156
FIGURE 8.5	parameters: $\kappa_1, \kappa_2, \mu_1, \mu_2, \pi$	157
FIGURE 8.4	Predictive density of a new circular observation	101
	for the pigeon data	158
FIGURE 13.1	Power function of Fisher combination test of	220
	Section 13.3	230
FIGURE 14.1a	Absolute bias vs. contamination types for	050
FIGURE 14.1b	random effect variance component	253
FIGURE 14.1D	Absolute bias vs. contamination types for random effect variance component	253
FIGURE 14.1c	Absolute bias vs. contamination types for	200
ridenti init	random effect variance component	254
FIGURE 14.2a	Absolute bias vs. contamination types for	
	error variance component	254
FIGURE 14.2b	Absolute bias vs. contamination types for	
	error variance component	255
FIGURE 14.2c	Absolute bias vs. contamination types for	
	error variance component	255
FIGURE 14.3a	Mean square error vs. contamination types	
	for random effect variance component	257
FIGURE 14.3b	Mean square error vs. contamination types	
DICUDE 14.9	for random effect variance component	257
FIGURE 14.3c	Mean square error vs. contamination types	050
FIGURE 14.4a	for random effect variance component	258
FIGURE 14.4a	Mean square error vs. contamination types for error variance component	258
FIGURE 14.4b	Mean square error vs. contamination types	208
FIGURE 14.40	for error variance component	259
FIGURE 14.4c	Mean square error vs. contamination types	200
1100102 1110	for error variance component	259
FIGURE 15.1	Risk function of the PTE based on the $W()$,	
	$LR(\cdots)$ and $LM(-\cdot)$ tests for various	
	significance levels	278
FIGURE 15.2	Risk function of the PTE based on the $W()$,	
	$LR(\cdots)$ and $LM(-\cdot)$ tests for various	
	significance levels	279

xxxvi

xxxvii

FIGURE 15.3 FIGURE 15.4	Risk function of the PTE based on the $W()$, $LR(\cdots)$ and $LM(-\cdot-)$ tests for various significance levels Risk function of the PTE based on the $W()$, $LR(\cdots)$ and $LM(-\cdot-)$ tests for various significance levels	280 281
FIGURE 17.1 FIGURE 17.2 FIGURE 17.3	Fitted function for age using semiparametric log-normal model Fitted function for age using semiparametric log-logistic model Fitted function for age using semiparametric extreme value model	322 323 324
FIGURE 19.1	Illustration of the sensitivity of <i>BIAS</i> to varying values of ρ_{XY} . $\sigma_X = \sigma_Y = \sigma_Z = 1$, and $\rho_{XZ} = \rho_{YZ} = 0.7$. The true treatment variance is $Var(X - Y) = \sigma_X^2 + \sigma_Y^2 - 2\sigma_X \sigma_Y \rho_{XY}$	358
FIGURE 23.1 FIGURE 23.2	Example of an $hpd_n(\tau)$ region and of the different ingredients that intervene in the definition of the design $d_{hpd}(\tau, \gamma)$ when the marginal posterior distribution for θ is unimodal. $g_n(\theta)$ is proportional to $\pi_n(\theta X_n, Y_n, \pi_0)$ and the support for θ is $[rtl, rtu]$ Contour plots of τ^* , γ^* and of the relative increase in expected loss when c.e. is used instead of $d_{hpd}(\tau^*, \gamma^*)$, $rr_2(\tau = 0, \gamma)$. The model is: $(y_n x_n, \beta) \sim N(T + \beta_1(x_n - \theta), \sigma^2)$ with $\theta \sim U(-R, R), \beta_1 \sim N(1, \sigma_{\beta_1}^2)$ and β_1 independent of θ . The objective is to minimize $E[\sum_{n=1}^N y_n(x_n^d)^2]$	416
FIGURE 25.1A FIGURE 25.1B FIGURE 25.2 FIGURE 25.3 FIGURE 25.4		461 461 462 462 463

FIGURE 27.1	A general outline of guided transect sampling. A first stage sampling of wide strips (left) is followed by a second stage guided subsampling within each strip (right)	483
FIGURE 27.2	Different principles for guiding the subsampling. In (a) transition is only allowed to neighboring cells, in (b) transition is allowed to any onward cell, while in (c) entire transects are simulated. In (a) and (b), the probabilities of transition (the p-values) are determined from the covariate values (x-values) in the next stage, denoted i. In (c), entire transects are determined from the sum(Q-values)	
FIGURE 27.3	of covariates in grid-cells visited The prevalence transformation $H(\pi)$ for	485
110,0102,200	k = 1, 2, 4, 8	487
FIGURE 27.4	The asymptotic cost of compositing relative to individual sampling as a function of the true	
	prevalence p for $k = 2(1)7, 20, 100$	489
FIGURE 27.5	Probability of stochastic monotonicity for the lognormal distribution. The horizontal axis is the coefficient of uniotic given by $\sqrt{\text{cum}(\pi^2) - 1}$	40.4
FIGURE 27.6	coefficient of variation, given by $\sqrt{\exp(\sigma^2) - 1}$ Probability of stochastic monotonicity for the	494
	Pareto distribution	494
FIGURE 27.7	A grid of sample units, superimposed on a clustered population of point objects, along with a random sample of 10 initial observations	497
FIGURE 27.8	The final adaptive cluster sample. Two clusters	491
	were intercepted by the initial random sample	498
FIGURE 27.9	Bird richness in the hexagons	501
FIGURE 27.10	Species area curves from pairwise Jaccard sampling which selects hexagons in order of maximum covariate-species community dissimilarity based on pairwise comparison of the most recently sampled hexagon with	
	each remaining unsampled one	502
FIGURE 29.1	Format of the experiment considered in Datta $et \ al. \ (1996)$	530

xxxviii

xxxix

FIGURE 30.1	Distribution of CER (normal cost, normal	
	effectiveness, correlation $= .5$)	556
FIGURE 30.2	Distribution of CER (normal cost, normal	
	effectiveness, correlation $=5$)	557
FIGURE 31.1	Flowgraph model for hydraulic pump system	563
FIGURE 31.2	Flowgraph model for a parallel system	565
FIGURE 31.3	Flowgraph model for a feedback loop	566
FIGURE 31.4	Density and hazard function for hydraulic	
	pump application	568
FIGURE 31.5	Flowgraph model for HIV/AIDS	569