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PREFACE

This is one of two volumes consisting of 33 invited papers presented
at the International Indian Statistical Association Conference held during
October 10–11, 1998, at McMaster University, Hamilton, Ontario, Canada.
This Second International Conference of IISA was attended by about 240
participants and included around 170 talks on many different areas of Prob-
ability and Statistics. All the papers submitted for publication in this
volume were refereed rigorously. The help offered in this regard by the
members of the Editorial Board listed earlier and numerous referees is
kindly acknowledged. This volume, which includes 33 of the invited pa-
pers presented at the conference, focuses on Advances on Methodological

and Applied Aspects of Probability and Statistics.

For the benefit of the readers, this volume has been divided into nine
parts as follows:

Part I Applied Probability
Part II Models and Applications
Part III Estimation and Testing
Part IV Robust Inference
Part V Regression and Design
Part VI Sample Size and Methodology
Part VII Applications to Industry
Part VIII Applications to Ecology, Biology and Health
Part IX Applications to Economics and Management

I sincerely hope that the readers of this volume find the papers to be
useful and of interest. I thank all the authors for submitting their papers
for publication in this volume.
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λ1 = 3, λ2 = 2, µ = 5 71

TABLE 4.2 Busy period probabilities for different values of
α when h = 0.02, i = 1, b = 2, N = 5, λ1 = 3,
λ2 = 2, µ = 5 73

TABLE 4.3 Busy period probabilities for different values of λ1

when h = 0.02, i = 1, b = 2, N = 5, α = 0.6,
â = 0.4, λ2 = 2, µ = 5 75

TABLE 4.4 Busy period probabilities for different values of λ2

when h = 0.02, i = 1, b = 2, N = 5, α = 0.6,
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