Home Page for Math 4L03: Introduction to Mathematical Logic Winter 2010-2011


Textbook: Propositional and predicate calculus: A model of argument, Derek Goldrei, Springer.
Course objective: To learn the fundamental ideas of mathematical logic.  Our goal is to prove and understand the philosophically significant completeness theorem, and the practically significant compactness theorem.

Instructor: Dr. D. Haskell, HH316, ext.27244

Course meeting time: M 12:30-13:20, T 13:30-14:20, R 12:30-13:20 in BSB 115
E-mail: haskell@math.mcmaster.ca
Office hours: T 9:30-11:30, R 9:30-10:30

TA

Course requirements, in brief (consult the course information sheet  for more detailed information).
Attendance and class participation: 20%
Homework: 20%
Midterm: 20%
Final: 40%

Announcements

Homework assignments (Page references are to the Goldrei textbook.)

Homework 1: p.30 2.10,
                       p47 2.29, 2.31,
                       p62 2.46

Homework 2: p.83 2.83, 2.85, 2.86
                       p.99 3.14, 3.15
                       p.106 3.21

Homework 3: p.161 4.21, 4.22, 4.23, 4.24
                       p.184 4.52

Homework 4: p.184 4.55
                       p.206 4.95
                       p.207 4.98, 4.99
                       p.213 4.108
                       p.215 4.111

Homework 5: p.242 5.20, 5.22
                       p.245 5.27
                       p.264 5.39

Course Calendar

The course calendar is subject to change as we move through the semester. Changes in homework due dates and midterm dates will be announced in the announcements section of this webpage.



Dates

 Monday Tuesday
 Thursday Required Reading and  Recommended Problems
Week 1
Jan 3 - 7
Propositional calculus: construction and interpretation of propositional formulas
Propositional calculus: construction and interpretation of propositional formulas instructor absent - class meet to discuss the reading assignment
Goldrei: (1.1, 1.2), 2.1, 2.2, 2.3 and embedded exercises
Week 2
Jan 10 - 14
Propositional calculus: logical equivalence and consequence
Propositional calculus: logical equivalence and consequence Propositional calculus: logical equivalence and consequence
Homework 1 due
Goldrei: 2.4, 2.6 and embedded exercises
Week 3
Jan 17 - 21
Propositional calculus: formal deductions Propositional calculus: formal deductions Propositional calculus: formal deductions Goldrei: 3.1, 3.2 and embedded exercises
Week 4
Jan 24 - 28
Propositional calculus: soundness and completeness
Propositional calculus: soundness and completeness Propositional calculus: soundness and completeness
Homework 2 due
Goldrei: 3.3 and embedded exercises
Week 5
Jan 31 - Feb 4
Predicate calculus: first-order languages Predicate calculus: first-order languages Predicate calculus: first-order languages Goldrei: 4.1, 4.2 to p. 148 and embedded exercises
Week 6
Feb 7 - 11
Predicate calculus: first-order languages Predicate calculus: logical equivalence
Predicate calculus: logical equivalence
Homework 3 due
Goldrei: 4.2 to end, 4.3 to p. 173 and embedded exercises
Week 7
Feb 14 - 18
Predicate calculus: logical equivalence Predicate calculus: axiom systems
Predicate calculus: axiom systems Goldrei: 4.3 to end, 4.4
We will discuss especially exercises 4.76 and 4.77
Feb 21 - 25
READING WEEK
READING WEEK READING WEEK
Week 8
Feb 28 - Mar 4
Predicate calculus: substructures and isomorphisms
Predicate calculus: substructures and isomorphisms Predicate calculus: formal deduction system
Goldrei: 4.5 and embedded exercises
Week 9
Mar 7 - 11
Predicate calculus: formal deduction system Predicate calculus: soundness theorem Predicate calculus: soundness theorem
Homework 4 due
Goldrei: 5.1, 5.2 and embedded exercises
Week 10
Mar 14 - 18
Predicate calculus: soundness theorem Predicate calculus: completeness theorem Midterm
Goldrei: 5.3 and embedded exercises
Week 11
Mar 21 - 25
Predicate calculus: completeness theorem Predicate calculus: completeness theorem Applications of compactness: axiomatizability
Homework 5 due
Goldrei: 5.4, 5.5 and embedded exercises
Week 12
Mar 28 - Apr 1
Applications of compactness: Lowenheim-Skolem Applications of compactness: Lowenheim-Skolem Applications of compactness: Lowenheim-Skolem


Week 13
Apr 4 - 8
review
Homework 6 due